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Abstract. We present an approach for the semi-automatic generation of gesture
mappings for devices with low gestural resolution such as the Myo Armband, an
off-the-shelf EMG capture device. As an exemplar interactive task, we use text-
entry: a pervasive and highly complex interaction. We quantify data related to
interaction combining systematic studies (i.e., error, speed, accuracy) and semi-
structured workshops with experts (e.g., cognitive load, heuristics). We then
formalize these factors in a mathematical model and use optimization algorithms
(i.e. simulated annealing) to find an optimum gesture mapping. We demon-
strated our method in a text-entry application (i.e., complex interactive dialogue)
comparing our approach with other computationally determined mappings using
naive cost functions. Our results showed that the designers mapping (with all
factors weighted by designers) presented a good balance on performance in all
factors involved (speed, accuracy, comfort, memorability, etc.), consistently
performing better than purely computational mappings. The results indicate that
our hybrid approach can yield better results than either pure user-driven
methodologies or pure data-driven approaches, for our application context
featuring a large solution space and complex high-level factors.

Keywords: Gestural interaction � Semi-automated interaction design �
Optimization � Computational approaches

1 Introduction

Gestures play an inherent role in our everyday communication, to the extent that we
make use of them even when our interlocutor is not present, such as when speaking on
the phone [26]. Gestures can be used to communicate meaningful information
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(semiotic), manipulate the physical world (ergotic) or even to learn through tactile
exploration (epistemic) [4]. Semiotic gestures have been of particular interest to the
HCI community as a powerful way to communicate with computers [23, 27].

The creation of interfaces involving gestural interaction remains a challenge. On
one hand, advances in hardware have been remarkable. Gestural interaction is no
longer restricted to data-gloves [7, 16, 34], and there is an increasing range of potential
devices, allowing gesture tracking on un-instrumented hands or even in mobile formats.
On the other hand, the methods and approaches to design these experiences have
followed a much slower progression, not copying with the increasing number of
devices available, and still relying on iterative methods and designers’ expertise [9, 30].

As a result, interaction designers are faced with a very challenging task, with many
factors involved in the creation of the gestural interface. While some factors will be
easy to assess (e.g., device’s comfort, accuracy, speed), others will be more complex
(e.g., social acceptability and cognitive load). Particularly challenging is the elicitation
of the most appropriate gestures and their mapping to tasks, which can easily lead to a
combinatorial explosion. For instance, our example case study (text entry) offers more
than 35K ways to map gestures to input commands and more than 12K ways to map
these to actual letters. While iterative methodologies, designers’ intuition and heuristics
might help, it will be costly to navigate this vast solution space and identify the
optimum interactive dialogue. In contrast, computational approaches might struggle to
capture the complex subjective factors (i.e. social acceptability or cognitive load).

Unlike previous methods, we propose a hybrid approach, merging designer-led
methods and computational approaches for the generation of robust gestural mappings
under such challenging conditions (i.e. large solution space involving complex high-
level factors). More specifically, we present an expert-guided, semi-automated design
of interactive dialogues for low gestural resolution devices. Our approach consists of
four steps: (i) quantify low-level factors (gesture error rates, speed or accuracy); (ii)
semi-structured workshops with designers (identify higher-level factors, such as cog-
nitive load and experts’ heuristics); (iii) formalization & optimization (using objective
and designers’ knowledge to produce a mathematical model, and compute an optimum
mapping); and (iv) comparative evaluations (to guide the iterative interface design, in a
cost-effective manner).

We demonstrate this approach applying it to the design of a text entry technique
using a Myo device. Figure 1(g) shows the result – a multi-level mapping between the
input gestures and characters for text entry. To assess the value of our approach, we
compared the mapping produced from our hybrid approach (incorporating designers’
high-level factors) to several purely computational, naïve mappings. Particularly, we
defined 6 alternative cost functions (i.e. models to assess the quality of a mapping)
optimizing for time and accuracy, and explored up to 2.7 billion possible mappings,
finding the optimum mapping for each of the 6 naïve cost functions.

Figure 1 shows histograms for all these mappings according to: the naïve com-
putational metrics (a–f) and our approach (g). The optimum mappings computed are
also highlighted within each histogram (bars). These show that, while naïve functions
are highly ranked according to the designers-led metric (i.e. low scores, in Fig. 1g), the
designers-led mapping ranked relatively poorly according to each of the 6 naïve cost
functions used (red bar showing high values in Fig. 1(a–f)). This could either point
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towards designers’ insight being irrelevant (or even harmful) or to computational
methods failing to capture the complexity of the task. The results from our study show
that the designers-led mapping actually showed a good balance on performance in all
factors involved (speed, accuracy, comfort, memorability, etc.), consistently perform-
ing better than purely computational mappings. This reveals an untapped power in the
designers’ ability to identify a good cost function, with our approach helping to pro-
duce a suitable formalization to exploit the exploratory potential of computational
approaches.

We finish the paper reflecting on these results and on how they should open a
discussion on the added value of designers’ intuition and heuristics when exploring
gestural interfaces, and the need to make these an integral part of current design
methodologies, for large solution spaces.

2 Related Work

2.1 Gestural Input Devices: A Growing Landscape

An increasing number of device options are available to support gestural interaction.
Early instances included data gloves and tracking systems, mostly used for Virtual
Reality [34] and multimodal interaction. These provide high gestural resolution (i.e.
high number of distinct gestures), but require user instrumentation, hindering their
applicability (i.e. users cannot simply walk-up and use them, wires limit mobility, etc).
Wireless tracking systems (e.g., Leap Motion, Kinect, Project Soli) can improve
applicability [6, 33] but their sensors are typically fixed, constraining the user to
specific working spaces.

