
Chapter 2
Random Walks and Electric Networks

An extremely useful tool and viewpoint for the study of random walks is Kirchhoff’s
theory of electric networks. Our treatment here roughly follows [69, Chapter 8], we
also refer the reader to [61] for an in-depth comprehensive study.

Definition 2.1 A network is a connected graph G = (V ,E) endowed with positive
edge weights, {ce}e∈E (called conductances). The reciprocals re = 1/ce are called
resistances.

In Sects. 2.1–2.4 below we discuss finite networks. We extend our treatment to
infinite networks in Sect. 2.5.

2.1 Harmonic Functions and Voltages

Let G = (V ,E) be a finite network. In physics classes it is taught that when
we impose specific voltages at fixed vertices a and z, then current flows through
the network according to certain laws (such as the series and parallel laws). An
immediate consequence of these laws is that the function from V to R giving the
voltage at each vertex is harmonic at each x ∈ V \ {a, z}.
Definition 2.2 A function h : V → R is harmonic at a vertex x if

h(x) = 1

πx

∑

y:y∼x

cxyh(y) where πx :=
∑

y:y∼x

cxy. (2.1)

Instead of starting with the physical laws and proving that voltage is harmonic,
we now take the axiomatically equivalent approach of defining voltage to be a
harmonic function and deriving the laws as corollaries.
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12 2 Random Walks and Electric Networks

Definition 2.3 Given a network G = (V ,E) and two distinct vertices a, z ∈ V , a
voltage is a function h : V → R that is harmonic at any x ∈ V \ {a, z}.

We will show in Claim 2.8 and Corollary 2.7 that for any α, β ∈ R, there is a
unique voltage h such that h(a) = α and h(z) = β (this assertion is true only when
the network is finite).

Claim 2.4 If h1, h2 are harmonic at x then so is any linear combination of h1, h2.

Proof Let h̄ = αh1 + βh2 for some α, β ∈ R. It holds that

h̄(x) = αh1(x) + βh2(x) = 1

πx

∑

y:y∼x

cxyαh1(y) + 1

πx

∑

y:y∼x

cxyβh2(y)

= 1

πx

∑

y:y∼x

cxyh̄(y). ��

Claim 2.5 If h : V → R is harmonic at all the vertices of a finite network, then it
is constant.

Proof Let M = supx h(x) be the maximum value of h. Let A = {x ∈ V : h(x) =
M}. Since G is finite, A �= ∅. Given x ∈ A, we have that h(y) ≤ h(x) for all
neighbors y of x. By harmonicity, h(x) is the weighted average of the values of
h(y) at the neighbors; but this can only happen if all neighbors of x are also in A.
Since G is connected we obtain that A = V implying that h is constant. ��

We now show that a voltage is determined by its boundary values, i.e., by its
values at a, z.

Claim 2.6 If h is a voltage satisfying h(a) = h(z) = 0, then h ≡ 0.

Proof Put M = maxx h(x) (which is attained since G is finite) and let A = {x ∈
V : h(x) = M}. As before, by harmonicity, if x ∈ A\{a, z} then all of its neighbors
are also in A. Since G is connected, there exists a simple path from x to either a or z

such that only its endpoint is in {a, z}. Since h(a) = h(z) = 0 we learn that M = 0,
that is, h is non-positive. Similarly, one proves that h is non-negative, thus h ≡ 0. ��
Corollary 2.7 (Voltage Uniqueness) For every α, β ∈ R, if h, h′ are voltages
satisfying h(a) = h′(a) = α and h(z) = h′(z) = β, then h ≡ h′.

Proof By Claim 2.4, the function h − h′ is a voltage, taking the value 0 at a and z,
hence by Claim 2.6 we get h ≡ h′. ��
Claim 2.8 For every α, β ∈ R, there exists a voltage h satisfying h(a) = α,h(z)

= β.

Proof 1 We write n = |V |. Observe that a voltage h with h(a) = α and h(z) = β

is defined by a system of n − 2 linear equations of the form (2.1) in n − 2 variables
(which are the values h(x) for x ∈ V \ {a, z}). Corollary 2.7 guarantees that the
matrix representing that system has empty kernel, hence it is invertible. ��
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We present an alternative proof of existence based on the random walk on the
network. Consider the Markov chain {Xn} on the state space V with transition
probabilities

pxy := P(Xt+1 = y | Xt = x) = cxy

πx

. (2.2)

This Markov chain is a weighted random walk (note that if cxy are all 1 then the
described chain is the so-called simple random walk). We write Px and Ex for the
probability and expectation, respectively, conditioned on X0 = x. For a vertex x,
define the hitting time of x by

τx := min{t ≥ 0 | Xt = x}.

Proof 2 We will find a voltage g satisfying g(a) = 0 and g(z) = 1 by setting

g(x) = Px(τz < τa).

Indeed, g is harmonic at x �= a, z, since by the law of total probability and the
Markov property we have

g(x) = 1

πx

∑

y:y∼x

cxyPx(τz < τa | X1 = y) = 1

πx

∑

y:y∼x

cxyPy(τz < τa)

= 1

πx

∑

y:y∼x

cxyg(y).

