Chapter 9

Efficient Identification in Large-Scale e
Vein Recognition Systems Using Spectral
Minutiae Representations

Benedikt-Alexander Mokro83, Pawel Drozdowski, Christian Rathgeb
and Christoph Busch

Abstract Large biometric systems, e.g. the Indian AADHAAR project, regularly
perform millions of identification and/or de-duplication queries every day, thus yield-
ing an immense computational workload. Dealing with this challenge by merely
upscaling the hardware resources is often insufficient, as it quickly reaches limits in
terms of purchase and operational costs. Therefore, it is additionally important for
the underlying systems software to implement lookup strategies with efficient algo-
rithms and data structures. Due to certain properties of biometric data (i.e. fuzziness),
the typical workload reduction methods, such as traditional indexing, are unsuitable;
consequently, new and specifically tailored approaches must be developed for bio-
metric systems. While this is a somewhat mature research field for several biometric
characteristics (e.g. fingerprint and iris), much fewer works exist for vascular char-
acteristics. In this chapter, a survey of the current state of the art in vascular identifi-
cation is presented, followed by introducing a vein indexing method based on proven
concepts adapted from other biometric characteristics (specifically spectral minutiae
representation and Bloom filter-based indexing). Subsequently, a benchmark in an
open-set identification scenario is performed and evaluated. The discussion focuses
on biometric performance, computational workload, and facilitating parallel, SIMD
and GPU computation.
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9.1 Introduction

One of many catalysts for the rapid market value increase of biometrics is government-
driven, large-scale biometric deployments. Most prominent examples include the
Indian AADHAAR project [20], which aims to enrol the entire Indian population
of 1.3 billion individuals and—at the time of writing—has already enrolled over
1.2 billion subjects, as well as several immigration programmes like the UAE or
the European VIS- and EES-based border control. The operation of such large-scale
deployments yields immense computational load in or duplicate enrolment checks,
where—in the worst case—the whole database has to be searched to make a decision.
Upscaling the hardware in terms of computing power quickly reaches certain limits in
terms of, e.g. hardware costs, power consumption or simply practicability. Therefore,
the underlying system’s software needs to implement efficient strategies to reduce
its computational load. Traditional indexing or classification solutions (e.g. [21, 37])
are ill-suited: the fuzziness of the biometric data does not allow for naivehashing or
equality comparison methods. A good read for further understanding the problem
with traditional approaches is found in [17]. This matter is the key motivation and
the main focus of this chapter.

One emerging biometric characteristic that steadily increases its market share' and
popularity is the vascular (blood vessels) pattern in several human body parts. The
wrist, back of hand and finger vessels hold the most interest since they are intuitive
to capture for users and feature several advantageous properties, whereby back of
hand and wrist vessels are less prone to displacement due to stretching or bending the
hand. Many accurate (in terms of biometric performance) approaches and algorithms
for vascular pattern recognition have emerged over time (i.e. [7, 23, 39]). However,
most of them employ slow and complex algorithms, inefficient comparison methods
and store their templates in an incompatible format for most template protection
schemes. In other words, they generate a very high computational workload for the
system’s hardware. While several biometric characteristics such as fingerprint [9]
and iris [15] are already covered by workload reduction research, it is only a nascent
field of research for the vascular characteristics. This chapter addresses the palm vein
characteristic with a focus on the biometric identification scenario and methods for
reducing the associated computational workload.

12014 [30], 2016 [11], 2017 [29].
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9.1.1 Organisation

This chapter is organised as follows:

e Section9.1.3 outlines requirements and considerations for the selection of the
algorithms used later in this chapter.

e Section 9.2 outlines four key computational workload reduction concepts with an
algorithm proposal for each concept.

e In Sect.9.3, an overview of the conducted experiments using the presented con-
cepts and algorithms is provided.

e Subsequently, Sect.9.4 lists and discusses the results obtained from the experi-
ments.

e Finally, Sect.9.5 concludes this chapter with a summary.

