
Chapter 3
The Circle Packing Theorem

3.1 Planar Graphs, Maps and Embeddings

Definition 3.1 A graph G = (V ,E) is planar if it can be properly drawn in the
plane, that is, if there exists a mapping sending the vertices to distinct points of R2

and edges to continuous curves between the corresponding vertices so that no two
curves intersect, except at the vertices they share. We call such a mapping a proper
drawing of G.

Remark 3.2 A single planar graph has infinitely many drawings. Intuitively, some
may seem similar to one another, while others seem different. For example,

≡

while

�≡

The following definition gives a precise sense to the above intuitive
equivalence/non-equivalence of drawings.

Definition 3.3 A planar map is a graph endowed with a cyclic permutation of the
edges incident to each vertex, such that there exists a proper drawing in which the
clockwise order of the curves touching the image of a vertex respects that cyclic
permutation.

The combinatorial structure of a planar map allows us to define faces directly
(that is, without mentioning the drawing). Consider each edge of the graph as
directed in both ways, and say that a directed edge �e precedes �f (or, equivalently,
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Fig. 3.1 Examples for the edge precedence relation. (a) �e precedes �f . (b) (x, y) precedes (y, x)

�f succeeds �e), if there exist vertices v, x, y such that �e = (x, v), �f = (v, y), and y

is the successor of x in the cyclic permutation σv; see Fig. 3.1.
We say that �e, �f belong to the same face if there exists a finite directed path

�e1, . . . , �em in the graph with �ei preceding �ei+1 for i = 1, . . . ,m − 1 and such that
either �e = �e1 and �f = �em, or �f = �e1 and �e = �em. This is readily seen to be an
equivalence relation and we call each equivalence class a face. Even though a face
is a set of directed edges, we frequently ignore the orientations and consider a face
as the set of corresponding undirected edges. Each (undirected) edge is henceforth
incident to either one or two faces.

When the map is finite an equivalent definition of a face is the set of edges that
bound a connected component of the complement of the drawing, that is, of R

2

minus the images of the vertices and edges. This definition is not suitable for infinite
planar maps since there may be a complicated set of accumulation points. Given
a proper drawing of a finite planar map, there is a unique unbounded connected
component of the complement of the drawing; the edges that bound it are called
the outer face and all other faces are called inner faces . However, for any face
in a finite map there is a drawing so that this face bounds the unique unbounded
connected component, and because of this we shall henceforth refer to the outer
face as an arbitrarily chosen face of the map.

We will use the following classical formula.

Theorem 3.4 (Euler’s Formula) Suppose G is a planar graph with n vertices, m

edges and f faces. Then

n − m + f = 2.

We now state the main theorem we will discuss and use throughout this course.
Its proof is presented in the next section.

Theorem 3.5 (The Circle Packing Theorem [51]) Given any finite simple planar
map G = (V ,E), V = {v1, . . . , vn}, there exist n circles in R

2, C1, . . . , Cn,
with disjoint interiors, such that Ci is tangent to Cj if and only if {i, j } ∈ E.
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Fig. 3.2 Two distinct planar maps (of the same graph) with corresponding circle packings

Furthermore, for every vertex vi , the clockwise order of the circles tangent to Ci

agrees with the cyclic permutation of vi ’s neighbors in the map.

Figure 3.2 gives examples for embeddings of maps which respect the cyclic
orderings of neighbors, as guaranteed to exist according to the theorem.

First note that it suffices to prove the theorem for triangulations, that is, simple
planar maps in which every face has precisely three edges. Indeed, in any planar map
we may add a single vertex inside each face and connect it to all vertices bounding
that face. The obtained map is a triangulation, and after applying the circle packing
theorem for triangulations, we may remove the circles corresponding to the added
vertices, obtaining a circle packing of the original map which respects its cyclic
permutations. This is depicted in Fig. 3.3.