For general boundary conditions α, β we define h by

h(x) = g(x) · (β − α) + α .

By Claim 2.4, h is a voltage, and clearly h(a) = α and h(z) = β, concluding the
proof. ��

This proof justifies the equality between simple random walk probabilities and
voltages that was discussed at the start of this chapter: since the function x →
Px(τz < τa) is harmonic on V \ {a, z} and takes values 0, 1 at a, z respectively, it
must be equal to the voltage at x when voltages 0, 1 are imposed at a, z.

Claim 2.9 If h is a voltage with h(a) ≤ h(z), then h(a) ≤ h(x) ≤ h(z) for all
x ∈ V .

Furthermore, if h(a) < h(z) and x ∈ V \ {a, z} is a vertex such that x is in the
connected component of z in the graph G\{a}, and x is in the connected component
of a in the graph G \ {z}, then h(a) < h(x) < h(z).



14 2 Random Walks and Electric Networks

Proof This follows directly from the construction of h in Proof 2 of Claim 2.8 and
the uniqueness statement of Corollary 2.7. Alternatively, one can argue as in the
proof of Claim 2.6 that if M = maxx h(x) and m = minx h(x), then the sets A =
{x ∈ V : h(x) = M} and B = {x ∈ V : h(x) = m} must each contain at least one
element of {a, z}.

To prove the second assertion, we note that by Claim 2.8 and Corollary 2.7 it is
enough to check when h is the voltage with boundary values h(a) = 0 and h(z) = 1.
In this case, the condition on x guarantees that the probabilities that the random walk
started at x visits a before z or visits z before a are positive. By proof 2 of Claim 2.8
we find that h(x) ∈ (0, 1). ��

2.2 Flows and Currents

For a graph G = (V ,E), denote by �E the set of edges of G, each endowed with
the two possible orientations. That is, (x, y) ∈ �E iff {x, y} ∈ E (and in that case,
(y, x) ∈ �E as well).

Definition 2.10 A flow from a to z in a network G is a function θ : �E → R

satisfying

1. For any {x, y} ∈ E we have θ(xy) = −θ(yx) (antisymmetry), and
2. ∀x �∈ {a, z} we have

∑
y:y∼x θ(xy) = 0 (Kirchhoff’s node law).

Claim 2.11 If θ1, θ2 are flows then, so is any linear combination of θ1, θ2.

Proof Let θ̄ = αθ1 + βθ2 for some α, β ∈ R. It holds that

θ̄ (xy) = αθ1(xy) + βθ2(xy) = −αθ1(yx) − βθ2(yx) = −θ̄ (yx),

and for x �= a, z,

∑

y:y∼x

θ̄ (xy) = α
∑

y:y∼x

θ1(xy) + β
∑

y:y∼x

θ2(xy) = 0. ��

Definition 2.12 Given a voltage h, the current flow θ = θh associated with h is
defined by θ(xy) = cxy(h(y) − h(x)).

In other words, the voltage difference across an edge is the product of the current
flowing along the edge with the resistance of the edge. This is known as Ohm’s law.
According to this definition, the current flows from vertices with lower voltage to
vertices with higher voltage. We will use this convention throughout, but the reader
should be advised that some other sources use the opposite convention.

Claim 2.13 The current flow associated with a voltage is indeed a flow.
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Proof The current flow is clearly antisymmetric by definition. To show that it
satisfies the node law, observe that for x �= a, z, since h is harmonic,

∑

y:y∼x

θ(xy) =
=πxh(x)︷ ︸︸ ︷∑

y:y∼x

cxyh(y) −
=πxh(x)︷ ︸︸ ︷∑

y:y∼x

cxyh(x) = 0. ��

Claim 2.14 The current flow associated with a voltage h satisfies Kirchhoff’s cycle
law, that is, for every directed cycle �e1, . . . , �em,

r∑

i=1

rei θ(�ei) = 0.

Proof Write �ei = (xi−1, xi), and observe that x0 = xm. We have that

m∑

i=1

rei θ(�ei) =
m∑

i=1

rxi−1xi cxi−1xi (h(xi) − h(xi−1)) =
m∑

i=1

(h(xi) − h(xi−1)) = 0.

��

For examples of a flow which does not satisfy the cycle law and a current flow,
see Fig. 2.1.

Claim 2.15 Given a flow θ which satisfies the cycle law, there exists a voltage h =
hθ such that θ is the current flow associated with h. Furthermore, this voltage is
unique up to an additive constant.

Proof For every vertex x, let �e1, . . . , �ek be a path from a to x, and define

h(x) =
k∑

i=1

rei θ(�ei). (2.3)

a z

1

1

1

0

2

a z

1/2

1/2

0

1/2

1/2

Fig. 2.1 On the left, a flow of strength 2 in which the cycle law is violated. On the right, the unit
(i.e., strength 1) current flow
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Note that since θ satisfies the cycle law, the right hand side of (2.3) does not depend
on the choice of the path, hence h(x) is well defined. Let x ∈ V , and consider a given
path �e1, . . . , �ek from a to x (if x = a we take the empty path). To evaluate h(y) for
y ∼ x, consider the path �e1, . . . , �ek, xy from a to y, so h(y) = h(x) + rxyθ(xy). It
follows that h(y) − h(x) = rxyθ(xy), hence θ(xy) = cxy(h(y) − h(x)), meaning
that θ is indeed the current flow associated with h.