9.1.2 Workload Reduction in Vein Identification Systems

While computational cost is not a pressing issue for biometric systems in verification
mode (one-to-one comparisons), high computational costs generate several concerns
in large-scale biometric systems operated in identification (one-to-many search and
comparison) mode. Aside from the naiveapproach of exhaustively searching the
whole database for a mated template resulting in high response times and therefore
lowering usability, frustrating users and administrators, and thus lowering accep-
tance, another issue is presented by Daugman [12]. Accordingly, it is demonstrated
that the probability of having at least one False-Positive Identification (FPI)—the
False-Positive Identification Rate (FPIR)—in an identification scenario to be com-
puted using the following formula?: FPIR = (1 — (1 — FMR)"). Even for systems
with very low FMR, this relationship is extremely demanding as the number of
enrolled subjects (N) increases. Without a reduction of the penetration rate (number
of template comparisons during retrieval), large biometric systems quickly reach a
point where they will not behave like expected: the system could fail to identify the
correct user or—even worse—allow access to an unauthorised individual. While this
is less of an issue for very small biometric systems, larger systems need to reduce the
number of template comparisons in an identification or Duplicate Enrolment Check
(DEC) scenario to tackle the computational workload and false-positive occurrences.

Therefore, it is strongly recommended to employ a strategy to reduce the number
of necessary template comparisons (computational workload reduction) for all, not
only vein, modalities. As already mentioned in Sect.9.1, computational workload
reduction for vein modalities remains an insufficiently researched topic and— at
the time of writing—no workload reduction approaches directly target vascular bio-
metric systems. However, certain feature representations used in fingerprint-based
biometric systems may also be applicable to vein-based systems, and hence facili-
tating the usage of existing concepts for computational workload reduction, as well

2This equation ignores other error sources like failure-to-acquire (FTA).
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as development of new methods. Since the vascular pattern can also be presented
by minutiae (further called vein minutiae) which show almost identical characteris-
tics compared to fingerprint minutiae, several workload reduction methods targeting
minutiae-based fingerprint approaches might be usable after adaption to the more
fuzzy vein minutiae.

9.1.3 Concept Focus

To utilise the maximum potential of the system’s hardware, all of the methods and
algorithms presented in this chapter are carefully selected by the authors upon the
following requirements:

1. The lookup process has to be implementable in a multi-threaded manner, without
creating much computational overheads (in order to manage the threads and their
communication).

2. The comparison algorithm has to be computable in parallel without stalling pro-
cessing cores during computation.

For requirement 1, the lookup algorithm has to be separable into multiple instances,
each working on a different distinct subset of the enrolment database.

In order to understand requirement 2, a brief excurse in parallel computing is
needed (for a more comprehensive overview, the reader is referred to [8]). Parallel
computation (in the sense of SIMD: Single Instruction, Multiple Data) is not as
trivial as multi-threading where one process spawns multiple threads that are run on
one or multiple CPU cores. There are multiple requirements for an algorithm to be
computable in parallel, of which the two most important are as follows:

1. No race conditions must occur between multiple cores.
2. Multiple cores need to have the same instructions at the same time in their pipeline.

Therefore, the comparison algorithm should not rely on if-branches or jumps and the
shared memory (if any) must be read-only. This results in another requirement: the
feature vectors should be fixed length across all queries and templates to avoid waiting
for processing templates of different sizes. However, while fixed-length template
comparisons are not automatically more efficient to compute, they offer various other
benefits. For example, comparisons in systems utilising fixed-length templates can
usually be better optimised and implemented as simple and fast binary operations
(e.g. XOR, see, for example, [16]). Furthermore, most binarisation and template
protection approaches also rely on fixed-length vectors (e.g. see [22]).

Fulfilling these requirements allows for an efficient usage of SIMD instructions on
modern CPUs and general-purpose GPUs (GPGPUs), hence utilising the maximum
potential of the system’s hardware.