Mobile solutions have also been proposed. Kim et al. [17], presented a wrist-
mounted optical system, allowing for hand gestural interaction. Myo armbands use
Electromyography (EMG) to record and analyse electrical activity, allowing light-
weight mobile gestural input, without hindering the use of our hands and avoiding self-
occlusion problems. EMPress [22], combines EMG and pressure sensors, providing the

Fig. 1. From left to right (Top), the resulting mappings from the full optimization using different
training database and cost function’s factors. Below each layout, its histogram is shown. The cost
per layout is represented along all histograms using color code (M_C1 = green, M_C2 = blue,
M_C3 = yellow, M_C4 = magenta, M_C5 = cyan, M_C6 = black and M_D = red). (Color
figure online)
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same affordances of Myo bands, but with improved gestural resolution. Solutions to
extend smartwatch interaction with around device gestural interaction have also been
explored [20], but they either provide limited gestural resolution [15] or involve
instrumenting the user’s gesturing hand [36].

2.2 Gestures and Mappings: Point Studies

The HCI literature has produced a plethora of studies, which can help designers deal
with the increasing number of device options available. Sturman et al. [31] explored
and provided guidelines to improve gestural interaction in VR. Studies from Rekimoto
[25], Wu and Balakrishnan [35] provide insight in the context of interactive surfaces,
and Grossman et al. [12] explored the topic in the context of 3D volumetric displays,
just to mention some. However, these illustrate how information related to gestural
interaction is scattered across individual point studies, focused on specific tasks and
contexts.

A more general approach to designing gestural interaction has been to formalize user
elicitations [10, 14]. Designers seek end-user input on mapping gestures to tasks, clas-
sifying gestures into high-level groupings based on salient properties (e.g., the direction
of movement, finger poses, etc). Elicitation studies have been successfully used in a
number of contexts, but have also been criticized for biasing results by basing them on
input from populations unfamiliar with the task or capabilities of a device [5, 10].

Alternatively, designers can gain insight about the mapping between gestures and
tasks from related literature. Focusing on text entry (closest to our case study), the
QWERTY keyboard serves as a preeminent example of discrete mapping, enforcing a
1:1 mapping between each key (gesture) and a letter (task). It also illustrates a mapping
designed around the mechanical limitations of past typing machines, rather than its
appropriateness for human input.

Computational approaches have proved to be valid tools to identify better map-
pings. Zhai et al. showed clear improvements for clarity (avoid gesture ambiguity) and
typing speed for the most common digraphs in English [2] by simply swapping two
keys (I and J). Bi et al. [1] explored alternative mappings by swapping a few neigh-
bouring keys, to get a layout with better performance on speed, while retaining
QWERTY similarity. Smith et al. showed a similar approach, improving clarity, speed
and QWERTY similarity for 2D gesture typing. Alternatives for situations where 1:1
mappings are not available (e.g., mobile phones) have also been tackled using com-
putational approaches, mostly through predictive text entry models [11, 24]. Other
works have focused on exploring the extent of human hand’s dexterity, creating
mappings that benefit from all its bandwidth. Oulasvirta et al. [29] explored the
biomechanical features of the hand (flexion levels, inter-digit dependencies), while
PianoText [8] leverages users’ musical skills, using a piano keyboard and chords to
create an ultrafast text-entry system. In all cases, the benefits of computational
approaches are limited by the use of low-level, quantifiable factors.

This situation motivates our approach. Interface designers might rely on methods
that introduce biases into the process and will struggle to iteratively explore large
solution spaces. Alternatively, computational approaches have great exploratory power,
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but they might fail to capture higher-level aspects of such complex tasks as they tend to
bias/limit their results towards quantifiable factors that are easy to assess. Our approach
intends to bridge this gap, being the first one to put together the benefits of both
approaches (designers-led vs computational solutions), by blending designers’
methods/insight and computational approaches.

3 Our Approach: Semi-automatic Mappings for Low Input
Resolution

Our method aims to bridge the differences between designer-led and computational
solutions, capturing designers’ tacit knowledge of the domain, and formalizing it to be
exploited by computational approaches. We thus combine quantitative parameteriza-
tion of relevant factors with domain expert knowledge elicitation, into a structured
approach. We refine these into a formal model quantifying the quality of each mapping
and using a global optimization algorithm to explore the solution space, finding (po-
tentially) the best solution. Our approach is compatible with iterative methodologies
and can be seen as the tasks required for one iteration cycle. The outline of our
approach can be divided into four stages:

(i) Quantification of Low-level Factors and Constraints
This stage involves the experiments and in-lab tests required to measure and quantify
low-level factors and constraints. Low-level factors are simple parameters (e.g., time,
errors) associated with the device or modality that might influence the design of the
mapping and are easily quantifiable. Low-level constraints represent limitations within
the device or the way it is used. Using our case study as an example, factors can
include time to perform each Myo gesture, while excluding the double tap gesture due
to its low accuracy can be an example of a constraint.

These quantified values will be used in the two following stages: First, they will
inform designers, to help produce mappings and formulate heuristics; Second, they
provide quantifiable data, used by our optimization methods.

(ii) Domain Expert Knowledge Elicitation
We use small teams of experts as a way to elicit the relevant factors that need con-
sideration to design the interactive dialogue. Different methodologies can be used (e.g.,
workshops, elicitation studies, prototypes), which help on addressing a broad spectrum
of aspects that cannot be covered by computational approaches alone (e.g., interface
design, feedback elements, definition of the interactive dialogue, etc.).

