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Abstract. As it becomes more common for humans to work alongside
artificial agents on everyday tasks, it is increasingly important to design
artificial agents that can understand and interact with their human coun-
terparts naturally. We posit that an effective way to do this is to harness
nonverbal cues used in human-human interaction. We, therefore, leverage
knowledge from existing work on gaze-based intention recognition, where
the awareness of gaze can provide insights into the future actions of an
observed human subject. In this paper, we design and evaluate the use
of a proactive intention-aware gaze-enabled artificial agent that assists
a human player engaged in an online strategy game. The agent assists
by recognising and communicating the intentions of a human opponent
in real-time, potentially improving situation awareness. Our first study
identifies the language requirements for the artificial agent to communi-
cate the opponent’s intentions to the assisted player, using an inverted
Wizard of Oz method approach. Our second study compares the experi-
ence of playing an online strategy game with and without the assistance
of the agent. Specifically, we conducted a within-subjects study with 30
participants to compare their experience of playing with (1) detailed AI
predictions, (2) abstract Al predictions, and (3) no Al predictions but
with a live visualisation of their opponent’s gaze. Our results show that
the agent can facilitate awareness of another user’s intentions without
adding visual distraction to the interface; however, the cognitive work-
load was similar across all three conditions, suggesting that the man-
ner in which the agent communicates its predictions requires further
exploration. Overall, our work contributes to the understanding of how
to support human-agent teams in a dynamic collaboration scenario. We
provide a positive account of humans interacting with an intention-aware
artificial agent afforded by gaze input, which presents immediate oppor-
tunities for improving interactions between the counterparts.
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1 Introduction

Gaze is an important nonverbal communication signal in everyday human-human
interaction [4], and has become a popular research topic for technology-mediated
interaction [17,43,60]. The ability to tell what someone is looking at—‘gaze
awareness’—is a useful way to gauge the attention of others [1,2,14,63]. Gaze
observed over time is an effective predictor of human intention [26,27,50,56]. A
common approach for gaze awareness is to visually overlay a user’s gaze over a
shared interface, which provides others rich insights into the mind of the tracked
user. This complementary layer of communication has numerous benefits such
as improved coordination [2,12,14] and situation awareness [50]. Despite these
benefits, overlaying gaze on the interface can add a highly distracting element to
the task at hand [50], confuse users when there is a mismatch with other modes
of communication such as speech [14], and scales poorly with multiple users.

In this paper, we explore how an artificial agent that interprets eye move-
ments can alleviate issues commonly associated with visual gaze awareness,
and how humans respond to agent-derived intentions from gaze and observ-
able actions. A socially interactive agent that can understand human gaze can
potentially improve the interaction with its human counterparts [27,56], such as
by adapting its behaviour to their anticipated intentions, or even support the
user by communicating the intentions of others. However, much investigation
is still needed from an interaction design perspective before humans can work
alongside such agents effectively, with each counterpart playing to its strengths.

Our work presents a step towards artificial agents that can interpret and com-
municate human intentions based on nonverbal behavioural signals. We designed
and evaluated the communication protocols of a proactive gaze-enabled artifi-
cial agent for communicating intentions to a human player in the context of an
online strategy game. The agent assists by making inferences about the oppo-
nent’s intentions based on their gaze and actions, allowing the user to focus
on formulating better strategies with improved awareness of the situation. By
abstracting the gaze data into a written prediction of what the opponent intends
to do, we avoid the distracting nature of gaze visualisation as found in past
research [14,50,51,63]. As nonverbal cues are challenging to articulate, our first
step was to build a linguistic model of intention recognition derived from human
observers. This process resulted in a general model of intention communication,
which we incorporated into the artificial agent.

Our following step evaluates the model while comparing the existing app-
roach of using gaze visualisation to infer intentions in strategic gameplay to
our proposed approach of abstracting the intentions from gaze input into writ-
ten predictions through an artificial agent. We designed a within-subjects user
study with three conditions, in which we provide varying levels of information to
an assisted player. In the first condition, we provide players with a live visualisa-
tion of their opponent’s gaze, allowing them to interpret the information as they
see fit. In the second condition, the agent sends the player inferences about the
opponent’s plans, followed by an explanation of the observed behaviours that it
used to form the prediction in an attempt to be transparent about its reasoning
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process. In the third condition, the agent sends the is predictions about their
opponent’s plans without an explanation of its reasoning process, to allow the
player to have their own beliefs about the agent’s logic, and without any direct
knowledge of the data that led to that inference.

We conducted the within-subjects study with 30 player pairs, in which the
evaluated players reported a positive experience when engaging with the agent
in terms of preference and usefulness for situation awareness, and a perceived
reduction in cognitive workload and distraction. Though our results show that
the agent can facilitate awareness of another user’s intentions without adding
visual distraction to the interface, there was no significant difference in the play-
ers’ cognitive workload for the written prediction conditions, as compared to
the live gaze visualisation condition. These findings suggest that the manner in
which the agent communicates requires further exploration.

All in all, our work presents two primary contributions to the design of arti-
ficial agents that collaborate with humans, from both sides of the interaction.
From the agent end, we show that it is possible to develop agents that can
not only predict intentions through gaze but communicate and reason about
them as well. On the other end, we show that the human counterpart can be
supported by a proactive agent that communicates intentions through verbal
means (e.g. written language), which maintains situation awareness while reduc-
ing visual distraction when compared to using a live gaze visualisation approach.

2 Related Work

2.1 Shared Gaze Awareness

Gaze visualisation is by far the most common approach for utilising gaze input in
technology-mediated human-human interaction. This approach provides a com-
plementary layer of nonverbal communication, especially beneficial in remote
settings where users cannot see where other the users they are interacting with
are looking. Observers can derive rich information from gaze behaviours dis-
played over an interface (e.g. scanning, focus on an object, and repeated com-
parisons of different objects [57]). These gaze behaviours provide clues about
the other person’s cognitive processes, i.e. the ability to discern their intentions
[61]. The benefits are well demonstrated in multi-user scenarios, improving com-
munication and coordination in collaborative settings (e.g. [2,12,24,63]). Gaze
visualisation has also been explored in competitive gameplay [46,59], highlight-
ing its potential for increasing social presence between remote players [36,45],
and for enabling players to recognise the intentions of others in real-time [50,51].