Therefore, the Spectral Minutia Representation (SMR) [35] was chosen as data
representation in this chapter. Compared to shape- or graph-based approaches—Ilike
the Vascular Biometric Graph Comparison earlier introduced in this book—it fulfils
all requirements: the templates using this floating-point based and fixed-length data
representation can be compared by a simple image-correlation method, merely using
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multiplications, divisions and additions. Further, the SMR is very robust towards
translations and rotations can be compensated fast. The SMR can further be binarised,
which replaces the image-correlation comparison method with a simple XOR opera-
tion comparison method and thus fully allows for utilising the maximum potential of
the system’s hardware. Thus, it is also compatible with various template protection
approaches which rely on fixed-length binary representations. The computational
efficiency of the binary SMR comparison is the main reason for the selection of the
SMR as data representation. Other methods like the maximum curvature (see [24])
or Gabor filters (e.g. [38]) offer binary representations too and are less expensive
in terms of computational costs while extracting the biometric features in the des-
ignated data representation. However, both the maximum curvature and the Gabor
filter template comparisons are—benchmarked against the binary SMR template
comparison—rather complex and expensive in terms of computational cost. Facing
the high number of template comparisons needed for an identification or a duplicate
enrolment check in large-scale biometric databases, the computational cost of a sin-
gle SMR feature extraction is negligible with respect to the aggregate computational
costs of the template comparisons. Therefore, in large-scale identification scenar-
ios, it is more feasible to employ a computationally expensive feature-extraction
algorithm with a computationally efficient comparator. Furthermore, the SMR is
applicable to other modalities that can be represented by minutiae. This includes
most vascular biometrics, fingerprints and palm prints. Therefore, the same method
can be used for those modalities and facilitate feature-level information fusion. In
particular, in this chapter, the presented system was also applied successfully for the
fingerprint modality.

9.2 Workload Reduction Concepts

Section9.1.2 covered the motivation behind the reduction of template comparisons
in a biometric system. The same section also covered the motivation to reduce the
complexity of template comparisons, namely, to achieve shorter template comparison
times, thus additionally reducing the computational workload and shorten transaction
times. The following sections propose components to reduce the number of necessary
template comparisons and reduce the complexity of a single template comparison for
a highly efficient biometric identification system. Later in the chapter, the proposed
system is comprehensively evaluated.

9.2.1 Efficient Data Representation

Key for rapid comparisons are data representations that allow for non-complex tem-
plate comparisons. Comparison subsystems and data storage subsystems can use
raw minutiae (location) vectors or the vascular pattern skeletal representation as bio-
metric templates. However, this introduces several problems, starting with privacy
concerns in terms of storing the raw biometric features and ending with computa-
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tional drawbacks (at least in parallel computing and the usage of CPU intrinsics) due
to variable-sized feature vector sizes, whereby even probes of the same subject differ
in their number of features (minutiae points). A post-processing stage can convert the
raw feature vector to a fixed feature size representation that should not be reversible
to the raw representation.

Inspired by the Fourier—Mellin transform [10] used to obtain a translation, rotation
and scaling-invariant descriptor of an image, the SMR [18, 33] transforms a variable-
sized minutiae feature vector in a fixed-length translation, and implicit rotation- and
scaling-invariant spectral domain. In order to prevent the resampling and interpo-
lation introduced by the Fourier transform and the polar-logarithmic mapping, the
authors introduce a so-called analytical representation of the minutiae set and a so-
called analytical expression of a continuous Fourier transform, which can be evalu-
ated on polar-logarithmic coordinates. According to the authors, the SMR meets the
requirements for template protection and allows faster biometric comparisons.

9.2.1.1 Spectral Minutiae Representation

In order to represent a minutiae in its analytical form, it has to be converted into
a Dirac pulse to the spatial domain. Each Dirac pulse is described by the function
mi(x,y) =wx—x;,y—y),i =1,...,Z where (x;, y;) represents the location of
the i-th minutiae in the palm vein image. Now the Fourier transform of the i-th
minutiae (m;(x, y)) located at (x, y) is given by

F{mi(x, y)} = exp(=j(waxi + wyy)), O.1

with a sampling vector w, for the angular direction and sampling vector w, for
the radial direction. Based on this analytical representation, the authors introduced
several types of spectral representations and improvements for their initial approach.
This chapter focuses on one of the initial representations, called the Spectral Minutia
Location Representation (SML), since it achieved the best stability and thus the best
biometric performance in previous experiments in [25]. It only uses the minutiae
location information for the spectral representation:

VA
(Wi wy) = | D exp(=jwaxi + wyy))| - 9.2)
i=1

In order to compensate small errors in the minutiae location, a Gaussian low-pass
filter is introduced by the authors. Thus, the magnitude of the smoothed SML with
a fixed o is defined as follows:

2 W)%+W)27 z .
M (Wi, wy: 0%) = lexp | ————2 | D exp(—j(wexi + wyy) 9.3)

20 ;
i=1

inits analytical representation. By taking the magnitude—further denoted as absolute-
valued representation—the translation-invariant spectrum is received (Fig. 9.1b).
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Fig. 9.1 Illustration of the spectral minutiae approach: a visualisation of input minutiae of an
extracted vein pattern (red = endpoints, green = bifurcations); b complex-modulus SML Fourier
spectrum sampled on a polar-logarithmic grid; ¢ real-valued SML Fourier spectrum sampled on a
polar-logarithmic grid

When sampling the SML on a polar-logarithmic grid, the rotation of the minutiae
becomes horizontal circular shifts. For this purpose, sampling of the continuous
spectra (Eq.9.3) is proposed by Xu and Veldhuis [33] using Xy = 128 (M in [33])
in the radial direction, with A logarithmically distributed between A,,;, = 0.1 and
Amax = 0.6. The angular direction § for SML is proposed between § = 0and 8 = 7
in Xx = 256 (N in [33]) uniformly distributed samples. A sampling between 8 = 0
and B = m is sufficient due to the symmetry of the Fourier transform for real-valued
functions.

Since the SML yields spectra with different energies, depending on the number
of minutiae per sample, each spectrum has to be normalised to reach zero mean and
unit energy:

M — M

= —. 9.4
o) 04

Throughout this chapter, statements that only apply for the Spectral Minutiae Loca-
tion Representation will explicitly mention the abbreviation SML, while statements
that are applicable to the Spectral Minutiae Representation in general will explicitly
mention the abbreviation SMR.

9.2.1.2 Spectral Minutiae Representation—Feature Reduction

Sampling the spectra on a Xx = 256 and Xy = 128 grid yields a Xx x Xy = 32, 768
decimal-unit-sized feature vector. This large-scale feature vector introduces two
drawbacks as given below:

Storage Considering Xx x Xy = 32,768 double-precision float (64 bit) values,
each template would take 2,097,152 bit = 256 kB RAM or data storage.
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Comparison Complexity Processing a Xx x Xy = 32,768 sized feature vector is
a large computational task and limits comparison speeds, especially with large-
scale databases in biometric identification scenarios.

In order to address these issues, the same authors of the SMR approach introduced
two feature reduction approaches in [36]. Both are based on well-known algorithms
and are explained in the following subsections. In this chapter, the Column Princi-
pal Component Analysis (CPCA)—based on the idea of the well-known Principal
Component Analysis (PCA) originally presented in [26]—is used. In summary, to
receive the SMR reduced with the CPCA feature reduction (SMR-CPCA), the PCA
only is applied to the columns of the SMR. The features are concentrated in the upper
rows after applying the CPCA, and thus the lower rows can be removed, resulting in
a Xx x Xycpca sized feature vector. According to [36], the achieved feature reduc-
tion is up to 80% by employing the SML reduced with the CPCA feature reduction
(SML-CPCA) approach while maintaining the biometric performance of the original
SML.

Since Ziz=1 exp(—jwyx; +wyy;)) € C, thus .# (wy, wy) € R, every element in
X is defined as a 32 bit or 64 bit floating-point real-valued number. Comparisons or
calculations (especially divisions) with single- or double-precision floating points
are a relatively complex task compared to integer or binary operations. In order to
address this computational complexity and comply with other template protection
or indexing approaches where a binary feature vector is required, the SML (e.g.
Fig. 9.2a, d) as well as the other SMR can be converted to a binary feature vector as
presented in [32]. The binarisation approach yields two binary vectors: a so-called
sign-bit vector and a so-called mask-bit vector:

sign bit  The sign-bit vector (Fig.9.2b, e) contains the actual features of the SMR
in a binary representation. Each bit is set according to one of the two binarisation
approaches.

mask bit  Since binary representations suffer from bit flips on edges in fuzzy envi-
ronments, a second vector (Fig.9.2c¢, f) is introduced. This vector marks the likely-
to-be-stable—called reliable—sign bits and is generated by applying a threshold
(MT) to the spectrum.