Since θ(xy) = cxy(h(y) − h(x)) for any x ∼ y, the node law of immediately
implies that h is a voltage. To show that h is unique up to an additive constant,
suppose that g : V → R is another voltage such that rxyθ(xy) = g(y) − g(x). It
follows that g(y) − h(y) = g(x) − h(x) for any x ∼ y. Since G is connected it
follows that g − h is the constant function on V . ��
Definition 2.16 The strength of a flow θ is

‖θ‖ =
∑

x:x∼a

θ(ax).

Claim 2.17 For every flow θ ,

∑

x:x∼z

θ(xz) = ‖θ‖.

Proof We have that

0 =
∑

x∈V

∑

y:y∼x

θ(xy)

=
∑

x∈V \{a,z}

∑

y:y∼x

θ(xy) +
∑

y:y∼a

θ(ay) +
∑

y:y∼z

θ(zy)

=
∑

y:y∼a

θ(ay) +
∑

y:y∼z

θ(zy)

where the first equality is due to antisymmetry, and the third equality is due to the
node law. The claim follows again by antisymmetry. ��
Claim 2.18 If θ1, θ2 are flows satisfying the cycle law and ‖θ1‖ = ‖θ2‖, then θ1 =
θ2.

Proof Let θ̄ = θ1 − θ2. According to Claim 2.11, θ̄ is a flow. It also satisfies the
cycle law, as for every cycle �e1, . . . , �em,

m∑

i=1

rei θ̄ (�ei) =
m∑

i=1

rei θ1(�ei) −
m∑

i=1

rei θ2(�ei) = 0.
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Observe in addition that ‖θ̄‖ = ‖θ1‖−‖θ2‖ = 0. Now, let h = hθ̄ be the voltage
defined in Claim 2.15, chosen so that h(a) = 0. Note that it is harmonic at a, since

1

πa

∑

x:x∼a

caxh(x) = 1

πa

∑

x:x∼a

cax(h(a) + raxθ̄ (ax))

= 1

πa

∑

x:x∼a

caxh(a) + 1

πa

∑

x:x∼a

θ̄ (ax) = h(a) + ‖θ̄‖
πa

= h(a).

Similarly, using Claim 2.17 it is also harmonic at z. Since h is harmonic everywhere,
it is constant by Claim 2.5, and thus h ≡ 0, hence θ̄ ≡ 0 and so θ1 = θ2. ��

This last claim prompts the following useful definition.

Definition 2.19 The unit current flow from a to z is the unique current flow from
a to z of strength 1.

2.3 The Effective Resistance of a Network

Suppose we are given a voltage h on a network G with fixed vertices a and z.
Scaling h by a constant multiple causes the associated current flow to scale by the
same multiple, while adding a constant to h does not change the current flow at all.
Therefore, the strength of the current flow is proportional to the difference h(z) −
h(a).

Claim 2.20 For every non-constant voltage h and a current flow θ corresponding to
h, the ratio

h(z) − h(a)

‖θ‖ (2.4)

is a positive constant which does not depend on h.

Proof Let h1, h2 be two non-constant voltages, and let θ1, θ2 be their associated
current flows. For i = 1, 2, let h̄i = hi/‖θi‖ and let θ̄i be the current flow associated
with h̄i (note that since hi is non-constant ‖θi‖ �= 0). Thus, ‖θ̄i‖ = 1. By Claim 2.18
we get θ̄1 = θ̄2 and therefore h̄1 = h̄2 + c for some constant c by Claim 2.15. It
follows that h̄1(z) − h̄1(a) = h̄2(z) − h̄2(a).

To see that this constant is positive, it is enough to check one particular choice
of a voltage. By Claim 2.8, let h be the voltage with h(a) = 0 and h(z) = 1. By
Claim 2.9 and since G is connected, we have that h(x) > 0 for at least one neighbor
x of a. Thus, the corresponding current flow θ has ‖θ‖ > 0 making (2.4) positive.
��
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a

0 1 2 3 4

z

5

(a)

a
0

z
1

1/2

1/2

(b)

Fig. 2.2 Examples for effective resistances of two networks with unit edge conductances. (a) For
the voltage depicted, the voltage difference between a and z is 5, and the current flow’s strength
is 1, hence the effective resistance is 5/1 = 5. (b) For the voltage depicted, the voltage difference
between a and z is 1, and the current flow’s strength is 1, hence the effective resistance is 1/1 = 1

Claim 2.20 is the mathematical manifestation of Ohm’s law which states that the
voltage difference across an electric circuit is proportional to the current through
it. The constant of proportionality is usually called the effective resistance of the
circuit.

Definition 2.21 The number defined in (2.4) is called the effective resistance
between a and z in the network, and is denoted Reff(a ↔ z). We call its reciprocal
the effective conductance between a and z and is denoted Ceff(a ↔ z) :=
Reff(a ↔ z)−1.