Thus, it suffices to prove Theorem 3.5 for finite triangulations. In this case an
important uniqueness statement also holds.
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Fig. 3.3 Circle packing of a triangulation of a planar map. (a) A planar map and a triangulation.
(b) A circle packing of the triangulation
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Theorem 3.6 Let G = (V ,E) be a finite triangulation on vertex set V =
{v1, . . . , vn} and assume that {v1, v2, v3} form a face. Then for any three positive
numbers ρ1, ρ2, ρ3, there exists a circle packing C1, . . . , Cn as in Theorem 3.5 with
the additional property that C1, C2, C3 are mutually tangent, form the outer face,
and have radii ρ1, ρ2, ρ3, respectively. Furthermore, this circle packing is unique,
up to translations and rotations of the plane.

3.2 Proof of the Circle Packing Theorem

We prove Theorem 3.6 which implies Theorem 3.5 as explained above. Therefore
we assume from now on that our map is a triangulation. Denote by n, m and f

the number of vertices, edges and faces of the map respectively, and observe that
3f = 2m since each edge is counted in exactly two faces, and each face is bounded
by exactly three edges. Therefore, by Euler’s formula (Theorem 3.4), we have that

2 = n − m + f = n − 3

2
f + f = n − 1

2
f,

thus

f = 2n − 4. (3.1)

We assume the vertex set is {v1, . . . , vn}, that {v1, v2, v3} is the outer face and
that ρ1, ρ2, ρ3 are three positive numbers that will be the radii of the outer circles
C1, C2, C3 eventually. Denote by F ◦ the set of inner faces of the map, and for a
subset of vertices A let F(A) be the set of inner faces with at least one vertex in A.
We write F(v) when we mean F({v}).

Given a vector r = (r1, . . . , rn) ∈ (0,∞)n, an inner face f ∈ F ◦ bounded
by the vertices vi, vj , vk , and a distinguished vertex vj , we associate a number
αr

f (vj ) = �vivj vk ∈ (0, π) which is the angle of vj in the triangle �vivj vk created
by connecting the centers of three mutually tangent circles Ci,Cj , Ck of radii ri , rj
and rk (that is, in a triangle with side lengths ri + rj , rj + rk and rk + ri ). This
number can be calculated using the cosine formula

cos(�vivj vk) = 1 − 2rirk

(ri + rj )(rj + rk)
,

however, we will not use this formula directly. For every j ∈ {1, . . . , n} we define

σr(vj ) =
∑

f∈F(vj )

αr
f (vj )
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to be the sum of angles at vi with respect to r. Let θ1, θ2, θ3 be the angles formed
at the centers of three mutually tangent circles C1, C2, C3 of radii ρ1, ρ2, ρ3.
Equivalently, these are the angles of a triangle with edge lengths r1 + r2, r2 + r3
and r1 + r3. If the vector r was the vector of radii of a circle packing of the map
satisfying Theorem 3.6, then it would hold that

σr(vi) =
{

θi i ∈ {1, 2, 3} ,

2π otherwise ,
(3.2)

and additionally (r1, r2, r3) = (ρ1, ρ2, ρ3). The proof is split into three parts:

1. Show that there exists a vector r ∈ (0,∞)n satisfying (3.2);
2. Given such r, show that a circle packing with these radii exists and that (r1, r2, r3)

is a positive multiple of (ρ1, ρ2, ρ3); furthermore, this circle packing is unique
up to translations and rotations.

3. Show that r is unique up to scaling all entries by a constant factor.

Proof of Theorem 3.6, Step 1: Finding the Radii Vector r

Observation 3.7 For every r,

n∑

i=1

σr(vi) = ∣∣F ◦∣∣ π = (2n − 5)π.

Proof Follows immediately since each inner face f bounded by the vertices
vi, vj , vk contributes the three angles αr

f (vi), αr
f (vj ) and αr

f (vk) which sum to π .
By (3.1), there are 2n − 5 inner faces. ��

We now set

δr(vi) =
{

σr(vi) − θi j ∈ {1, 2, 3} ,

σr(vj ) − 2π otherwise.
(3.3)

Using this notation, our goal is to find r for which δr ≡ 0. It follows from
Observation 3.7 that for every r,

n∑

i=1

δr(vi) =
n∑

i=1

σr(vi) − θ1 − θ2 − θ3 − (n − 3) · 2π = 0 . (3.4)

We define

Er =
n∑

i=1

δr(vi)
2.
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α

α′

Fig. 3.4 When the radius of a circle corresponding to a vertex increases, while the radii of
the circles corresponding to its two neighbors in a given face decrease, the vertex’s angle in the
corresponding triangle decreases (see Observation 3.8)

We would like to find r for which Er = 0. We will use the following geometric
observation; see Fig. 3.4.