However, while designers must consider the mapping of gestures to tasks, the
ultimate intent of this process is not the specific mapping they create (computational
searches will help make this specific choice). Instead, we focus on the designers’
rationale that they use to determine what might be a good choice of gestures and
mapping.

We reflect this rationale as constraints (i.e. conditions that must be obeyed) and
high-level factors (i.e. non-obvious aspects or heuristics affecting interaction, such as
social acceptance). These will help our following formalization process and the
weighting of the relative importance of each of these factors.
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(iii) Formalization & Optimization
In order to optimize our mappings, we first need to provide a metric for the quality of
any given mapping. We formalize the quality of a mapping M as a cost function
C computed as a weighted average of the factors identified by the experts, with lower
values identifying better mapping:

C Mð Þ ¼
X

ki � Factori Mð Þ ð1Þ

The different factors are all normalized to a homogeneous range [0, 1), according to the
maximum and minimum values observed from the quantification. The value for ki
(influence of a given Factori in the mappingM) needs to be estimated from the experts’
impressions and analysis (further details follow). This assures that the contribution of
each factor to the quality of M is the result of the designer’s insight, and not the result
of the factors’ relative orders of magnitude. In our example, the sum of factor weights
(Rki) equals one (factor as a ratio), but any other weight distribution reflecting the
expert’s impressions can be used. We then use a global optimization method to explore
the solution space, converging towards an optimized solution given the factors and
weighing values identified. Although our case study used Simulated Annealing [18],
other optimization approaches can also be used.

(iv) Comparative-Summative Evaluation
While the normalization of the factors identified follows quantitative criteria, the
estimation of the weight distribution (ki) does not, and it relies on the subjective
assessment of domain experts. Different weight distributions might reveal different
ways of thinking about the solution (e.g., how more relevant is minimizing time over
cognitive load?). Computing optimized mappings, according to different weight dis-
tributions, and comparing them through summative evaluations can allow for the best
mapping to be identified. This reduces the exploration of the solution space to a few
candidates (each resulting from a different weighting strategy), and integrates easily
with iterative methodologies for gestural interaction, such as [9].

4 Case Study with Myo: Compute vs Design

We tested our approach using a Myo device (i.e. very low gestural resolution) for a
text-entry task, both as a worst-case scenario and as an obvious match to Foley’s
analogy between natural language and a general interactive dialogue. The in-built IMU
was not used and only the muscle activation was considered. This reduces our gestural
resolution even further (more challenging solution space) but it also lends itself to
interesting application scenarios. IMU-based gestures are defined relative to the body,
and might be restricted during our daily life (i.e. while sitting in a bus, walking or
inside a busy elevator). In contrast, our gestures remain relative to the hand, being still
available in any situation where the wrist can be moved.

Finally, we also wanted to assess the added value of our designers’ guided
approach when compared to unconstrained computational approaches, based on
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observable and quantifiable factors alone. We replace the last stage of the method (iv),
by a description of the naïve computational mappings used, and a comparison against
the results provided by these alternative approaches.

4.1 Problem Delimitation

Although Myo supports up to five gestures, at the time when this work was carried out
“Double tap” was a recent addition with known inconsistencies in its detection [32].
Also, any fast and consecutive pair of gestures was detected as “Double tap” (i.e. false
positives), conflicting with the use of other potential gesture chains For that reason,
only the four remaining gestures were used (see spread (S), fist (F), wave-out (WO) and
wave-in (WI), in Fig. 2). We quantified the performance of 16 possible 2-step chain
gestures (consecution of two gestures, as in Fig. 3). Such 2-step chains require an
intermediate relax action (i.e. hand returning to a neutral status between gestures) to be
recognized by the system.

We asked our designers to categorize the 2-step chain gestures and they identified
three different groups: opposite, orthogonal and repeat. Opposite chains combine
gestures that activate opposing muscles. Orthogonal chains invoke orthogonal muscle
groups; and Repetitive chains contain two instances of the same gesture (see Fig. 3).
For example, WI+WI is a Repeat, WI+WO is of type Opposite, and WI+F is of type
Orthogonal. We will borrow this for the analysis in this section (even if the distinction
only appeared during the later workshops), as its analysis allows us to assess to what
extent designers’ insight reflects trends in data, or if some aspects pointed by designers
would be likely to be included or ignored by alternative purely computational
approaches. Finally, we also conducted a similar study for 3-step chain gestures.
However, designers soon disregarded these chains during the later workshop (only use
2-chain gestures – C1), so our results for 3-step chains are omitted here for brevity.

(i) Quantification of Relevant Factors. We conducted a quantitative study, where
participants performed a series of 2-step chain gestures under different input speeds to
evaluate potentially relevant factors (i.e. errors, ergonomics, and preferred 2-step chain
gestures). We calibrated the Myo for each individual participant and allowed them to
become familiar with the 4 Myo gestures (Fig. 2) and our 2-step chain gestures
(Fig. 3). They were then asked to perform the 2-step chain gestures shown on a display,
which changed at regular speeds (i.e. each single gesture shown during 0.6 s, 0.8 s,
1.0 s or 1.2 s). Participants were asked to complete the gestures accurately and within
the length of the prompts, which helped us identify the appropriate “typing speed”.

Fig. 2. Gestures possible with a Myo armband. We used the enclosed gestures in this work.