For examples of computing the effective resistances of networks, see Fig. 2.2.

Notation In most cases we write Reff(a ↔ z) and suppress the notation of which
network we are working on. However, when it is important to us what the network
is, we will write Reff(a ↔ z; G) for the effective resistance in the network G with
unit edge conductances and Reff(a ↔ z; (G, {re})) for the effective resistance in
the network G with edge resistances {re}e∈E . Furthermore, given disjoint subsets A

and Z of vertices in a graph G, we write Reff(A ↔ Z) for the effective resistance
between a and z in the network obtained from the original network by identifying
all the vertices of A into a single vertex a, and all the vertices of Z into a single
vertex z.

Probabilistic Interpretation For a vertex x we write τ+
x for the stopping time

τ+
x = min{t ≥ 1 | Xt = x} , (2.5)

where Xt is the weighted random walk on the network, as defined in (2.2). Note that
if X0 �= x then τx = τ+

x with probability 1.

Claim 2.22

Reff(a ↔ z) = 1

πaPa(τz < τ+
a )

.

Proof Consider the voltage h satisfying h(a) = 0 and h(z) = 1, and let θ be the
current flow associated with h. Due to uniqueness of h (Corollary 2.7) we have that
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for x �= a, z,

h(x) = Px(τz < τa),

hence

Pa(τz < τ+
a ) = 1

πa

∑

x∼a

caxPx(τz < τa)

= 1

πa

∑

x∼a

caxh(x)

= 1

πa

∑

x∼a

θ(ax) = ‖θ‖
πa

= 1

πaReff(a ↔ z)
. ��

Network Simplifications Sometimes a network can be replaced by a simpler
network, without changing the effective resistance between a pair of vertices.

Claim 2.23 (Parallel Law) Conductances add in parallel. Suppose e1, e2 are
parallel edges between a pair of vertices, with conductances c1 and c2, respectively.
If we replace them with a single edge e′ with conductance c1 + c2, then the effective
resistance between a and z is unchanged.

A demonstration of the parallel law appears in Fig. 2.3.

Proof Let G′ be the graph where e1 and e2 are replaced with e′ with conductance
c1 + c2. Then it is immediate that if h is any voltage function on G, then it remains
a voltage function on the network G′. The claim follows. ��

Claim 2.24 (Series Law) Resistances add in series. Suppose that u �∈ {a, z} is a
vertex of degree 2 and that e1 = (u, v1) and e2 = (u, v2) are the two edges touching
u with edge resistances r1 and r2, respectively. If we erase u and replace e1 and e2
by a single edge e′ = (v1, v2) of resistance r1 + r2, then the effective resistance
between a and z is unchanged.

The series law is depicted in Fig. 2.4.

Proof Denote by G′ the graph in which u is erased and e1 and e2 are replaced by a
single edge (v1, v2) of resistance r1 + r2. Let θ be a current flow from a to z in G,
and define a flow θ ′ from a to z in G′ by putting θ ′(e) = θ(e) for any e �= e1, e2
and θ ′(v1, v2) = θ(v1, u). Since u had degree 2, it must be that θ(v1, u) = θ(u, v2).

u v

c1

c2

u v
c1 + c2

Fig. 2.3 Demonstrating the parallel law. Two parallel edges are replaced by a single edge
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v1
u

v2
r1 r2

v1 v2
r1 + r2

Fig. 2.4 An example of a network G where edges in series are replaced by a single edge

Thus θ ′ satisfies the node law at any x �∈ {a, z} and ‖θ‖ = ‖θ ′‖. Furthermore, since
θ satisfies the cycle law, so does θ ′. We conclude θ ′ is a current flow of the same
strength as θ and the voltage difference they induce is the same. ��

The operation of gluing a subset of vertices S ⊂ V consists of identifying the
vertices of S into a single vertex and keeping all the edges and their conductances.
In this process we may generate parallel edges or loops.

Claim 2.25 (Gluing) Gluing vertices of the same voltage does not change the
effective resistance between a and z.

Proof This is immediate since the voltage on the glued graph is still harmonic. ��
Example: Spherically Symmetric Tree Let � be a spherically symmetric tree,
that is, a rooted tree where all vertices at the same distance from the root have the
same number of children. Denote by ρ the root of the tree, and let {dn}n∈N be a
sequence of positive integers. Every vertex at distance n from the root ρ has dn

children. Denote by �n the set of all vertices of height n. We would like to calculate
Reff(ρ ↔ �n). Due to the tree’s symmetry, all vertices at the same level have the
same voltage and therefore by Claim 2.25 we can identify them. Our simplified
network has now one vertex for each level, denoted by {vi}i∈N (where ρ = v0),
with |�n+1| edges between vn and vn+1. Using the parallel law (Claim 2.23), we
can reduce each set of |�n| edges to a single edge with resistance 1

|�n| , then, using
the series law (Claim 2.24) we get

Reff(ρ ↔ �n) =
n∑

i=1

1

|�i | =
n∑

i=1

1

d0 · · · di−1
,

see Fig. 2.5.