Observation 3.8 Let r = (r1, . . . , rn) and r′ = (r ′
1, . . . , r

′
n), and let f ∈ F ◦ be

bounded by vi, vj , vk .

• If r ′
i ≤ ri , r ′

k ≤ rk and r ′
j ≥ rj , then αr′

f (vj ) ≤ αr
f (vj ).

• If r ′
i ≥ ri , r ′

k ≥ rk and r ′
j ≤ rj , then αr′

f (vj ) ≥ αr
f (vj ).

• αr
f (vj ) is continuous in r.

Proof A proof using the cosine formula is routine and is omitted. ��
We now define an iterative algorithm, whose input and output are both vectors of

radii normalized to have �1 norm 1. We start with the vector r(0) =
(

1
n
, . . . , 1

n

)
, and

given r = r(t) we construct r′ = r(t+1). Write δ = δr and δ′ = δr′ , and similarly
E = Er and E ′ = Er′ . We begin by ordering the set of reals {δ(vi) | 1 ≤ i ≤ n}.
If δ ≡ 0 we are done; otherwise, we may choose s ∈ R such that the set S = {v |
δ(v) > s} 
= ∅ and its complement V \ S are non-empty and such that the gap

gapδ(S) := min
v∈S

δ(v) − max
v /∈S

δ(v) > 0

is maximal over all such s. See Fig. 3.5 for illustration.

V \ S S

gapδ

V \ S S

t

Fig. 3.5 Left: finding the maximum gap between two consecutive values of δ, and splitting the
set of values into S and its complement. Right: moving from r to r′ closes the gap between S and
V \ S
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Once we choose S, a step of the algorithm consists of two steps:

1. For some λ ∈ (0, 1) to be chosen later, we set

(rλ)i =
{

ri vi ∈ S,

λri vi /∈ S.

2. We normalize rλ so that the sum of entries is 1, letting r̄λ be the normalized
vector. Note that this step does not change the vector δ.

We will choose an appropriate λ that will decrease all values of δ(v) for v ∈ S,
increase all values of δ(v) for v /∈ S, and will close the gap. This is made formal in
the following two claims.

Claim 3.9 For every λ ∈ (0, 1), setting r′ = r̄λ, we have that δ′(v) ≤ δ(v) for any
v ∈ S, and δ′(v) ≥ δ(v) for any v /∈ S.

Claim 3.10 There exists λ ∈ (0, 1) such that setting r′ = r̄λ gives that gapδ′(S) =
0.

Proof of Claim 3.9 Consider vj /∈ S and an inner face vi, vj , vk .

Case I vi, vk /∈ S. In this case, the radii of Ci,Cj , Ck are all multiplied by the
same number λ, so αr′

f (vj ) = αr
f (vj ).

Case II vi, vk ∈ S. In this case, the radii of Ci,Ck remain unchanged and the
radius of Cj decreases, thus by Observation 3.8, αr′

f (vj ) ≥ αr
f (vj ).

Case III vi /∈ S, vk ∈ S. In this case the radii of Ci,Cj are multiplied by λ

and the radius of Ck is unchanged. The angles of �vivj vk remain unchanged
if we multiply all radii by λ−1, thus we could just as easily have left Ci , Cj

unchanged and increased the radius of Ck . By Observation 3.8, we get that
αr′

f (vj ) ≥ αr
f (vj ).

It follows that δ′(v) ≥ δ(v) for any v /∈ S. An identical argument shows that
δ′(v) ≤ δ(v) for all v ∈ S. ��

In order to prove Claim 3.10, we present another claim.

Claim 3.11

lim
λ↘0

∑

v /∈S

δrλ (v) > 0.