Designer Led Computational Approach to Generate Mappings for Devices 629



The experiment consisted of 4 blocks (one block for each input speed) including
three repetitions of each of the sixteen 2-step chains gesture, resulting in 192 trials per
participant. To avoid participants fatigue given this number of trials, each block was
designed to be completed in about 4 min giving participants a 3 min break between
blocks. Due to fatigue could potentially affect participants’ performance, we ensured
that each block duration was short with enough time to rest. The full experiment
duration was then about 30 min, including calibration, training and breaks between
blocks.

We counterbalanced the order of the input ratios using a Latin Square design, but
gesture order was randomly selected. Time per gesture chain and accuracy (whether the
gesture was recognized by Myo or not) were recorded. After each block (i.e. input
speed), participants also filled in a Borg CR10 Scale [3] questionnaire (i.e. specially
designed to quantify perceived exertion and fatigue [3, 28]) for each of the 16 2-step
chain gestures. The experiment was performed by twelve participants (4 females), with
an average age of 23.53 (21 to 30) SD = 2.98, with the study being approved by the
local ethics board. The recruitment criteria were: (i) all participants right-handed;
(ii) normal or correct-to-normal vision; (iii) no affections/injuries on their hands and
wrists; and (iv) no prior experience with hand gesture interaction. Outliers were
removed from the data (i.e. mean ± 2 standard deviation), filtering out 129 trials
(5.59% of samples). We then conducted factorial repeated measures ANOVA
(p = 0.05 to determine significance) on the factors measured, which we report in the
following subsections.

Time Per Gesture (F1). Figure 4(a) shows the results of time for each 2-step chain.
This analysis revealed significant effects of gesture type on time performance
(p < 0.001), justifying its later inclusion as a factor (F1), even for a purely computa-
tional approach. Post-hoc tests with Bonferroni corrections show significant differences
between certain gestures (e.g., WI+WO vs F+WO, p = 0.03; WI+WI vs F+F,
p < 0.001), but the high number of pairs to compare (120), made such analysis poorly
informative. Therefore, we did analyse time performance based on the categories
proposed by the designers (Repeat, Orthogonal and Opposite). Opposite gestures
performed best (M = 1.965 s; SD = 0.229 s), with significant differences (p < 0.001)

Fig. 3. Two-step chain gestures under designers’ categories.
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between the duration of Opposite and Repeat gestures (M = 2.022 s; SD = 0.255 s)
and also between Opposite and Orthogonal gestures (M = 2.028 s; SD = 0.240 s;
p = 0.001). On the other hand, clustering techniques (for time, accuracy or comfort)
did not lead to identifying these categories. Thus, this is considered designers’ tacit
knowledge and would not be captured by purely computational approaches.

Accuracy Per Gesture (F2). Figure 4(b) shows our results for accuracy, revealing
overall accuracy is low (70%–90%). An ANOVA analysis revealed an effect of gesture
on accuracy (used as factor F2). Again, significant differences were found between
specific pairs of gestures, but we focus the analysis on designers’ categories. We only
found significant differences between Repeat (M = 86.8%; SD = 21.57%) and
Orthogonal categories (M = 81.28%; SD = 24.45%; p = 0.032), but with reduced
effect size. Also, no clear patterns could be observed by looking at the categories
(values well above and below the mean are present in all categories, in Fig. 4(b).

Gesture Comfort (F3). Comfort was rated by participants using a Borg CR10 Scale [3]
questionnaire (Fig. 4(c) shows the average of participants’ effort per gesture).
According to their answers, we found Repeat gestures as the most comfortable
(M = 1.5, SD = 0.33) followed by opposite gestures (M = 1.66 BCR10 and SD = 0.2)
and the most uncomfortable reported were orthogonal gestures (M = 2.35 BCR10,
SD = 0.38). It is worth mentioning that due to the number of trials (192) during the
experiment, fatigue could potentially affect participants’ performance. However, as
shown in Fig. 4(c), the maximum score of effort was about 3.2 (in a scale from 0 to 10)
suggesting that although we could observe differences in effort (e.g. orthogonal ges-
tures were more uncomfortable), participants gave generally low scores in effort and
therefore we considered unlikely that these low scores represent a negative effect on
participants’ performance during the experiment.

Typing Speed of 1 s (C2). The effects of typing speed on gesture time (Fig. 5(a)) and
accuracy (Fig. 5(b)) were also analyzed. This revealed the first gesture (M = 0.783 s;
SD = 0.119 s) is significantly shorter than the second one (M = 0.843 s; SD = 0.109
s), and also more accurate (p = 0.012). Using an input speed of 0.8 s users barely could
keep up with the input speed (first gesture > 0.8 s, accuracy significantly smaller than
input at 1.2 s (p < 0.001)). It is interesting how users (even if allowed more time) did

Fig. 4. (a) Time per chain gestures for Opposite, Orthogonal and Repeat categories (Mean in
seconds); (b) Accuracy per chain gestures (Mean in %); (c) Effort results per chain gesture.
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not take more than 0.97 s to perform each gesture. No significant differences were
found for typing speeds of 1 s or 1.2 s. Thus, we included typing speed of 1 s (C2) as a
low-level constraint (i.e. fastest speed allowing sustained typing).

(ii) Designer’s Workshop. After obtaining the relevant low-level factors, we carried
out a workshop with interaction designers, as a way to identify the design rationale they
use in producing their mappings. We motivated the workshop around the concept of
gestural text-entry, a challenging context forcing them to explore the topic in depth.