Despite its numerous benefits, researchers have commonly found that using
live gaze visualisation can be ‘distracting’ and ‘confusing’ for an observer to
interpret [14,51,63]. We believe this is because humans are not accustomed to
interpreting visual representations of gaze, as the focal point of gaze is ‘invisible’
in normal everyday interpersonal interaction [50], and that an added layer of
continuous information draws the user’s attention away from the task at hand
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when displayed. As gaze visualisation is highly dependent on context and indi-
vidual preference [15,50], software for visualising gaze in real-time often allows
users to control its parameters such as by adjusting the colour, opacity and
smoothness [7,13]. The recent release of Tobii Ghost'—a free commercial soft-
ware designed to allow eSports audiences to view customised gaze visualisations
of players in real-time—further exemplifies the growing popularity of this feature
in gaze visualisation applications.

2.2 Gaze-Based Intention Recognition

Though human attention can be easily inferred by the direction of a person’s
gaze, discerning their intention through their gaze is a far more complicated
process. The observer must distinguish between intentional and unintentional
behaviours, and gaze direction alone provides very few clues to do so. In our
previous study, we demonstrated that using an aggregated visualisation of gaze
can enable human-human intention recognition in competitive gameplay, with
benefits such as early inference of intentions [50]. Despite such benefits, the study
found that players who could see the gaze of their opponent had no gain in
performance, due to its cost in time and attention—by attempting to infer their
opponents’ strategies, they ended up neglecting their own. Players who did man-
age to reach a balance stated that the broad clues provided by gaze awareness
were beneficial to formulating and adjusting their strategy. For instance, they
could ignore certain areas of the game-board if they noticed that their opponent
had not looked there. Overall, these findings suggest that effectively managing
the cognitive demands of inferring the opponent’s strategy and devising one’s
own is the key to successfully making use of the opponent’s gaze information.

However, it is unlikely that humans can fully operationalise gaze while per-
forming complex tasks without assistance, due to the limits of human working
memory. As visual behaviour is intrinsically linked to how humans plan and
execute actions [34], researchers have explored the use of computational tech-
niques to perform intention recognition from gaze, typically employing a machine
learning approach (e.g. [5,26]). In a previous paper, we proposed an alternative
approach that incorporates visual behaviour into model-based intention recog-
nition using automated planning [56]. We leveraged the fact that humans plan
ahead in strategic scenarios and that the incorporation of gaze as priors in a
planning-based model resulted in the computation of predictions with high accu-
racy, earlier and with no additional computational cost when compared with a
base planning model that did not use gaze input. Overall, such works, exemplify
the use of computational techniques to harness the rich information available
from the observation of gaze behaviour.

! https://tobiigaming.com /software/ghost/.
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2.3 Human-Agent Teaming

In 1960, Licklider proposed the vision of man-computer symbiosis, where com-
puters would be able to work with humans to solve problems that are not easily
addressed if attempted by either counterpart individually [38]. For instance,
while computers can perform complex calculations and repetitive tasks far bet-
ter than humans, humans are better at visual-spatial reasoning and at exercising
judgement. However, enabling this symbiosis through mixed teams comes with
significant challenges with regards to effectiveness [33]. One such challenge is a
lack of agent transparency, which hinders the human partner’s ability to under-
stand the decisions of the artificial agent [30,48]. The lack of transparency can
lead to adverse effects for the human partner, such as a reduction in trust when
working together, and therefore, a potential for disuse [6,10,35,62].

Researchers in Al argue that providing explanations supports transparency
and may improve trust in the system [23,41,47,52,62]. Moreover, when using
an agent as a decision aid, users would often seek an explanation of its output
to improve their own decision making [61]. However, for an explanation to be
effective, it must be at the right level of detail [31]. An explanation of how
something works will fail if it presupposes too much and skips over essential
information, or if it provides a level of detail that leads to an increase in cognitive
workload, hence decreasing its effectiveness [52]. Further, we need to consider
the application domain, the audience of the explanation [21], as well as the
presentation format (how to explain) and the content (what to explain) [19,31].

From a different perspective, dissimilarities between human language and
computer language pose another consideration for real-time cooperation, which
Licklider states “may be the most serious obstacle for true symbiosis” [38]. Lick-
lider explains that humans think more naturally and easily in terms of goals than
specific itineraries, implying the existence of human goals during communication.
Computers, however, communicate better in terms of procedural instruction,
which may be redundant or not meaningful to a human collaborator.

In summary, there are numerous benefits for implementing gaze input for
computer-mediated interaction afforded by advances and availability of eye-
tracking technology. However, information overload, interpretation difficulty and
scalability using the conventional approach of gaze visualisation hinder its full
potential for multi-user settings. Recent work in AI has shown that intelligent
agents have the potential to perform intention recognition from gaze input, which
is often a complex task in human-human interaction, especially when the user is
already preoccupied. Our work intersects these areas by using an intelligent col-
laborative agent to support a human counterpart by recognising the intentions of
others based on their gaze for them. To do this effectively, we must first consider
how an ideal agent would communicate intentions once recognised, addressing
Licklider’s language mismatch prerequisite. Second, we must consider an agent’s
explanation capabilities to support transparency, where the agent can provide
insights into its reasoning process to gain the trust of the user. Lastly, we need
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to consider the optimum level of support as different levels of artificial agent
support can result in changes in cognitive workload, positively or negatively [9].

3 Research Design

From our review of the literature, an ideal intention-aware agent for human-agent
interaction in the context of teaming should possess the following capabilities:

1. Infer a users’ intentions accurately based on gaze observation and other
available sources of information (e.g. observable explicit actions) in a timely
manner.

2. Communicate inferred users’ intentions to an assisted user in a way that the
user finds easy to understand, such as through natural language.

3. Increase the users’ situation awareness while reducing the users’ cognitive
workload (in comparison with current approaches, e.g. gaze visualisation).

We conducted two studies to evaluate the prospects of an agent possessing
these capabilities. Our first study identified the language that humans use to
describe the intentions of third parties over short text-based messages. The find-
ings from the study provided the language requirements for our artificial agent.
In the subsequent study, we evaluated our enhanced artificial agent with par-
ticipants using an online strategy game. We obtained ethics approval from our
University’s ethics committee, as both studies involved mild deception of the par-
ticipants. Both studies required a scenario in which participants were required
to deduce another person’s intentions through a computer system. For our pur-
poses, we used the digital version of an online competitive turn-based strategy
board game called Ticket to Ride. In this game, players compete to build con-
nections between cities based on drawn ‘ticket’ cards (e.g. Dallas to New York).
The core of the game is to keep their intentions hidden as an opposing player can
gain a significant advantage by correctly guessing their hidden plans. Therefore,
players must plan their routes carefully to minimise the risk that an opponent
will guess their intentions and block them by claiming the routes that they need
first. More detailed information on the rules of Ticket to Ride can be found on
the game’s website?.