Proof of Claim 3.10 Using Claim 3.11 The function λ �→ gapδrλ
(S) is continuous

on (0, 1] by the third bullet of Observation 3.8, and its value at λ = 1 is gapδ(S) > 0.
Claim 3.11 says that if μ > 0 is small enough, then

∑

v /∈S

δrμ(v) > 0 ,
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from which it follows that maxv /∈S δrμ(v) > 0. By (3.4), we also have

∑

v∈S

δrμ(v) < 0,

meaning that minv∈S δrμ(v) < 0 and therefore gapδrμ
(S) < 0. By continuity, there

exists λ ∈ (μ, 1) such that gapδrλ
(S) = 0. ��

Proof of Claim 3.11 We first show that for each face f ∈ F(V \ S) bounded by
vi, vj , vk , the sum of angles at the vertices belonging to V \ S converges to π as
λ ↘ 0. We show this by the following case analysis. The statements in cases II and
III can be justified by drawing a picture or appealing to the cosine formula.

Case I If vi, vj , vk /∈ S then since the face is a triangle, α
rλ

f (vi) + α
rλ

f (vj ) +
α

rλ

f (vk) = π for all λ ∈ (0, 1).

Case II If vi, vj /∈ S but vk ∈ S then limλ↘0 α
rλ

f (vk) = 0, hence

limλ↘0 α
rλ

f (vi) + α
rλ

f (vj ) = π .

Case III If vi /∈ S but vj , vk ∈ S then limλ↘0 α
rλ

f (vj ) + α
rλ

f (vk) = 0, hence

limλ↘0 α
rλ

f (vi) = π .

It follows that

lim
λ↘0

∑

v /∈S

σrλ (v) = |F(V \ S)|π. (3.5)

For convenience, set

θ(vi) =
{

θi 1 ≤ i ≤ 3,

2π otherwise,

so that δr(v) = σr(v) − θ(v) for all v ∈ V . Then

lim
λ↘0

∑

v /∈S

δrλ (v) = |F(V \ S)|π −
∑

v /∈S

θ(v). (3.6)

Let F̄ = F ◦ \ F(V \ S), so every face in F̄ contains only vertices of S. We will
show that

|F̄ |π <
∑

v∈S

θ(v). (3.7)

If (3.7) holds, then we can add the negative quantity |F̄ |π − ∑
v∈S θ(v) to the right

side of (3.6), obtaining |F ◦|π −∑
v∈V θ(v) = (2n−5)π −(2n−5)π = 0. It follows

that (3.6) is strictly positive, proving the claim. Thus it suffices to show (3.7).
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In the rest of the proof, we fix an embedding of G in the plane with (v1, v2, v3)

as the outer face. Let G[S] be the subgraph of G induced by S. Partition S into
equivalence classes, S = S1 ∪ · · · ∪ Sk , where two vertices are equivalent if they are
in the same connected component of G[S]. Then G[S] = G[S1] ∪ · · · ∪ G[Sk]. Let
F̄j be the set of faces in F̄ that appear as faces of G[Sj ], so that we have the disjoint
union F̄ = F̄1 ∪ · · · ∪ F̄k .

Since S is nonempty, it is enough to show that for all 1 ≤ j ≤ k,

|F̄j |π <
∑

v∈Sj

θ(v). (3.8)

Let mj and fj denote the number of edges and faces, respectively, of G[Sj ].
Observe that |F̄j | ≤ fj − 1. If |F̄j | = 0, then (3.8) is trivial. If |F̄j | ≥ 1, then
G[Sj ] has at least one inner face, and since it is a simple graph, every face must
have degree at least 3. (The degree of a face is the number of directed edges that
make up its boundary.) Because the sum of the degrees of all the faces equals twice
the number of edges, we have 2mj ≥ 3fj . Euler’s formula now gives

|Sj | + fj − 2 = mj ≥ 3

2
fj ,

and hence fj ≤ 2|Sj | − 4. Thus, the left side of (3.8) satisfies

|F̄j |π ≤ (2|Sj | − 5)π.

If Sj contains all of v1, v2, v3, then the right side of (3.8) is

θ1 + θ2 + θ3 + (|Sj | − 3) · 2π = (2|Sj | − 5)π.