By Claim 2.22 we learn that

Pρ(τn < τ+
ρ ) = 1

d0
∑n

i=1
1

d0···di−1

, (2.6)

where τn is the hitting time of �n for the random walk on �. Observe that

Pρ

(
τn < τ+

ρ for all n
) = Pρ (Xt never returns to ρ) ,
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Fig. 2.5 Using network
simplifications. (a) The first
four levels of a spherically
symmetric tree with
{dn} = {3, 2, 1, . . .}. (b)
Gluing nodes on the same
level. (c) Applying the
parallel law. (d) Applying the
series law

(a) (b)

ρ

v3

1/3

1/6

1/6

(c)

ρ

v3

4/6

(d)

so by (2.6) we reach an interesting dichotomy. If
∑∞

i=1
1

d1···di
= ∞, then the random

walker returns to ρ with probability 1, and hence returns to ρ infinitely often almost
surely. If

∑∞
i=1

1
d1···di

< ∞, then with positive probability the walker never returns
to ρ, and hence visits ρ only finitely many times almost surely.

The former graph is called a recurrent graph and the latter is called transient.
We will get back to this dichotomy in Sect. 2.5.

The Commute Time Identity

The following lemma shows that the effective resistance between a and z is
proportional to the expected time it takes the random walk starting at a to visit z

and then return to a, in other words, the expected commute time between a and z.
We will use this lemma only in Chap. 6 so the impatient reader may skip this section
and return to it later.

Lemma 2.26 (Commute Time Identity) Let G = (V ,E) be a finite network and
a �= z two vertices. Then

Ea[τz] + Ez[τa] = 2Reff(a ↔ z)
∑

e∈E

ce

Proof We denote by Gz : V × V → R the so-called Green function

Gz(a, x) = Ea[number of visits to x before z]
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and note that

Ea[τz] =
∑

x∈V

Gz(a, x).

It is straightforward to show that the function ν(x) = Gz(a, x)/πx is harmonic
in V \ {a, z}. Also, we have that Gz(a, z) = 0 and Gz(a, a) = 1

Pa(τz<τa)
=

πaReff(a ↔ z). Thus, ν is a voltage function with boundary conditions ν(z) = 0
and ν(a) = Reff(a ↔ z) which satisfies

Ea[τz] =
∑

x∈V

ν(x)πx .

Similarly, the same analysis for Ez[τa] yields the same result, with the voltage
function η which has boundary conditions η(z) = Reff(a ↔ z) and η(a) = 0.
Therefore, η(x) = ν(a)−ν(x) for all x ∈ V since both sides are harmonic functions
in V \ {a, z} that receive the same boundary values. This implies that

Ez[τa] =
∑

x∈V

πx (ν(a) − ν(x)) .

Summing these up gives

Ea[τz] + Ez[τa] =
∑

x∈V

πxν(a) = 2
∑

e∈E

ceReff(a ↔ z). ��

2.4 Energy

So far we have seen how to compute the effective resistance of a network via
harmonic functions and current flows. However, in typical situations it is hard to find
a flow satisfying the circle law. Luckily, an extremely useful property of the effective
resistance is that it can be represented by a variational problem. Our intuition from
highschool physics suggests that the energy of the unit current flow is minimal
among all unit flows from a to z. The notion of energy can be made precise and
will allow us to obtain valuable monotonicity properties. For instance, removing any
edge from an electric network can only increase its effective resistance. Hence, any
recurrent graph remains recurrent after removing any subset of edges from it. Two
variational problems govern the effective resistance, Thomson’s principle, which is
used to bound the effective resistance from above, and Dirichlet’s principle, used to
bound it from below.
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Definition 2.27 The energy of a flow θ from a to z, denoted by E(θ), is defined
to be

E(θ) := 1

2

∑

�e∈ �E
r�e θ(�e)2 =

∑

e∈E

θ(e)2re.

Note that in the second sum we sum over undirected edges, but since θ(xy)2 =
θ(yx)2, this is well defined.

Theorem 2.28 (Thomson’s Principle)

Reff(a ↔ z) = inf{E(θ) : ‖θ‖ = 1, θ is a flow from a to z}
and the unique minimizer is the unit current flow.

Proof First, we will show that the energy of the unit current flow is the effective
resistance. Let I be the unit current flow, and h the corresponding (Claim 2.15)
voltage function.

E(I) = 1

2

∑

x∈V

∑

y:y∼x

rxyI (xy)2 = 1

2

∑

x∈V

∑

y:y∼x

rxy

(
h(y) − h(x)

rxy

)
I (xy)

= 1

2

∑

x∈V

∑

y:y∼x

(h(y) − h(x)) I (xy)

= 1

2

∑

x∈V

∑

y:y∼x

h(y)I (xy) − 1

2

∑

x∈V

∑

y:y∼x

h(x)I (xy).

Observe that in the second term of the right hand side, for every x �= a, z the sum
over all y ∼ x is 0 due to the node law, hence the entire term equals 1

2 (h(a)−h(z)).
From antisymmetry of I , the first term on the right hand side equals − 1

2 (h(a) −
h(z)), hence the right hand side equals altogether h(z) − h(a) = Reff(a ↔ z).