4 Study 1: Language Identification

In this study, we developed an effective language model for a gaze-aware artificial
agent to communicate an opponent’s intentions to a user through text, and
conducted a study to generate specific language data for our broader scenario. We
used a variation of the Wizard of Oz prototyping method in which participants
played the role of the ‘artificial agent’ to produce language according to what
they think is appropriate to the task, instead of the language being determined
by the researchers or system designers.

2 http://www.daysofwonder.com /tickettoride/en /usa/.
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The goal of our artificial agent is to promote the user’s situation awareness,
defined by Endsley [20] as: “perception of elements in the environment within a
volume of time and space, the comprehension of their meaning, and the projection
of their status in the future”. Gaze awareness has been shown to be especially
beneficial for situation awareness, particularly when a player is in a strategic
game can make correct inferences about their opponent’s strategy early in the
game [50]. However, prior literature on agent transparency in general tasks indi-
cates two important aspects of agent communication: presentation format and
content [19,31]. We used the Situation Awareness-Based Transparency Model (or
SAT Model) [11] as a model of agent transparency to support a user’s situation
awareness. In this model, the agent communicates different types of information
at three levels to support the user. At the lowest level, the agent communicates
its own state, which includes the agent’s intentions. At the middle level, the
agent communicates information regarding its reasoning process, and at the top
level, the agent communicates information regarding potential future states.

For this study, we recruited 20 participants (11M/9F) from The University
of Melbourne, aged between 20 and 32 years (M = 25, SD = 3.7), to take on the
role of a ‘predictor-explainer’. We selected participants based on their self-rated
English proficiency in our recruitment questionnaire, as we required participants
to produce a rich vocabulary around gaze behaviours, observable actions and
the communication of intentions. We provided participants with the rules of the
game at the time of recruitment, and we compensated them with a $15 (AUD)
gift card upon completion of the study.

4.1 Experimental Setup and Procedure

Upon arrival, we sat the participant in front of a computer and obtained the
participant’s written consent to participate in the study. The participant and
experimenter sat at opposite ends of the table so that the experimenter’s dis-
play was not visible to the participant. Figure 1-Right shows the technical setup
consisting of a laptop connected to two 23-inch monitors on a rectangular table,
located in a study room. The experimenter then introduced the task by explain-
ing that there were two other players in separate rooms preparing to play Ticket
to Ride against each other. The experimenter told the participant that they
had been randomly selected to take on the role of a ‘predictor-explainer’ (or
appraiser), who would watch the game between the two other players via the
computer and send assistive messages to one of them, their ‘teammate’.

In reality, there was only one participant in each session (i.e. themselves). The
game of Ticket to Ride shown to the participant was pre-recorded, and we used
each recording only once. To clarify, we showed 20 different games played by 20
different player pairs from our previous study data set [50]. The recorded player
was naive to the fact their gaze was being observed, meaning that the participant
observes natural gaze behaviours. We did this for two reasons, (1) in order to
elicit a wide range of textual representations from different game scenarios and
(2) there was no need for anyone to receive the participant’s messages, as the
lexical content of those messages was the focus of the study.
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CHAT APPLICATION TRAIN ROUTES CITIES CLAIMED ROUTE PARTICIPANT

B PARTICIPANT VIEW ;
TICKET CARDS (GOALS) GAZE VISUALISATION EXPERIMENTER

Fig. 1. Left: Participant view. Right: Experimental setup.

The recording of the game included a ‘live’ dynamic heatmap visualisation
of the gaze of the ‘opponent’ player (as shown in Fig. 1-Left). We designed and
employed a protocol to continually reinforce the participants’ belief that they
were engaged in a live online game with two other players throughout the study.
For example, as each session was designed to last a maximum of an hour, we
informed the participant in advance that the game would begin at a fixed time,
partway through the session, as all “three” participants needed time to be intro-
duced to the study and familiarise themselves with Ticket to Ride through the
game’s tutorial. The researcher was only allowed to clarify the rules about the
game when prompted during the study to avoid any influence on the data.

We describe this approach as an ‘inverted” Wizard of Oz protocol. In a typ-
ical Wizard of Oz study, a researcher secretly plays the role of the computer
system while a participant interacts with it [32,54]. In our study, the participant
is asked to play the role of the computer system, and the secret is that there is no
end-user. The benefit of this is that it allows us to directly collect a large num-
ber of different messages that reflect how the participants think the computer
‘should’ communicate in an assistive fashion. A similar approach has been used in
the context of machine learning to ‘bootstrap’ a Reinforcement-Learning-based
dialogue system on human-generated activity [55].

Before it was ‘time to join the game’, the experimenter showed the partic-
ipant four short clips (introduced as pre-recordings rather than a live game),
representing four scenarios with the live dynamic gaze visualisation. This was to
start the participant thinking about how they could form predictions from the
information available, particularly the gaze visualisation, and then from expla-
nations in text about their reasoning process. This step allowed them to develop
confidence in their ability to observe and communicate simultaneously during
the live game. We reminded participants to provide messages that their ‘team-
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mate’ would find helpful, and to build the teammate’s trust by being transparent
in how they derived their predictions through their explanations.

Next, we demonstrated a simple chat application that served as the means of
communication with their teammate (see Fig. 1-Left). The application contained
two text fields to input their prediction and explanation respectively, a send but-
ton and a window showing the conversation. The application logged all messages
sent and included a validation to ensure both text fields are not empty. We aug-
mented the application to select a response from a range of automated natural
language responses in reply to every message sent by the participant to keep up
the deception. The responses mimicked a ‘busy player’: one that replied with
a short delay, sometimes did not reply at all, and often with a brief response.
The majority of responses consisted of acknowledgements, while the remaining
introduced expressions of uncertainty about the participant’s messages to convey
human-like qualities (e.g. “I don’t think so”, “Hmmm ok”).