Otherwise, at least one of the θi is replaced by 2π and so the right side of (3.8) is
strictly greater than the left side. In fact, (3.8) holds except when v1, v2, v3 ∈ Sj

and |F̄j | = fj − 1 = 2|Sj | − 5. We now show that this situation cannot occur.
The equality |F̄j | = fj − 1 means that every inner face of G[Sj ] is an element

of F̄j and therefore a face of G. Since v1, v2, v3 ∈ Sj , the outer face of G[Sj ] is
(v1, v2, v3), which is the same as the outer face of G. So, every face of G[Sj ] is also
a face of G. But this is impossible: if we choose any v ∈ V \ S, then v must lie in
some face of G[Sj ], which then cannot be a face of G. Therefore, it cannot be true
that v1, v2, v3 ∈ Sj and also |F̄j | = fj − 1, so we conclude that (3.8) always holds.
��

We now analyse the algorithm. Let λ ∈ (0, 1) be the one guaranteed by
Claim 3.10, and set r′ = r̄λ.

Claim 3.12 E ′ ≤ E
(

1 − 1
2n3

)
.
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Proof As depicted in Fig. 3.5, define

t = min
v∈S

δ′(v) = max
v /∈S

δ′(v).

By (3.4) we have that
∑n

i=1 δ(vi) = ∑n
i=1 δ′(vi) = 0, hence

E−E ′ =
n∑

i=1

δ(vi)
2 −

n∑

i=1

δ′(vi )
2 =

n∑

i=1

(δ(vi)−δ′(vi ))
2 +2

n∑

i=1

(t −δ′(vi ))(δ
′(vi)−δ(vi )).

If v ∈ S, then t ≤ δ′(v) ≤ δ(v) and if v /∈ S, then t ≥ δ′(v) ≥ δ(v). Thus, in both
cases (t −δ′(v))(δ′(v)−δ(v)) ≥ 0. Taking u ∈ S and v /∈ S with δ′(u) = δ′(v) = t ,
we have that

E − E ′ ≥ (δ(u) − t)2 + (δ(v) − t)2 ≥ (δ(u) − δ(v))2

2
≥ gapδ(S)2

2
.

Since gapδ(S) was chosen to be the maximal gap we may bound,

gapδ(S) ≥ 1

n

(
max
v∈V

δ(v) − min
v∈V

δ(v)

)
.

For every v ∈ V ,

max
w∈V

δ(w) − min
w∈V

δ(w) ≥ |δ(v)|,

and thus

n

(
max
v∈V

δ(v) − min
v∈V

δ(v)

)2

≥
n∑

i=1

δ(vi)
2 = E .

Hence

E − E ′ ≥ 1

2n2

(
max
v∈V

δ(v) − min
v∈V

δ(v)

)2

≥ 1

2n2 · E
n

,

and we conclude that

E ′ ≤ E
(

1 − 1

2n3

)
. ��
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Write E (t) = Er(t) . By iterating the described algorithm, we obtain from
Claim 3.12 that

E (t) ≤ E (0)

(
1 − 1

2n3

)t

−→ 0 as t → ∞ .

By our normalization
∥∥r(t)

∥∥
�1

= 1. Thus, by compactness, there exists a subse-

quence {tk} and a vector r∞ such that r(tk) → r∞ as k → ∞. From continuity of E
we have that E (r∞) = 0, meaning that (3.2) is satisfied. For r∞ to be feasible as a
vector of radii, we also have to argue that it is positive (the fact that no coordinates
are ∞ follows since ||r∞||�1 = 1).

Claim 3.13 r∞
i > 0 for every i.

Proof Let S = {vi ∈ V : r∞
i > 0}. Because of the normalization of r, we know

that S is nonempty. Assume for contradiction that S � V . We repeat the exact same
argument used in the proof of Claim 3.11 showing first by case analysis that

lim
t→∞

∑

v /∈S

σr(t) (v) = |F(V \ S)|π

and then deducing that

lim
t→∞

∑

v /∈S

δr(t) (v) > 0.

This contradicts that limt→∞ E (t) = 0, so we conclude that S = V . ��

Proof of Theorem 3.6, Step 2: Drawing the Circle Packing
Described by r∞

Given the vector of radii r∞ satisfying (3.2), we now show that the corresponding
circle packing can be drawn uniquely up to translations and rotations. In fact, we
provide a slightly more general statement which is due to Ori Gurel-Gurevich and
Ohad Feldheim [personal communications, 2018].