We recruited four UX designers (no specific expertise on text-entry) from
Anonymous University HCI group (other than where the main study was conducted),
to produce a design scheme for the system. The workshop session lasted four hours. To
encourage a broad perspective towards the design of an effective interactive dialogue,
designers were encouraged to think about these four questions: How to map gestures
with letters? What is a good interface layout? What feedback elements are required? Is
the operation easy to remember? The workshop was kept open-ended to encourage
creative thinking, but one researcher stayed in the room, to answer designers’ ques-
tions. It must be noted that the quantitative results from (i) (e.g., speed, accuracy) were
only provided if and when specifically requested by designers, to not bias their
thoughts.

At the beginning of the workshop, designers considered using chained gestures
right away. Three-chain gestures were soon discarded by designers, due to their high
cognitive load (too many potential gestures to remember) and discomfort (orthogonal
and opposite gestures). Thus, they limited their search to 2 step-chain gestures (C1) and
a predictive text entry. This used 8 categories, mapping 4 letters to each
gesture/category and addressing 32 characters: the 26 letters from the English alphabet
and the 6 most common punctuation characters (space, period, comma, question mark,
exclamation mark and hyphen). They also felt inclined to explore alternatives beyond
the constraints defined (such as using both hands or using continuous gestures, using
the duration of the gesture as a variable). At the end of the workshop, designers were
asked to present their interface layout and to reflect on it, as a way to verbalize their
rationale. In the next subsection, we report these observations as high-level factors and
constraints.

Fig. 5. (a) Average time for the first and second gesture; (b) Average accuracy for the first and
second gesture. Error bars represent standard error.
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From Designers’ Rationale to Factors and Constraints. Designers soon got inter-
ested in the time (F1) and accuracy (F2) of each gesture and experimented the level of
comfort (F3) afforded by each gesture by performing them casually. They considered
the WI gesture to be the most ‘natural’ gesture, and WO as the least comfortable. They
also found the F and S gestures hard to perform. Designers also became interested in
the frequency of using each letter, using the ENRON corpus [19] to inform this aspect.

At the end of the workshop, they presented their proposed interface design (see
Fig. 6(a)), reflecting both the appropriate interface design and the way the interactive
dialogue should work. The UI layout consisted of several concentric circles, working as
a decision tree with choices at each node. Users would identify the target letter in the
external level/ring and then follow the path through the ring from the inside out,
performing the gestures to reach the chosen letter. The interface should highlight the
rings, as gestures are recognized, e.g., Figure 6(b), shows Fist + Spread gestures used
to type ‘q’, and feedback displayed.

The final scheme presented reflected aspects of their rationale (high-level factors),
highly relevant for our approach. For instance, they attempted to maximize the usage of
WI (F4), while avoiding WO (F5) and S gestures (F6). They also found the use of
orthogonal gestures very uncomfortable and suggested avoiding them (C3).

As a second major concern, designers also attempted to reduce the cognitive load of
the mapping, by applying several heuristics. For instance, they suggested keeping all
vowels clustered together (in two categories only) (F7). They also placed alphabetically
adjacent letters in the same categories (e.g., “abcd”), which was considered as a rel-
evant factor (F8). These techniques were meant to facilitate users’ ability to remember
the layout.

Designers also tried to assign the comfortable and fast gestures to the most frequent
characters. They attempted to build a mapping solving the problem in an optimal way,
and including all identified factors. However, they failed to find a clear candidate
mapping, illustrating the challenge designers face when addressing large solution
spaces.

Fig. 6. (a) Interface layout proposed by designers; (b) Final design using their factors and our
search method. Typing a “q” requires to perform the chain gesture fist (F) - spread (S).
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(iii) Formalization & Optimization. We used the constraints (C1–C3) and factors
(F1–F8) identified in the previous stages to refine our definition of the problem and to
formalize the description of our candidate mappings. Due to our constraints, we limited
our search to 2-step chain gestures (C1), with typing speed 1 s (C2) and used only
“opposite” and “repeated” gestures (C3), resulting in only 8 possible gesture chains
(see Fig. 3).

Each factor was formalized (quantified), with the common criteria that lower values
represent a better mapping. Let D be our dictionary (we use the ENRON database [19],
with duplicates to represent word frequency). Let W be a word and L a letter. Let Time
(L), Accuracy (L) and Exertion (L) be the mean time, accuracy and effort (i.e. the
inverse of comfort) of the gesture associated with letter L, as measured from our
quantitative studies from (i).

Time Factor (F1). This factor favours fast typing speeds, by quantifying the “average
time to input a letter according to our dictionary”.

F1 Mð Þ ¼
X

W inD
X

L inW
Time
Dj j Wj j ð2Þ

Accuracy Factor (F2). This factor enforces mappings with gestures of high accuracy
recognition, by quantifying the “probability to make one (or more) errors in a word”.

F2 Mð Þ ¼
X

W inD
X

L inW
1� Accuracy Lð Þ

Dj j ð3Þ

Comfort Factor (F3). This factor measures the “amount of exertion required to input a
letter”, to minimize effort.

F3 Mð Þ ¼
X

W inD
X

L inW
Exertion Lð Þ

Dj j Wj j ð4Þ

Wave-in Factor (F4). This factor encourages the use of WI gesture, considered
comfortable by designers. This factor computes “the average density of non-WI ges-
tures per letter”.

F4 Mð Þ ¼
X

W inD
X

L inW
isNot Wi Lð Þ

Dj j Wj j ð5Þ

Wave-out Factor (F5). This factor discourages the use of WO gesture, as it was
considered less comfortable. Particularly, it quantifies “average density of WO gestures
per letter”.