At the prescribed start time, the experimenter streamed the recorded game as
if it was a live game feed and informed the participant that the game had started.
We posed no restrictions on the syntax or semantics participants could use for
their messages, which allows them to freely formulate them as they saw fit, as
long as each contained a prediction of their opponent’s intentions followed by an
explanation for their prediction. At the end of the study, the researchers con-
ducted a short interview with the participant to find their experience embodying
the role. Lastly, we debriefed participants about the deception and provided par-
ticipants with the opportunity to inquire about our objectives.

4.2 Findings

We elicited a total of 249 raw messages (mean = 12.4 messages per participant),
with a high deviation between participants (min = 4, max = 23). The ability to
successfully formulate messages depended on several factors, including individ-
ual ability, experience with the game, the communication strategy adopted, and
the recorded game shown. We discarded messages where participants attempted
to communicate with their teammate casually or provided recommendations
instead. However, we included recommendations that resemble a prediction that
included a clear explanation (e.g. “You should block Helena to Duluth, our oppo-
nent is likely to claim this the route next as he has repeatedly been looking at
it.”). We also split messages that contain two mutually exclusive predictions
(e.g. “The opponent is interested in the west coast. Opponent may build routes
around New York.”), which typically occurs when participants formed another
prediction while forming an initial unrelated prediction but have the same rea-
soning process for both. Finally, we obtained a total of 246 messages after our
filtering process for analysis.

Prediction Format. For the prediction part of each message, we stripped
them into its essential and meaningful components to obtain a minimal format
for predictions (e.g. From [City] to [City] through [City]), which gave us a total
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of 45 initial formats. We merged formats that were similar in nature into key
prediction formats (examples shown in Fig. 2), each demonstrating unique char-
acteristics in terms of abstraction. We also noted that participants conveyed their
level of confidence when providing their predictions, using words that express
uncertainty (e.g. i think/maybe/will try). As studies on explanations argue for
showing system uncertainty [3,39], we will introduce uncertainty when commu-
nicating predictions, including stating alternate routes when the likelihood of
the plan is similar (e.g. To [City] or [City] through [City] from [City] or [City]).

Explanation Content. Participants provided a wide range of explanations
for their predictions. We found that complex explanations contain spatial, tem-
poral and quantitative properties, in line with findings using expert explainers
[16]. Simplistic explanations, on the other hand, typically described observed
behaviours and often only with one property (e.g. “The opponent was looking at
those routes.”). In order to build a general model, we turn to Malle and Knobe
[44]’s explanation model for labelling the properties for more complex explana-
tions elicited with the assumption that the model can be generalised to explain
human nonverbal or combined inputs. Following the model, explanations can
include information about past and potential future actions, i.e. Causal History
of Reasons, defined as Oy, and Intentional Action, defined as I4. As our logs
showed that participants had a strong reliance on gaze to explain the predictions,
we include gaze (O,) as part of every explanation generated using our piece-wise
function below. We believe that gaze being ‘always on’ [28], becomes a valuable
source of information for participants throughout the game, especially when the
opponent has performed only a few observable actions.

04,04 if ontic actions observed
Ezxplanation = Oy, 14 if intentional action likely (1)
Og4,14,04 otherwise

Therefore, combination of all three sources of information forms an explana-
tion that is detailed, for example:

“The opponent is building a route from Washington to New Orleans
through Nashwille in the South East [Prediction (i)]. The opponent has
claimed part of this route [O4], has been looking at the routes between
Raleigh and Little Rock repeatedly [O4] and is likely to claim Nashville to
Raleigh next [14].”

Reasoning and Communication Strategies. Participants adopted two gen-
eral strategies for reasoning about and communicating the intentions of their oppo-
nent, which they maintained either strategy throughout, or interchanged between
the two depending on the situation. We found that the strategies were reflective of
the two systems of Kahneman’s Dual Process Theory [29]—System 1 (heuristic,
intuitive) and System 2 (systematic, analytical). The first strategy was to send as
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many messages as possible, in fear of missing out on communicating predictions
that may be important to their perceived teammate. Due to this time pressure,
we believe participants adopted System 1, where they made use of their intuition,
and that their rate of communication was limited to their typing speed. In con-
trast, the second strategy was closer towards System 2, where participants took
a conscious effort to reason about the opponent’s intentions and overall strategy,
as they wanted to provide the best possible prediction accompanied by a detailed
explanation of their reasoning process. This strategy resulted in fewer predictions,
especially if the current prediction or reasoning did not change.

Participants on average generated more predictions at the beginning of the
game and followed by fewer predictions towards the end of the game, represent-
ing its relevance. Unless the opponent’s plan changes, more recent predictions
will be less relevant, especially if the new predictions were part of the plan that
has already been predicted. In our interviews, participants noted the most diffi-
cult aspects of explaining is to come up with the best possible explanation, and
also what to communicate when unsure how they have come about the predic-
tion. This is when System 1 (or simply: intuition) often comes into play, which
makes it hard to quantify certain aspects such as how much the opponent has
looked at one part as compared with another. Participants also noted that timely
predictions would be most helpful, but this is difficult to tell how far in advance
the opponent will perform the predicted action (e.g. in how many turns).

5 Study 2: Evaluation

By combining the language model derived from Study 1 with an instance of an
intention-aware artificial agent from our previous work, we can now evaluate
the experience of playing an online strategy with and without agent assistance.
Figure2 summarises our experimental setup of two observation rooms and a
control room. Each session involved three researchers, two to facilitate the players
and the third, an unseen human to assemble the predictions from the artificial
agent into natural language following a set of rules. Both setups were identical for
both players, except for the eye trackers attached to the bottom of their screens;
the evaluated player (P4) was equipped with Tobii Pro X2-30 (for pupillary
data), and ‘naive’ opponent (Pp) was equipped with a Tobii 4C eye tracker.