Let G = (V ,E) be a finite planar triangulation on vertex set {v1, . . . , vn} and
assume that {v1, v2, v3} is the outer face. A vector of positive real numbers � =
{�e}e∈E indexed by the edge set E is called feasible if for any face enclosed by
edges e1, e2, e3, the lengths �e1, �e2, �e3 can be made to form a triangle. In other
words, these lengths satisfy three triangle inequalities,

�ei + �ej > �ek {i, j, k} = {1, 2, 3} .
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Given a feasible edge length vector � we may again use the cosine formula to
compute, for each face f , the angle at a vertex of the triangle formed by the three
corresponding edge lengths. We denote these angles, as before, by α�

f (v) where v is
a vertex of f . Similarly, we define

σ�(v) =
∑

f∈F(v)

α�
f (v)

to be the sum of angles at a vertex v.

Theorem 3.14 Let G be a finite triangulation and � a feasible vector of edge
lengths. Assume that σ�(v) = 2π for any internal vertex v. Then there is a drawing
of G in the plane so that each edge e is drawn as a straight line segment of length
�e and no two edges cross. Furthermore, this drawing is unique up to translations
and rotations.

It is easy to use the theorem above to draw the circle packing given the radii
vector r∞ satisfying (3.2). Indeed, given r∞ we set � by putting �e = r∞

i + r∞
j for

any edge e = {vi, vj } of the graph. Condition (3.2) implies that � is feasible. We
now apply Theorem 3.14 and obtain the guaranteed drawing and draw a circle Ci

of radii r∞
i around vi for all i. Theorem 3.14 guarantees that for any edge {vi, vk}

the distance between vi, vj is precisely r∞
i + r∞

j and thus Ci and Cj are tangent.
Conversely, assume that vi, vj do not form an edge. To each vertex v let Av be the
union of triangles touching v, each triangle is the space bounded by a face touching
v in the drawing of Theorem 3.14. Since G is a triangulation and vi and vj are
not adjacent we learn that Avi and Avj have disjoint interiors. Furthermore, Ci ⊂
Int(Avi ) since the straight lines emanating from vi have length larger than r∞

i . By
the same token Cj ⊂ Int(Avj ) and we conclude that Ci and Cj are not tangent.

Lastly, we note that by (3.2) the outer boundary of the polygon we drew is
a triangle with angles θ1, θ2, θ3 and hence (r1, r2, r3) is a positive multiple of
(ρ1, ρ2, ρ3). Step 2 of the proof of Theorem 3.5 is now concluded.

Proof of Theorem 3.14 We prove this by induction on the number of vertices n. The
base case n = 3 is trivial since the feasibility of � guarantees that the edge lengths
of the three edges of the outer face can form a triangle. Any two triangles with the
same edge lengths can be rotated and translated to be identical, so the uniqueness
statement holds for n = 3.

Assume now that n > 3 so that there exists an internal vertex v. Denote by
v1, . . . , vm the neighbors of v ordered clockwise. We begin by placing v at the
origin and drawing all the faces to which v belongs, see Fig. 3.6, left. That is, we
draw the edge {v, v1} as a straight line interval of length �{v,v1} on the positive x-
axis emanating from the origin and proceed iteratively: for each 1 < i ≤ m we
draw the edge {v, vi } as a straight line interval of length �{v,vi} emanating from
the origin (v) at a clockwise angle of α�

f (v) from the previous drawn line segment
of {v, vi−1}, where f = {v, vi−1, vi}. This determines the location of v1, . . . , vm

in the plane and allows us to “complete” the triangles by drawing the straight line
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v

v1

v2

v3

v4

v5 v6

v1

v2

v3

v4

v5 v6

Fig. 3.6 On the left, we first draw the polygon surrounding v. On the right, we then erase v and
the edge emanating from it, replacing it with diagonals that triangulate the polygon while recording
the lengths of the diagonals in �′. The latter is the input to the induction hypothesis

segments connecting vi to vi+1, each of length �{vi ,vi+1} where 1 ≤ i ≤ m (where
vm+1 = v1). Denote these edges by e1, . . . , em.