We will now show that every other flow J with ‖J‖ = 1 has E(J ) ≥ E(I). Let
J be such flow and write J = I + (J − I). Set θ = J − I and note that ‖θ‖ = 0.
We have

E(J ) = 1

2

∑

x∈V

∑

y:y∼x

rxy(I (xy) + θ(xy))2

= 1

2

∑

x∈V

∑

y:y∼x

rxyI (xy)2 + 1

2

∑

x∈V

∑

y:y∼x

rxyθ(xy)2

+
∑

x∈V

∑

y:y∼x

rxyθ(xy)I (xy)

= E(I) + E(θ) +
∑

x∈V

∑

y:y∼x

rxyθ(xy)I (xy).
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Now,

∑

x∈V

∑

y:y∼x

rxyθ(xy)I (xy) =
∑

x∈V

∑

y:y∼x

rxyθ(xy)
(h(y) − h(x))

rxy

=
∑

x∈V

∑

y:y∼x

θ(xy) (h(y) − h(x))

= 2 · ‖θ‖ · (h(z) − h(a)) = 0,

where the last inequality follows from the same reasoning as before. We conclude
that E(J ) ≥ E(I) as required and that equality holds if and only if E(θ) = 0, that
is, if and only if J = I . ��
Corollary 2.29 (Rayleigh’s Monotonicity Law) If {re}e∈E and {r ′

e}e∈E are edge
resistances on the same graph G so that re ≤ r ′

e for all edges e ∈ E, then

Reff(a ↔ z; (G, {re})) ≤ Reff(a ↔ z; (G, {r ′
e})).

Proof Let θ be a flow on G, then

∑

e∈E

reθ(e)2 ≤
∑

e∈E

r ′
eθ(e)2.

This inequality is preserved while taking infimum over all flows with strength 1.
Applying Theorem 2.28 finishes the proof. ��
Corollary 2.30 Gluing vertices cannot increase the effective resistance between a

and z.

Proof Denote by G the original network and by G′ the network obtained from
gluing a subset of vertices. Then every flow θ on G (viewed as a function on the
edges) is a flow on G′. Hence the infimum in Theorem 2.28 taken over flows in G′
is taken over a larger subset of flows. ��
Definition 2.31 The energy of a function h : V → R, denoted by E(h), is defined
to be

E(h) :=
∑

{x,y}∈E

cxy(h(x) − h(y))2.

Compare the following lemma with Thomson’s principle (Theorem 2.28).

Lemma 2.32 (Dirichlet’s Principle) Let G be a finite network with source a and
sink z. Then

1

Reff(a ↔ z)
= inf

{E(h) : h : V → R, h(a) = 0, h(z) = 1
}
.
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Proof The infimum is obtained when h is the harmonic function taking 0 and 1 at
a, z respectively. The reason is that if there exists v �= a, z with

h(v) �=
∑

u∼v

cvu

πv

h(u), (2.7)

then we can change the value of h at v to be the right hand side of (2.7) and the
energy will only decrease. One way to see this is that if X is a random variable with a
second moment, then the value E(X) minimizes the function f (x) = E

(
(X − x)2

)
.

Let h be that harmonic function and let I be its current flow, so I (xy) =
cxy(h(y)−h(x)). Write Î = Reff(a ↔ z) · I , so ‖Î‖ = 1. By Thomson’s principle,

Reff(a ↔ z) = E(Î ) =
∑

e∈E

reÎ (e)2 =
∑

{x,y}∈E

rxyReff(a ↔ z)2c2
xy(h(y) − h(x))2,

hence

1

Reff(a ↔ z)
= E(h). ��

2.5 Infinite Graphs

Let G = (V ,E) be an infinite connected graph with edge resistances {re}e∈E . We
assume henceforth that this network is locally finite, that is, for any vertex x ∈ V we
have

∑
y:y∼x cxy < ∞. Let {Gn} be a sequence of finite subgraphs of G such that⋃

n∈N Gn = G and Gn ⊂ Gn+1; we call such a sequence an exhaustive sequence
of G. Identify all vertices of G \ Gn with a single vertex zn.

Claim 2.33 Given an exhaustive sequence {Gn} of G, the limit

lim
n→∞Reff(a ↔ zn; Gn ∪ {zn}) (2.8)

exists.

Proof The graph Gn ∪ {zn} can be obtained from Gn+1 ∪ {zn+1} by gluing the
vertices in Gn+1 \ Gn with zn+1 and labeling the new vertex zn. By Corollary 2.30,
the effective resistance Reff(a ↔ zn; Gn ∪ {zn}) is increasing in n. ��
Claim 2.34 The limit in (2.8) does not depend on the choice of exhaustive sequence
{Gn}.
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Proof Indeed, let {Gn} and {G′
n} be two exhaustive sequences of G. We can find

subsequences {ik}k≥1 and {jk}k≥1 such that

Gi1 ⊆ G′
j1

⊆ Gi2 ⊆ . . .

Since {Gi1,G
′
j1

,Gi2 , . . .} is itself an exhaustive sequence of G, the limit of effective
resistances for this sequence exists and equals the limits of effective resistances for
the subsequences {Gik } and {G′

jk
}. In turn, these are equal to the limits of effective

resistances for the original sequences {Gn} and {G′
n}, respectively. ��

Definition 2.35 In an infinite network, the effective resistance from a vertex a and
∞ is

Reff(a ↔ ∞) := lim
n→∞Reff(a ↔ zn; Gn ∪ {zn}) .