We recruited 60 players (34M/26F) for the study and allocated them ran-
domly into two equal groups according to gender (17M/13F in each). At the
time of recruitment, we informed players that the purpose of the study was to
collect physiological data while they played a strategic game. The first group
(Group A) consisted of ‘aware’ assisted players, aged between 18 and 50 years
(M = 26.9, SD = 6.9), while the second group (Group B) consisted of ‘naive’
players, aged between 18 and 33 (M = 25.6, SD = 3.8) to be the opponents. 17
assisted players and 10 naive opponents have played the game before. All players
were compensated with a $20 (AUD) gift card for their participation.
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OPPONENT'S GAZE IS THE Al PROCESSES THE DATA AND NAUTRAL LANGUAGE SENTENCES ARE ASSEMBLED FROM THE
STREAMED TO Al VISUALISES PREDICTIONS IN REAL-TIME PREDICTIONS AND RELAYED TO THE ASSISTED PLAYER
(OBSERVATION ROOM 2 CONTROL ROOM (OBSERVATION ROOM 1
| AISYSTEM =
AN AN
7! COMBINES OPPONENT'S K 4 (=)
GAZE AND GAME b
ACTIONS TO GENERATE
PREDICTED PLANS OF
NAIVE OPPONENT IRREEATE RULE-BASED ASSENBLY ASSISTED PLAYER
NATURAL LANGUAGE SENTENGES | From (1Al o [Ciives o
ARE ASSEMBLED USING A SETOF | From (ciy/avea o (sl ough (il
PREDEFINED RULES. e n
Interest in/along/around [Area]
Around [City]

PREDICTION ARE SELECTED FROM To [City/Area] through [City/Area)
ALIST OF POSSIBLE FORMATS. Between [City) and (City]

From/to [City] to/from [City] or [City]
EXPLANATIONS ARE FORMED USING A
PIECE WISE FUNCTION (EQUATION 1). } The opponent has claimed part of this routel |

Fig. 2. Top: Experimental Setup and Communication Flow. Bottom: AI System Visu-
alisation and Assembly Process. Opponent’s intentions are displayed by increasing the
line thickness of routes. The thicker the line, the more likely the route will be claimed.
Coloured lines represent the claimed routes (player: green, opponent: red). The size of
the city indicates where the opponent has fixated upon (the larger the city, the more
the opponent has looked upon). (Color figure online)

5.1 Intention-Aware Gaze-Enabled Artificial Agent

We instantiated an artificial agent that performs intention recognition using the
combination of ontic actions and gaze using a planning-based model from our
previous work [56]. The approach uses a ‘white-box’ approach that allows us to
understand the underlying algorithms and data structures, which makes it sim-
pler to interrogate the model and its predictions, and therefore generate expla-
nations when compared to other approaches. Further, research has shown that
humans prefer working with an agent through planning; reporting the perceived
reduction of cognitive workload, and the ability to maintain situation awareness
for short-term tasks [49]. The objective of the agent assistance in this work is not
to solve the Ticket to Ride game by providing step-by-step recommendations to
the assisted player but to explore how an agent can assist a human player by
maintaining and communicating its beliefs of an opponent’s intentions.

Our decision to adopt an artificial agent instead of a Wizard of Oz approach
as used in Study 1 was for three reasons. First, using the data set from our
previous study [50], the agent scored positively higher compared to a human
interpreter using gaze visualisation (Fj-Score: 0.57 versus 0.37 respectively) in
terms of plan recognition. This means that an assisted player playing alongside
the agent would receive more accurate predictions than with a human assistant
(or wizard), which gave us confidence in its adoption. Second, the more accurate
agent provides better ground truths overall, meaning that even if we provide the
goals of the opponent (destination cities) to the wizard, the system remains far
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better at discriminating and predicting the most likely plans and can provide
this information earlier as well. This capability ensures relative consistency of
predictions and provides a realistic impression of what such systems can do across
participants. Third, as found in our previous study [50], human interpreters can
be subject to biases, especially when the human interpreter fixates on incorrect
predictions and overlooks other predictions.

As part of this work, we developed a graph visualisation to display the pre-
dictions made by the agent to assist in the rule-based assembly stage (shown in
Fig. 2-Bottom). The graph displays the combination of the top 10 most likely
plans of the opponent. The thickness of the edges (representing routes) increases
according to the number of times it appears in the top 10 plans; indicating the
likelihood of the player choosing that particular plan. Further, the graph not only
shows the opponent’s plans at a macro-level but also the possible combinations
that the opponent may use to achieve their intentions, i.e. alternate plans.

5.2 Study Conditions

We designed three conditions representing three levels of information abstrac-
tion. At the lowest level (GAZE viz), we show the assisted player (P4) the gaze
of the naive opponent (Pp) throughout the game using a live heatmap visual-
isation (as shown in Fig. 1-Left). This condition allowed players to make their
inferences on their opponent’s plans at the cost of their attention and serves as
a baseline condition as we displayed the visualisation throughout the game.
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Fig. 3. Al prediction examples.

At the mid-level (DETAILED Al PREDS), we assemble the intentions and
observed behaviours into our text-based language model informed by Study
1. Here, we presented the prediction as an Intentional Action [44]—what the
opponent intends to do next, while being transparent about its reasoning pro-
cess. As part of natural language, we conveyed uncertainty when communicating
the predictions and provided temporal, spatial and quantitative elements where
possible. At the highest level (ABSTRACT Al PREDS), the agent provided an
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abstract about the predicted plan through one of the formats from our language
model. As both AI prediction levels are reflective of the Dual Process Theory
[29] systems and the strategies described in Sect. 4.2, we simulate the communi-
cation frequency accordingly. For DETAILED Al PREDS, we require the formation
of detailed messages and therefore set the frequency to every 2 minutes so that
the system can make a sufficient observation to form the best possible prediction
and explanation. For ABSTRACT Al PREDS, the frequency was set to a minute
(60 seconds), as we only need to send the best possible prediction at that point
in time. We counterbalanced the study conditions using a Latin square to min-
imise any learning effects. As this is a within-subject study, we only subjected
the conditions to the assisted player (P4), in which we presented as a ‘mode
of assistance’. For both AI conditions, the researcher made it explicit to the
assisted player that the Al uses their opponent’s gaze behaviour and observable
game actions to generate the predictions.

5.3 Measures and Analysis

To evaluate the player experience in each condition, we designed a repeated-
measures questionnaire. As there was no specifically designed questionnaire to
measure the experience of intention awareness, we formed our questions based
on our previous work on gaze-based intention recognition [50], which measures
the subjective experience of players when performing intention recognition with
and without gaze visualisation. For each measure, we employed a 7-point Likert
scale (1 being full disagreement, 7 being full agreement), and included questions
to measure the participant’s perceived ability to discern intentions and formulate
strategy, the effects of information presented during gameplay (such as whether
it has influenced the outcome or have caused them to play differently), and
whether the condition presented were distracting and were informative.

For the AI conditions, we included two additional measures, which asked the
players how well they understood the Al predictions and how reliable the Al
performed in predicting the opponent’s intentions, and only in the DETAILED
Al PREDS condition, we asked players about the clarity of the explanations to
validate messages formed using our model. At the end of the study, we measured
the overall experience of using all three conditions, we asked players to rate the
conditions with regards to preference, demand and usefulness from most to least.
We then prompted the players on the ratings for each measure as part of our
subsequent post-study semi-structured interview.