F5 Mð Þ ¼
X

W inD
X

L inW
isWo Lð Þ
Dj j Wj j ð6Þ
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Spread Factor (F6). This factor penalizes the use of S gestures, as they were con-
sidered less comfortable. This factor computes the “average density of S gestures per
letter”.

F6 Mð Þ ¼
X

W inD
X

L inW
is S Lð Þ
Dj j Wj j ð7Þ

Vowels Factor (F7). This factor counts the “number of categories containing vowels”,
to favour vowels are grouped in a few categories.

F7 Mð Þ ¼ max Vj jð Þ; V � C=8c 2 V ; a; e; i; o; uf g\ c 6¼ £ ð8Þ

Consecution Factor (F8). This factor benefits mappings where letters are assigned to
categories in consecutive order. Thus, it measures the “number of non-consecutive
(NC) letter per category (C)”.

F8 Mð Þ ¼ NC C 0½ �;C 1½ �ð Þ þNC C 1½ �;C 2½ �ð Þ þNC C 2½ �;C 3½ �ð Þ
3

ð9Þ

Determining the Weight of Each Factor and Optimization. Each factor was normalized
to a [0, 1) range, as in Table 1. This allows the relevance of each factor to be assessed
in terms of weight alone (and not according to the factor’s scale). Constants sw and lw
represent the length of the shortest and longest words in D, respectively; mt and Mt

stand for the minimum and maximum gesture times, and ma and Ma stand for the
minimum and maximum gesture accuracy respectively. Weights were then determined
based on the designers’ insight. It must be noted that this was the interpretation of the
research team (i.e. two transcribing and cross-validating notes from the experiment, and
two translating them into the weights described in Table 1), as we had no further access
to the designers involved in (ii).

We used these weights (cost function as described by Eq. (1)) and simulated
annealing (SA) [18] to find the optimum mapping. Initially, letters were randomly
assigned to the 8 categories (only “opposite” and “repeated” gestures, see Fig. 3) and
neighbour states were computed by permutation of single letters between two random
categories (diameter = 32). Transition acceptance between states follows the traditional
method by Kirkpatrick [18]. The cooling schedule was empirically tuned with Ns = 20

Table 1. Factors used use for MDes (our proposed mapping), ranges and weights (ki).

F1 F2 F3 F4 F5 F6 F7 F8

Min swj j � mt swj j � 1� mað Þ 0.125 0 0 0 2 0
Max lwj j �Mt 1wj j � Mað Þ 1.75 1 1 1 5 1
Ki 0.35 0.20 0.1 0.05 0.05 0.05 0.1 0.1
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step adjustments per temperature step, Nt = 7 temperatures steps per temperature
change, Rt = 0.85 (Cooling factor). The initial temperature was set in T(0) = 180. The
final mapping is shown in Figs. 7(b) and (c).

Given the designers’ constraints (no Orthogonal gestures), the solution space was

limited to
32
4

� �
¼ 35960 mappings and a full search would have been feasible.

However, this was not feasible for the pure computational solutions we compared
against (larger solution space), and we used the same schedule to aid fairness in
comparison.

(iv) Computing Alternative Approaches. Some of the factors and observations made
by designers were hard to justify purely looking at the data. The categories identified
(Repeat, Opposite and Orthogonal) show weak differences and, given any performance
metric, all of them have gestures both well above and below the sample mean. Even in
the case of time per gesture (clearer distinctive behaviour for Opposite), the use of
clustering techniques would not result in the categories identified.

Picking specific data could seem to back up the designers’ insight. For instance,
WI+WI was the most comfortable gesture (M = 1.15 Borg CR10 Scale –BCR10) and
WO+S as the least comfortable (M = 3.15 BCR10), followed by S+WO (M = 2.6
BCR10). While WO+WI resulted the fastest 2-step chain gesture (M = 1.947 s,
SD = 0.228), WI+WI was second fastest (M = 1.949 s, SD = 0.242), the most accurate
(M = 95.13%, SD = 13.73) and the most comfortable gesture performed (M = 1.15
BCR10), whilst WO+S the least comfortable (M = 3.15 BCR10).

These point observations could support designers’ factors F3 and F4, but obser-
vational bias and the limited size of the sample would make for weak evidence. This
was found worrying, as it could point towards a weak ability of the designers to analyse
the complexity of the problem. On the other hand, factors could also reflect designers’
tacit knowledge, that is, understanding of complex mechanics of the task which were
difficult to articulate, but still relevant. Thus, we decided to compare the designer’s
guided solution against six naïve computational solutions, not considering designers’
high-level factors and constraints (e.g., 8 categories used to allow comparison, but not
constrained to Repeat and Opposite gestures alone). These naïve solutions will both
help us assess the added value introduced by feeding the designers’ insight into the
optimization method; and also challenge their decisions/constraints.

These six solutions were generated as a combination of two elements: (a) the
training dataset: the Enron (E) dataset [19]; the most common Digraphs (D) in English
language [21], and a combination of both (E+D); and (b) the cost functions: two were
defined, one assessing time per gesture (factor F1) and another one assessing accuracy
(F2). e.g., M_C1 represents the mapping obtained with the best Accuracy assessed by
Digraphs dataset. For each of the six combinations, we generated all the possible
subsets of 8 gestures (from the 16 different 2-step gestures possible) and used Simu-

lated Annealing to compute the best letter combinations. We explored
16
8

� �
� 32

4

� �
�

6 ¼ � 2:8 billion possible mappings, with Fig. 1 showing the best mapping for each of
the 6 naïve cost functions.
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5 Analytical and Summative Evaluation

Figure 1 shows histograms for all possible mappings according to our seven metrics
(the naïve computational metrics (a–f) and designer-led (g)). The best mappings per
metric are also highlighted (as colour bars) in the remaining histograms, for compar-
ison. Table 2, shows this information in a numerical format. The best results for
Accuracy mappings (i.e. MC1, MC3 and MC5) was MC5 (best average percentile across
the 6 naïve functions, within its category), while the selected mapping for Speed (i.e.
MC2, MC4 and MC6) was MC4. For clarity, during the comparative evaluation, we will
refer to these as time (MTi), and accuracy mappings (MAcc), instead of (MC4 andMC5).