We are now able to address the question of recurrence versus transience of a
graph systematically. Recall the definition of τ+

x in (2.5). In an infinite network we
define τ+

a = ∞ when there is no time t ≥ 1 such that Xt = a.

Definition 2.36 A network (G, {re}e∈E) is called recurrent if Pa(τ
+
a = ∞) = 0,

that is, if the probability of the random walker started at a never returning to a is 0.
Otherwise, it is called transient .

Observe that since G is connected, if Pa(τ
+
a = ∞) = 0 for one vertex a, then it

holds for all vertices in the network. As we have seen, if n is large enough so that
a ∈ Gn, then

Reff(a ↔ zn; Gn ∪ {zn}) = 1

πa · Pa

(
τG\Gn < τ+

a

) .

Since
⋂

n{τG\Gn < τ+
a } = {τ+

a = ∞} we have

Reff(a ↔ ∞) = 1

πa · Pa(τ
+
a = ∞)

,

with the convention that 1/0 = ∞.

Definition 2.37 Let G be an infinite network. A function θ : E(G) → R is a flow
from a to ∞ if it is anti-symmetric and satisfies the node law on each vertex v �= a.

The following follows easily from Theorem 2.28, we omit the proof.

Theorem 2.38 (Thomson’s Principle for Infinite Networks) Let G be an infinite
network, then

Reff(a ↔ ∞) = inf{E(θ) : θ is a flow from a to ∞ of strength 1}.
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Corollary 2.39 Let G be an infinite graph. The following are equivalent:

1. G is transient.
2. There exists a vertex a ∈ V such that Reff(a ↔ ∞) < ∞. Hence all vertices

satisfy this.
3. There exists a vertex a ∈ V and a unit flow θ from a to ∞ with E(θ) < ∞. Hence

all vertices satisfy this.

We will now develop a useful method for bounding effective resistances from
below. This will lead us to a popular sufficient criterion for recurrence in Corol-
lary 2.43.

Definition 2.40 A cutset � ⊆ E(G) separating a from z is a set of edges such that
every path from a to z must use an edge from �.

Claim 2.41 Let θ be a flow from a to z in a finite network, and let � a cutset
separating a from z. Then

∑

e∈�

|θ(e)| ≥ ‖θ‖.

Proof Denote by Z the set of vertices separated from a by �. Denote by G′ the
network where Z is identified to a single vertex x and all edges having both
endpoints in Z are removed. Now, the restriction of θ to the edges of the new
network is a flow from a to x. By Claim 2.17, we have

∑
y:y∼x θ(yx) = ‖θ‖.

Also, all edges incident to x must be in �, since otherwise x is not separated from a

by �. Therefore

∑

e∈�

|θ(e)| ≥
∑

y:y∼x

θ(yx) = ‖θ‖. ��

Theorem 2.42 (Nash-Williams Inequality) Let {�n} be disjoint cutsets separat-
ing a from z in a finite network. Then

Reff(a ↔ z) ≥
∑

n

⎛

⎝
∑

e∈�n

ce

⎞

⎠
−1

.

Proof Let θ be a flow from a to z with ‖θ‖ = 1. From Cauchy-Schwarz, for each n

we have

⎛

⎝
∑

e∈�n

√
re

√
ce|θ(e)|

⎞

⎠
2

≤
∑

e∈�n

ce

∑

e∈�n

reθ(e)2 .
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Also, since �n is a cutset, the flow passing through �n is at least ‖θ‖, by Claim 2.41.
So

⎛

⎝
∑

e∈�n

√
re

√
ce|θ(e)|

⎞

⎠
2

≥ ‖θ‖2 = 1.

Combining them, we get that

∑

e∈�n

reθ(e)2 ≥ 1∑
e∈�n

ce

.

Summing over all n gives

E(θ) ≥
∑

n

∑

e∈�n

reθ(e)2 ≥
∑

n

⎛

⎝
∑

e∈�n

ce

⎞

⎠
−1

.

Applying Thomson’s principle (Theorem 2.28) yields the result. ��
Consider now an infinite network G = (V ,E). We say that � ⊂ E is a cutset

separating a from ∞ if any infinite simple path from a must intersect �.

Corollary 2.43 In any infinite network, if there exists a collection {�n} of disjoint
cutsets separating a from ∞ such that

∑

n

⎛

⎝
∑

e∈�n

ce

⎞

⎠
−1

= ∞,

then the network is recurrent.

Example 2.44 (Z2 is Recurrent) Define �n as the set of vertical edges
{(x, y), (x, y +1)} with |x| ≤ n and min{|y|, |y +1|} = n along with the horizontal
edges {(x, y), (x + 1, y)} with |y| ≤ n and min{|x|, |x + 1|} = n, see Fig. 2.6. Then

Fig. 2.6 A part of Z2: the
edges in {−1, 0, 1}2 are
drawn in bold. �1 is dashed
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{�n} is a collection of disjoint cutsets separating 0 from ∞. Also, |�n| = 4(2n + 1)

and therefore
∑

n

(∑
e∈�n

ce

)−1 = ∞. We deduce by Corollary 2.43 that Z2 is
recurrent.