To measure cognitive workload unobtrusively, we used the recently proposed
Index of Pupillary Activity (IPA) metric [18], which measures the frequency of
pupil diameter oscillation. The metric shows a direct correlation with working
memory, making it a plausible way to measure cognitive workload. Further, we
employed traditional measures of the cognitive workload from eye movement
behaviour from prior work (e.g. [9]), such as long fizations (i.e. fixations >500 ms),
which indicate deeper cognitive processing. We also used NASA-TLX question-
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naire [22] to capture perceived workload based on six subscales—mental demand,
physical demand, temporal demand, performance, effort and frustration.

5.4 Participants and Procedures

To manage the complexities of the study, all three researchers involved in the
experiment followed a strict rehearsed protocol. Both players were given an initial
briefing together upon arrival that explains that we will track their physiological
signals throughout the study for post-study analysis. We then provide players
with the written overview of the study, consent form and basic demographic
questionnaire to fill out before separating randomly into one of the two observa-
tion rooms with the allocated facilitator. We instructed the players to play the
game’s interactive tutorial for up to 10 minutes to get familiar with the game
and its controls, regardless of experience. Players then played three rounds of
Ticket to Ride against each other, with each testing a different study condition.

At the start of each round, we requested each player to pick all three randomly
assigned ‘ticket’ cards for them to attempt to complete (each representing a pair
of ‘goal cities’, potentially having up to six initial goal cities). Players were
asked to ‘think aloud’ during the game about their strategy; their opponent’s
strategy; what they were thinking and what their opponent might be thinking.
Each player was given a 12-minute cumulative time allowance for their total
turns in each round to ensure timely completion. If either player ran out of time,
we manually calculated the scores for that round. We video-recorded the screen
and rooms for both players for the entire duration of the session. Each session
lasted approximately 120 minutes in total. For the remainder of the section, we
describe the procedure for each player separately for clarity.

Player A (Assisted Player) Procedure. Once the players entered their
respective rooms, the facilitator (F4) informed the player that they had been
randomly selected to be the ‘aware’ player while making it clear at no point dur-
ing the study that their information will be exposed to their opponent (Pg). The
facilitator then calibrated the player’s eyes with the eye tracker using the default
calibration before starting the tutorial. We then informed the player that they
would play three rounds of the game against player Pp and will receive ‘addi-
tional information’ about their opponent’s intentions without their knowledge,
which will vary according to the condition.

In all conditions, the player received prompts with a slider (see Fig.3). The
primary purpose of the rating scale is for players to reflect on the information
that is being presented to them. The players were instructed to verbalise why
they had given a particular rating. At the end of each condition, we administered
the NASA-TLX immediately before asking them to fill up a questionnaire on
their experience about the round they just played. This ordering was intentional
as their subjective workload may change after filling up the questionnaire. Once
completed, the facilitator conducted a short interview on the game they just
played and prompted the player on any extremities in their subjective ratings.
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Player B (Naive Opponent) Procedure. The procedure for the naive oppo-
nent (Pp) was straightforward, where the player was required to play three regu-
lar games against player P 4 while being eye tracked, therefore acted as the con-
trol group. Once the players entered their respective rooms, the facilitator (Fp)
calibrated the player to the eye tracker before the tutorial. At the end of each con-
dition, we administered the NASA-TLX questionnaire and a Games Experience
Questionnaire (GEQ) [8]. The primary purpose of both questionnaires was for the
player to fill up the time while player P 4 went through a longer post-study ques-
tionnaire and interview. Any gaps in time were filled up by facilitator F g, who will
engage in a conversation about the game they just played.

5.5 Results

The first part of this section presents the overall results from our various sub-
jective and objective measures, as previously outlined in Sect. 5.3 (Measures and
Analysis). In the second part, we present and discuss the experience of the players
with and without the agent from the insights provided by the post-study semi-
structured interviews in relation to our various measures. Figure4 summarises
the median scores for the responses in our repeated-measures questionnaire.
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Fig. 4. Questionnaire results.

A Kruskal-Wallis test revealed no significant differences between the condi-
tions for each of the measures. The figure shows that the conditions were found
to be comparable except for the decreasing trend in distraction as we reduced the
information. In addition to these measures, players in both Al conditions rated
an agreeable median score for reliability (5.0) and when asked if they understood
the AT predictions (6.0). The results suggest that although the communication
was clear, the Al was unable to meet the expectation of the player, such as by
not providing correct predictions, predictions that the player already guessed or
that the predictions were not timely enough for them to act on it.

Table 1 below shows the rating given for each condition in relation to prefer-
ence, demand and usefulness. A Friedman test showed no significant differences
between the conditions for all three ratings. These ratings, however, served as
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prompts for discussion during the post-study semi-structured interview as play-
ers were asked to reflect on their reasoning behind their given ratings.

Table 1. Post-study ratings for each condition.

Preferred Demanding Useful
Most | Middle | Least | Most | Middle | Least | Most | Middle | Least
GAZE VIZ 15 13 2 15 9 6 13 12 5
AI DETAILED 7 8 15 6 12 12 9 6 15
AI ABSTRACT | 8 9 13 8 10 12 8 12 10

Table 2. Results of cognitive workload measures.

IPA (Hz) Average long Average saccade | NASA-TLX
fixations (>500ms) | velocity (m/sec)

GAZE VIZ 0.0127 0.02 (0.02) 47.80 (27.9) 49.1
Al DETAILED | 0.0138 0.22 (0.10) 54.71 (29.2) 45.4
AI ABSTRACT | 0.0148 0.02 (0.02) 49.49 (31.3) 45.9

Table 2 summarises the results of our cognitive workload measures. We ran
a Mann-Whitney U test for all the objective measures and only found signif-
icant differences for the average long fixations measure. A post hoc analysis
showed differences between the GAZE VIZ and DETAILED Al PREDS conditions
(W =0,Z=4.78,p < 0.05, r = 0.87) and between both AI conditions (W =0,
Z = 4.78, p < 0.05, r = 0.87). The results show that players on average had
longer fixations in the DETAILED Al PREDS condition, which could simply be
because participants needed time to process the predictions. We found no signif-
icant differences between GAZE vIZ and ABSTRACT Al PREDS conditions, which
suggests that players did not require a longer time to parse the predictions in
ABSTRACT AI PREDS condition, indicating that the ABSTRACT Al PREDS case
did not introduce any significant burden while achieving similar awareness as
the ¢AZE viz condition. Though the Al did not decrease the cognitive workload
as compared with the current approach of gaze visualisation, the NASA-TLX
questionnaire scores indicated that players perceived the GAZE VizZ condition
to be more demanding overall than when being assisted by the agent. However,
although the overall mean score for the measure suggests the perceived workload
for the GAZE VIZ condition was higher when compared to the Al conditions, a
Kruskal-Wallis test showed no significant differences among the three conditions.