Since σ�(v) = 2π we learn that these m triangles have disjoint interiors and that
the edges e1, . . . , em form a closed polygon containing the origin in its interior. It
is a classical fact [64] that every closed polygon can be triangulated by drawing
some diagonals as straight line segments in the interior of the polygon. We fix such
a choice of diagonals and use it to form a new graph G′ on n − 1 vertices and
|E(G)| − 3 edges by erasing v and the m edges emanating from it and adding the
new m−3 edges corresponding to the diagonals we added. Furthermore, we generate
a new edge length vector �′ corresponding to G′ by assigning the new edges lengths
corresponding to the Euclidean length of the drawn diagonals and leaving the other
edge lengths unchanged. See Fig. 3.6, right.

It is clear that �′ is feasible and that the angle sum at each internal vertex of
G′ is 2π . Therefore we may apply the induction hypothesis and draw the graph
G′ according to the edge lengths �′. This drawing is unique up to translations and
rotations by induction. Note that in this drawing of G′, the polygon corresponding
to e1, . . . , em must be the exact same polygon as before, up to translations and
rotations, since it has the same edge lengths and the same angles between its edges.
Since it is the same polygon, we can now erase the diagonals in this drawing and
place a new vertex in the same relative location where we drew v previously, along
with the straight line segments connecting it to v1, . . . , vm. Thus we have obtained
the desired drawing of G. The uniqueness up to translations and rotations of this
drawing follows from the uniqueness of the drawing of G′ and the fact that the
location of v is uniquely determined in that drawing. ��
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Proof of Theorem 3.6, Step 3: Uniqueness

Theorem 3.15 (Uniqueness of Circle Packing) Given a simple finite triangula-
tion with outer face v1, v2, v3 and three radii ρ1, ρ2, ρ3, the circle packing with
Cv1, Cv2 , Cv3 having radii ρ1, ρ2, ρ3 is unique up to translations and rotations.

Proof We have already seen in step 2 that given the radii vector r the drawing we
obtain is unique up to translations and rotations. Thus, we only need to show the
uniqueness of r given ρ1, ρ2, ρ3.

To that aim, suppose that ra and rb are two vectors satisfying (3.2). Since the
outer face in both vectors correspond to a triangle of angles θ1, θ2, θ3 we may rescale
so that ra

i = rb
i = ρi for i = 1, 2, 3. After this rescaling, assume by contradiction

that ra 
= rb and let v be the interior vertex which maximizes ra
v/rb

v . We can assume
without loss of generality that this quantity is strictly larger than 1, as otherwise we
can swap ra and rb.

Now we claim that for each f = (v, u1, u2) ∈ F(v), we have αra

f (v) ≤ αrb

f (v),

with equality if and only if the ratios ra
ui

/rb
ui

, for i = 1, 2, are both equal to ra
v/rb

v .
This is a direct consequence of Observation 3.8. Indeed, scale all the radii in rb by
a factor of ra

v/rb
v to get a new vector r′ such that ra

v = r′
v and ra

u ≤ r′
u for all u 
= v.

The second bullet point in Observation 3.8 implies that αra

f (v) ≤ αr′
f (v) = αrb

f (v).
As well, if either ra

u1
< r′

u1
or ra

u2
< r′

u2
, then the cosine formula yields the strict

inequality αra

f (v) < αr′
f (v). Thus, αra

f (v) = αrb

f (v) only if ra
ui

/rb
ui

= ra
v/rb

v for
i = 1, 2.

Now, since αra

f (v) ≤ αrb

f (v) for each f ∈ F(v), while σra (v) = σrb (v) = 2π ,

the equality αra

f (v) = αrb

f (v) must hold for each f . Therefore, each neighbor u of

v satisfies ra
u/rb

u = ra
v/rb

v . Because the graph is connected, the ratio ra
u/rb

u must
be constant for all vertices u ∈ V (G). But this contradicts that ra

v/rb
v > 1 while

ra
vi

/rb
vi

= 1 for i = 1, 2, 3. We conclude that ra = rb. ��
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