It was also interesting to see how the designers-led layout (MDes), rated against the
other mappings. While computational mappings consistently scored well using the
designers’ cost function (see the last row), the designers mapping scored much more
mediocre results (see column MDes), being usually in fourth or fifth position (or even
last) among the mappings considered. We then carried out a user study to evaluate the
performance of the generated mappings: MTi, MAcc and MDes. We added one addi-
tional mapping for text-entry i.e. a simple alphabetical distribution (MAbc) shown in
Fig. 7(d), as a baseline comparison (minimum cognitive load, not optimized).

5.1 Experiment Setup

At the beginning of the session, we calibrated the Myo for each individual participant.
Subsequently, each mapping was shown on the screen with its different layout and
letter distribution (see Fig. 7). Participants were then instructed to “type” a sentence
shown above the circle by performing the specific chain of gestures (i.e. identifying the
two gestures they need to perform to select a given letter). The system included
feedback cues i.e. visual highlights in the category selected at each step (see Fig. 6(b)),
and auditory effects.

Table 2. The percentile per mapping (0 to 100) across the seven cost functions (CF) used in the
optimization process. On the right columns, AVG and SD for the data per CF condition are
shown. The best mappings for speed (M_C4) and accuracy (M_C5) are highlighted in green
while our proposed mapping (M_Des) is highlighted in blue.

Cost/Mapping M_C1 M_C2 M_C3 M_C4 M_C5 M_C6 M_Des Average SD
C1-AAcc 0 33 5 3 1 31 33 0.304 0.077
C2-ASp 21 0 65 1 45 1 67 1.147 0.052
C3-EAcc 4 100 0 11 1 29 5 0.238 0.066
C4-ESp 81 50 45 0 60 1 40 1.077 0.064
C5-D+EAcc 1 80 1 3 0 20 10 0.587 0.014
C6-D+ESp 49 4 42 1 40 0 41 2.258 0.110
D-D+EMix 10 40 1 1 1 1 0 0.949 0.025

Designer Led Computational Approach to Generate Mappings for Devices 637



Participants were allowed to practice the chain gestures in a training stage to
complete 4 sentences before each block, in order to get familiar with the layouts.
Participants performed 4 blocks of 3 sentences each, completing 28 sentences in total
(700 letters/gesture chains). The sentences in the blocks had from 4 to 6 words, and 4 to
6 letters per word, being selected by using the Levenshtein algorithm [13] to compute
representative sets of sentences from our dictionary. The full experiment duration was
45 min. Similarly, as described in the first study, each block was designed to be
completed in about 8 min giving participants a 3 min break between blocks to avoid
fatigue. Moreover, since orthogonal gestures (the most uncomfortable gestures found
in the first study and rated on average *3.2 in a scale from 0 to 10) were not employed
in this study, we considered unlikely that fatigue negatively affects participants’ per-
formance during the experiment. We counterbalanced the order of the sets (i.e. sen-
tences) and mappings using a 4�4 Latin Square design. Figure 8 shows our
experimental setup.

The system collected the time per letter and error rate automatically. User–satis-
faction questionnaires after each block (mapping), collected information about typing
comfort and how easy each it was to remember each mapping. Finally, at the end of the
experiment, participants also chose their favourite mapping according to 4 aspects
(easy to type, comfort, speed and easy to remember). Sixteen right-handed participants
took part in the experiment (4 Females, average age of 29.33, SD = 3.86), which was
approved by the local ethics board. The recruitment criteria were the same as in the first
experiment.

Fig. 8. Experimental setup for the typing task.

Fig. 7. (a) Gesture mappings of time factor (MTi), (b) accuracy factor (MAcc), (c) mixed
mapping according to designers’ factors (MDes) and (d) alphabetical gesture mapping (MAbc).
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An a priori statistical power analysis was performed for sample size estimation in
G*Power. Running a power analysis on a repeated measures ANOVA between map-
ping conditions (i.e., MTi, MAcc, MDes and MAbc), repeated 28 times corresponding to
the 28 sentences on the experiment, a power of 0.95, an alpha level of 0.05, and a
medium effect size (f = 0.196, ηp2 = 0.037, critical F = 1.1), required a sample size of
approximately 8 participants. Thus, our proposed sample of 12 participants was ade-
quate for the purposes of this study.

5.2 Analysis of Results

A Repeated Measure ANOVA was conducted to compare the effect of the four types of
mappings (MTi vs MAcc vs MDes vs MAbc) on the time of chain of gestures. Results
revealed a significant effect on the average time, F(3,45) = 25.82, p < .001 depending
on the type of mapping, with the designers’ mapping providing best results. Post-hoc
comparisons using Bonferroni correction showed statistically significant differences in
time, specifically between MDes (M = 1.577 s, SD = 0.622 s) compared to MAbc

(M = 1.785 s, SD = 0.674 s; p < 0.001), but also MDes and MTi (M = 1.782 s, SD =
0.653 s; p < 0.001). No such difference was found compared to MAcc (M = 1.64 s,
SD = 0.71 s), p = 0.279. Surprisingly, MTi did not provide the best results for time,
which seems to indicate it failed to capture the complexity of the typing task.