272 J. Newn et al.

AI Predictions. Players who spoke positively about the predictions often
referred to the specific properties in the predictions, including temporal and
spatial properties as found in prior work (e.g. “I like the temporal information
(‘since the beginning of the game...’), and precise information about where the
opponent was looking.” — [P174]). The uncertainty provided in the explana-
tions was also well received by players, noting that they only needed to know
the areas than the specific cities (e.g. P84), or that the agent communicated
alternate paths the opponent may take (e.g. P30,4). Player P12 4 explicitly noted
that the predictions were useful when the agent predicted longer (distal) routes
instead of shorter (proximal) routes, especially for strategy formulation.

There is some evidence to suggest that the Al predictions drew their attention
to areas of the board they overlooked. For example, P54 mentioned “It made me
take notice of what my opponent was doing.” A third of players (10/30) noted
that they had to invest time in deciphering the AI predictions, mostly attributed
to their unfamiliarity with the map, despite each prediction having an overall
indication of the area in the predictions where applicable (e.g. From [City] to
[City] in the South East). This finding also brings forward an issue with the
textual representation of intentions (“I like the predictions that were short; I did
not like the visuals. It was easier to take the Al info but not as pop-up prompts.”
— [P294]; “It took me out of the game a little to have the prompt pop up and
then look at the map to interpret.” — [P104]). Player P14 mentions that “...it
would be better if the route was highlighted”, as a suggestion to complement the
predictions with a concise visual component.

Players who least preferred the Al conditions found the prediction prompts
distracting because it interrupted their thought process. As they were required
to reflect on the prediction sent each time, it took them further away from
their current task. Between the AI conditions, players preferred the abstract
AT predictions over the detailed Al predictions in general as the messages were
more concise and therefore needed less time investment in deciphering them and
subsequently utilising the information:

— P8y: “I liked the simplicity of the information it [the artificial agent] gave
me, it was very easy to filter.”

— P104: “I liked the short form prompts, they were actually quicker to read, and
I was still able to formulate a plan around my interpretation of the prompt.”

— P23 4: “Shorter and brief hints were easy to understand and helpful.”

There were overarching reports that predictions became less useful as the
game progressed, as expected, especially towards the end of the game, as P12 4
mentions “I liked the initial predictions, but it was less helpful towards the end
of the game”. A possible explanation is because there was enough evidence in
the form of routes claimed and players could make their own inferences through
the observable opponent actions. As the agent lacked awareness of the context,
players also noted several limitations in the Al conditions, such as not being able
to predict whether the opponent was going to block them (e.g. P174).

Further, the agent was expected to communicate when prior predictions are
no longer relevant or when the plans of the opponent have changed, as P15 4
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states “I'm not sure how helpful the AT was. It could be that the opponent did not
have enough cards to carry out his original plan, or I blocked him successful at the
beginning”. Moreover, players also mentioned that they did not pay attention to
their opponent’s plans throughout the game, as their plans were not affected by
their own. This finding suggests that the Al made them aware of their opponent’s
plans, but in some ways annoyed them as the Al kept informing them about the
opponent’s plans when it did not affect their plans throughout the game.

Gaze Visualisation. A third of players (10/30) explicitly mentioned that the
gaze visualisation was ‘distracting’, mentioning it “moved too much” [P1,4], occu-
pied their time and attention [P15,4], which then caused them to play longer
turns [P104]. When prompted further, three players (P124, P25 4, P294) men-
tioned it was mentally demanding to focus on their own and their opponent’s
strategies (or plans) at the same time, causing a distraction.

Half the players (16/30) found the gaze visualisation to be informative and
therefore useful, with a general consensus that it was good to know the general
areas the opponent was looking at. Player P17 4 enjoyed the challenging aspect
of inferring the opponent’s intentions on their own, while P12 4 found it interest-
ing to reaffirm their assumptions. Though these players found the visualisation
informative, players also were not able to utilise the information that was avail-
able to them, especially if they were not experienced in the game (e.g. “It was
good to know the general areas the opponent was going for, but don’t think I'm
experienced enough to act well on the information.” — P23 4). These findings are
also reflected in our questionnaire results, as shown in Fig. 4.

Table 1 shows that although gaze was found to be most demanding, it was
rated most preferred and useful. There are two possible explanations for this.
First, experienced players were able to utilise the additional information better
through gaze. Second, players noted that the fact that the gaze was overlaid over
the game made it easy to determine the areas of interest spatially, which was
sufficient to gauge their opponents’ intentions at a glance.

A few players drew comparisons with the AI predictions, for example, “I
prefer it [gaze visualisation] to the AI because I didn’t have to bother with reading
the pop-ups.” as mentioned by P23 4. Players also mention that it was possible
to ignore gaze when they want to, attributing it to visual background noise
on the interface. However, players did note the ability to access the additional
information at all times in the GAZE VIz condition. In comparison with the Al
conditions, new information was only available when the predictions appeared,
leaving the players on occasion to wait longer for new information to be sent.