Remark 2.45 There are recurrent graphs for which there exists M < ∞ such that
for every collection {�n} of disjoint cutsets,

∑
n

(∑
e∈�n

ce

)−1 ≤ M . Therefore, the
Nash-Williams inequality is not sharp. See Exercise 4 of this chapter.

2.6 Random Paths

We now present the method of random paths, which is one of the most useful
methods for generating unit flows on a network and bounding their energy. In fact, it
is possible to show that the electric flow can be represented by such a random path.
Suppose G is a network with fixed vertices a, z and μ is a probability measure on
the set of paths from a to z.

Claim 2.46 For a path γ sampled from μ, let

θγ (�e) = (# of times �e was traversed by γ ) − (# of times �e was traversed by γ ),

where by �e and �e we mean the two orientations of an edge e of G. Set

θ(�e) = Eθγ (�e).

Then θ is a flow from a to z with ‖θ‖ = 1.

Proof θ is antisymmetric since θγ is antisymmetric for every γ , and it satisfies
the node law since θγ satisfies the node law. Similarly, the “strength” of θγ (i.e.,∑

x∼a θγ (ax)) is 1, hence ‖θ‖ = 1. ��
An example of the use of this method is the following classical result.

Theorem 2.47 Z
3 is transient.

Proof For R > 0 denote by BR = {(x, y, z) : x2 + y2 + z2 ≤ R2} the ball of radius
R in R

3. Put VR = BR ∩Z
3 and let ∂VR be the external vertex boundary of VR , that

is, the set of vertices not in VR which belong to an edge with an endpoint in VR.
We construct a random path μ from the origin 0 to ∂VR by choosing a uniform

random point p in ∂BR = {(x, y, z) : x2 + y2 + z2 = R2}, drawing a straight line
between 0 and p in R

3, considering the set of distance at most 10 in R
3 from the

line, and then choosing (in some arbitrary fashion) a path in Z
3 which is contained

inside this set. The non-optimal constant 10 was chosen in order to guarantee that
such a discrete path exists for any point p ∈ ∂BR .

By Claim 2.46, the measure μ corresponds to a flow from 0 to ∂VR. To estimate
the energy of this flow, we note that if �e is an edge at distance r ≤ R from the origin,
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then the probability that it is traversed by a path drawn by μ is O(r−2). Furthermore,
there are O(r2) such edges. Hence the energy of the flow is at most

E = O
( R∑

r=1

r2 · (r−2)2) ≤ C ,

for some constant C < ∞ which does not depend on R. By Claim 2.46 and
Theorem 2.28 we learn that Reff(0 ↔ ∂VR) ≤ C for all R, and so by Corollary 2.39
we deduce that Z3 is transient. ��

2.7 Exercises

1. Let Gz(a, x) be the Green’s function, that is,

Gz(a, x) = Ea

[
#visits to x before visiting z

]
.

Show that the function h(x) = Gz(a, x)/π(x) is a voltage.
2. Show that the effective resistance satisfies the triangle inequality. That is, for any

three vertices x, y, z we have

Reff(x ↔ z) ≤ Reff(x ↔ y) + Reff(y ↔ z) . (2.9)

3. Let a, z be two vertices of a finite network and let τa, τz be the first visit time to
a and z, respectively, of the weighted random walk. Show that for any vertex x

Px(τa < τz) ≤ Reff(x ↔ {a, z})
Reff(x ↔ a)

.

4. Consider the following tree T . At height n it has 2n vertices (the root is at height
n = 0) and if (v1, . . . , v2n ) are the vertices at level n we make it so that vk has 1
child at level n + 1 and if 1 ≤ k ≤ 2n−1 and vk has 3 children at level n + 1 for
all other k.

(a) Show that T is recurrent.
(b) Show that for any disjoint edge cutsets n we have that

∑
n |n|−1 < ∞.

(So, the Nash-Williams criterion for recurrence is not sharp)

5. (a) Let G be a finite planar graph with two distinct vertices a �= z such that
a, z are on the outer face. Consider an embedding of G so that a is the left
most point on the real axis and z is the right most point on the real axis. Split
the outer face of G into two by adding the ray from a to −∞ and the ray
from z to +∞. Consider the dual graph G∗ of G and write a∗ and z∗ for the
two vertices corresponding to the split outer face of G. Assume that all edge
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resistances are 1. Show that

Reff(a ↔ z; G) = 1

Reff(a∗ ↔ z∗; G∗)
.

(b) Show that the probability that a simple random walk on Z
2 started at (0, 0)

has probability 1/2 to visit (0, 1) before returning to (0, 0).
6. Let G = (V ,E) be a graph so that V = Z and the edge set E = ∪k≥0Ek where

E0 = {(i, i + 1) : i ∈ Z} and for k > 0

Ek =
{(

2k(n − 1/2), 2k(n + 1/2)
) : n ∈ Z

}
.

Is G recurrent or transient?
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