The average error per mapping was small for all conditions. As expected, MAcc got
the lowest error score as it was computed to minimize errors. Repeated Mea-
sure ANOVA showed a significant effect of the type of mapping (MTi vsMAcc vsMDes

vs MAbc) on the number of errors F(3,45) = 7.71, p < .001(ηp
2 = 0.009 small effect).

Post-hoc comparisons showed statistically significant differences for errors, specifically
between MAcc(M = 0.072errors, SD = 0.293errors) compared to MDes (M = 0.139er-
rors, SD = 0.444errors), p = 0.001 and MAbc (M = 0.149errors, SD = 0.520errors),
p = 0.001; but no such difference was found compared to MTi (M = 0.087errors,
SD = 0.369errors), p = 1. Additionally, we found a significant difference in MTi

compared to MDes, and MAbc, p <= 0.035. These results suggest that MAcc and MTi

produced the lowest number of errors when participants performed the gesture chains
to “type” the sentences.

Figure 11 shows the score given by participants after each block in relation to
memorability (left) and comfort (right). In both cases, participants gave higher scores to

Fig. 9. Scatter plot of average gesture time (left) and errors (right) per mapping. Bars represent
standard error of mean.
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MAcc and MDes, with worse results for MTi. These results align with the user’s final
appreciations at the end of the experiment, in which participants compared among all
mappings (see Fig. 10). In this case, most of the participants reported MDes as the most
comfortable (50%) and easiest to type mapping (44%), followed by MAcc (31% and
25%, respectively). Although MDes allowed for faster typing (Fig. 9, left), MAcc was
perceived as faster by participants. As expected, participants also reported MAbc, as the
easiest to remember (44%), followed by MDes (31%).

6 Discussions

Our results seem to indicate the designer-led semi-automatic mapping MDes provided
better results in terms of time, comfort and users’ preference when compared to the
remaining mappings. It consistently appeared as the best or second-best option, only
performing worse in terms of accuracy, where very small differences (effect size) were
present among mappings. This suggests that users preferred the mappings created by the
combinations of experts’ knowledge (proposed weights forMDes) and the computational
optimization. This might reflect the difficulty to model all aspects related to interaction
using only low-level factors, and how these might be misleading when the complexity of
the task increases. Even for our naïve cost functions, MTi did not actually lead to faster
typing speeds; and they also failed to predict the performance of MDes (expected to be
poor, as shown in Table 2), even for the specific factors (i.e. time) they measured. The
results also highlight the value of designers’ higher-level insight, even if it cannot be
directly justified from data. For instance, the categories identified (Orthogonal, Repeat,
Opposite) guided constraint C3, but they could not be identified from clustering tech-
niques. During the workshop, we pointed out that the high-level factors F4, F5 and F6
were already covered by low-level ones, but designers still decided to keep them. We
understand these reflect tacit knowledgewhich, even if hard to verbalize/rationalize, was
still relevant to the task. The results obtained by the designers’mapping should highlight
the relevance of such designers’ insight (i.e. high-level factors identified), but it also
illustrates the value of our hybrid approach, exploiting computational methods to keep
this human knowledge in the optimization loop.

The resources required for both the designers’ workshops and the brute-force
exploration of alternative mappings must also be considered. The full search to create

Fig. 10. Participants’ preference per mapping (MTi, MAcc, MDes and MAbc) regarding their task
experience (ease typing, comfort, speed and ease to remember).
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our alternative mappings (2.7 billion combinations explored, for the 6 alternatives)
required 5 standard desktop machines running over 5 days (development costs for
software not considered). In comparison, the designers’ feedback was gathered during a
single workshop of 4 h and still managed to identify relevant high-level factors,
constraints, and provided good results for the final mapping. This seems to indicate
designers’ involvement can be easily justified, producing relevant input to underlying
computational approaches and potentially reducing development costs.

Finally, our use-case must be considered as an illustrative example of our approach,
rather than an exemplar text-entry system. Text entry systems can leverage extensive
task-specific knowledge (e.g., digraph transitions, predictive models, etc.), which can
allow defining effective mappings even from low-level factors. Instead, our case study
provides an example that is generalizable to a broader spectrum of applications using
gestural interaction; illustrates the challenges related to creating complex interactive
dialogues from low-level factors; and highlights the benefits related to designers’
insight into the process.

7 Conclusion

We presented an approach for semi-automatic generation of gesture mappings for
devices with low gestural resolution. Our approach consists of quantifying observable
low-level factors such as individual gesture error rates, speed and accuracy; identifying
how designers weigh different factors to create a weighted cost function, which is then
fed into a computational approach to find the optimum gesture set and its mapping to
tasks. Comparing the results of our mapping with the mappings obtained from other
naïvely constructed cost functions shows that overall users perform consistently well
with our mapping in terms of speed, comfort and memorability. These results highlight
the value of our approach, as a tool to guide the designer-led computational approach to
generate complex mappings. This approach should not stand as a replacement for
traditional HCI methods, but as a tool to help such iterative processes to converge faster
towards satisfying solutions, particularly within complex application domains featuring
large solution spaces and complex/subjective factors influencing interaction.

Fig. 11. Box plots for memorability (left) and comfort (right) per mapping. Horizontal red bars
and boxes represent medians and IQRs. Whiskers stretch to points within median ± 1.5 IQR.
Outliers shown as single red crosses. (Color figure online)
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