6 Discussion

In this paper, we evaluated the prospects of an ideal intention-aware artificial
agent, which we designed in line with the existing literature. We present the
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first step towards artificial agents that can interpret and communicate inten-
tions afforded by gaze input to assist a user by improving the user’s situation
awareness. Further, we evaluated whether the agent can alleviate the distracting
nature of live gaze visualisation used to recognise intentions in prior work. To
that end, we conducted two studies: first to derive a language model used by
our agent to communicate the predicted intentions using natural language, and
second to evaluate the effectiveness and experience of interacting with our agent.
The predictions and explanations provided by the agent early in the game
allowed the participants to formulate better strategies, but overall, the agent
neither impacted the players’ performance nor decreased the cognitive work-
load as initially hypothesised. It was possible that the game itself introduced
cognitive workload, which is difficult to isolate as players had different abilities
and set of goals. However, the overall perceived cognitive workload was lower in
the agent-assisted conditions, with reduced distraction as compared to the gaze
visualisation approach. We further acknowledge that irrespective of the mode of
communication, the processing of information generates cognitive workload.
Our subjective assessments indicate that the agent was successful in deriving
intentions from gaze and communicating them to the players in a way that
matched the informativeness of the gaze visualisation. These results suggest
that there is vast potential in using artificial agents to take on such roles when
provided with complementary inputs such as gaze. We also note that an agent-
assisted approach can potentially scale well for multiple users, where the agent
can determine what is the most relevant information to communicate, compared
to visualising multiple user’s gaze on the same interface which could potentially
clutter the interface and cause confusion. Due to the limitations of our approach
concerning representation and context, we have only partially achieved our goals
for a collaborative intention-aware artificial agent. Following, we discuss the
considerations when designing such agents derived from our findings.

Information Presentation. A significant limitation of our approach is the full
use of textual representations to convey human intentions. While this serves as
a good starting point, it caused participants in our study who were unfamiliar
with the game to underutilise the predictions from the agent, as they needed
to be spatially aware of the layout of the interface, i.e. the location of cities or
map areas, to understand the predictions. Our findings suggest that an overlay
of precise intentions over the interface using visual augmentation by the agent
coupled with natural language annotations, can potentially be a more under-
standable way to communicate predictions and explanations.

Context-Awareness. In our user study, we evaluated two sides of the interac-
tion simultaneously. On one side, whether the agent can process and communi-
cate intentions in real-time by observing a human player (the opponent), hence
the sender. On other, the experience of the receiver of intentions, in our case, the
agent-assisted player. Ideally, the agent should consider what the agent-assisted
player already knows by deriving their intentions as well, either implicitly or
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explicitly. With context-awareness, the agent would only communicate relevant
predictions, such as predictions that directly affect the user and therefore, better
relevance to the user regardless of the mode of communication. The DETAILED Al
PREDS condition was an extreme case where we gave the most complete expla-
nation possible without considering what the player already knew, leading to
the communication of redundant information. The subjective assessment of this
condition shows that it is necessary to keep a model of what the player already
knows, or what has already been communicated, to reduce distracting informa-
tion and increase the effectiveness of each communication.

Moreover, context-awareness would allow the agent to adjust the level
of detail when communicating intentions. The combination of more concise
information and more timely predictions would improve the human’s ability
to respond to the agent. Furthermore, if the agent understood the intentions of
all observable users, it would be possible for the agent to negotiate the broader
goals of each of the users derived from their intentions. Our work closely resem-
bles iTourist, in which an agent could recognise gaze patterns of a ‘tourist’ and
provide recommendations on transport or accommodation alternatives [53], but
only for a single user at a time. We extend this work by demonstrating the abil-
ity of an automated system to understand long-term human intentions, and by
providing insights on how these intentions can be communicated effectively, in
a way that can be scaled easily to multiple users.

Nonverbal Communication. This work provides an empirical assessment in
a real-time setting of the intention prediction model that we developed in a
previous paper [56], and shows that nonverbal inputs such as gaze can be used
as a basis for natural language explanations. Further, this work demonstrates the
usefulness of multimodal human inputs in the context of human-agent teaming.
Our broader aim in this work is to provide a generalisable approach for designing
such agents (we do not claim ecological validity for our study setting).

Our work aims to improve on current approaches for human-awareness by not
only detecting human presence or actions, but also predicting their intentional
actions. As an example, we use the work of Unhelkar et al. [58)’s human-robot
collaborative assembly task. In their task, the work area was divided into cells,
some shared by humans and robots, which were required to cease operating
entirely whenever a human enters a shared cell. They developed and tested a
model that incorporated predictions of human motion to improve the efficiency
and safety of the assembly task. However, if the robot’s motion planner could
‘see’ that as the human was moving towards their cell, and could ‘see’ that
the human is consistently looking at a bench in a cell that was not their own.
The robot then could easily fuse the gaze and motion information to determine
the cell that the human was going to and continue its work rather than stop,
improving its task efficiency and the interaction with the human. Hence, agents
with the ability to process intentions can not only improve their interactions
with their human counterparts but improve their proactiveness as well.
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Explainable Agency. Our first study formed the basis of a general model of
intention communication, which can support the cognitive process of generating
explanations involving observable actions and gaze behaviours. As explanations
in an explainable agency [35,40] involves both a cognitive process to derive an
explanation and a social process of communicating the explanation to a human
[42,47], there is a clear scope of expanding our approach to generalise our findings
to other settings, evaluate our existing approach [25], and to explore two-way
communication between the human and the agent (e.g. dialogue).

In essence, our agent possesses the ability to maintain the mental model of
users with regards to short and long-term intentions that we can interrogate
at any point in time using our ‘white-box’ approach. Lastly, our work focused
on intention recognition aspect of explanation, which goes beyond question-
answering, and differs from existing approaches where the presence of features
is used to explain instead of the long-term observation of human behaviours.

7 Conclusions

In this paper, we have demonstrated a viable approach for designing the commu-
nication and interaction means for socially interactive agents, addressing various
prerequisites for effective human-agent collaboration [37,38]. Our approach uses
a proactive agent to assist a human player engaged in an online strategy game
by improving the player’s situation awareness through the communication of an
opponent’s intentions. We developed a language model based on human commu-
nication that allows our intention-aware agent to communicate inferred inten-
tions through the observation of gaze behaviours and actions. In a user study,
we evaluated the experience with and without the agent and found that play-
ers were receptive to the agent due to its ability to provide situation awareness
of future intentions without the distractions of gaze visualisation. The agent’s
ability to digest gaze information into contextual and useful representations has
broad implications for future systems. We provide several considerations on the
design of such agents, including the presentation of information, the need for
context-awareness, and opportunities in harnessing nonverbal communication.

Overall, the paper highlights the use of nonverbal behavioural inputs in
Human-Agent Interaction and further provides an approach that can be applied
in scenarios where it is important to know the intentions of others (e.g. air traffic
control, wargaming). In future work, we plan to extend the agent with the ability
to consider additional input from the user and to generate alternative predictions
about another user based on ‘what-if” queries (such as querying about an action
that another user is most likely to take). These extended capabilities will be
particularly useful in collaborative scenarios, where an agent can assist, mediate
or negotiate with knowledge of multiple users’ intentions.
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