The mask contained in the mask-bit vector is not applied to the sign bit; instead, it is
kept as auxiliary data and applied during the comparison step. This approach equals
the masking procedure in iris recognition (see [13, 14]).

9.2.1.3 Spectral Minutiae Representation—Comparison
The most proven performance in SMR comparison is reached with the so-called

direct comparison.® It yields the most reliable comparison scores, while keeping a
minimal computational complexity.

3In [35], the comparison method is named direct matching, where matching is used as a non-ISO
compliant synonym for the term comparison.
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Fig. 9.2 Input and result of the SML binarisation for SML and SML-CPCA: a real-valued SML
input; d real-valued SML-CPCA input; b the spectral sign bit obtained from (a); e the spectral sign
bit obtained from (d); ¢ the spectral mask bit obtained from (a); f the spectral mask bit obtained
from (d)

Let R(m, n) be the spectrum of the reference template and P (m, n) the spectrum
of the probe template, both sampled on the polar-logarithmic grid and normalised.
Then, the similarity-score E,(;;’,,P) is defined as

1
Epy = 37 2 RGn. mPm. n). 9.5)

The score is thus defined by correlation, which is a common approach in image
processing.

For comparing two binary SMRs or SMR-CPCAs, a different approach is intro-
duced in [32], which is also used in the iris modality [13, 14].

After converting R(m, n) and P(m, n) into their individual mask bit and sign
bit (see previous Sect.9.2.1.2), yielding {maskR, signR} and {maskP, signP}, the
Fractional Hamming Distance (FHD) can be applied on those binary representations.

jgnR jgnP) N kR N kP
FHD®P) — ||(signR & signP) N mas mas ||' ©.6)
|lmaskR N maskP ||

The inclusion of masks in the Hamming Distance masks out any fragile (likely-to-
flip) bits and only compares the parts of the sign-bit vector where the mask-bit vectors
overlap. Therefore, only the reliable areas are compared. This typically improves the
recognition performance.

9.2.14 Spectral Minutiae Representation—Template Protection
Properties

It is not possible to revert the spectral minutiae representation back to their initial
minutiae input [33], so the irreversibility requirement of the ISO/IEC 24745 [28]
standard is fulfilled. However, the spectral minutiae representation itself does not
fulfil the unlinkability and renewability requirements. This issue can be tackled,
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e.g. with permutations of columns with application-specific keys. Depending on
which templates are used in the training set of the CPCA feature reduction, a partial
renewability and unlinkability (see [28]) can also be achieved, as explained in [25].

9.2.1.5 Spectral Minutiae Representation—Embedding Minutiae
Reliability Data

Itis possible that a feature-extraction pipeline may generate falsely extracted minutiae
(a.k.a a spurious minutiae). Some pipelines are able to determine a genuine certainty
for each minutiae, which describes the certainty that the extracted reference point
is a genuine minutiae and not a spurious minutiae. When this minutiae reliability
(qu , ranging 1-100%") is known, the Dirac pulse (Eq.9.1) of each minutiae can be
weighted linearly (w;, ranging 0.01-1.0, corresponding to gy, ) to its reliability:

M (W, Wy 02) =

w? + w2 z
exp <—T_2y Z wi exp(—j(wyx; + wyyi))| . 0.7
i1

Stronger reliability corresponds with a higher weight w; for minutiae m; (x, y, gy ).
This approach is further called Quality Data-Enhanced Spectral Minutia Location
Representation (QSML) throughout this chapter.

9.2.1.6 Spectral Minutiae Representation—Conclusions

The SML is a promising, flexible and highly efficient data representation that allows
for fast comparisons using simple floating-point arithmetic in its real- or absolute-
valued form. Even faster comparisons are achieved using only bit comparisons in
its binary form with apparently no impairment in biometric performance. It is also
possible to embed quality information. Furthermore, the SML is adaptable to template
protection method which is a requirement of the ISO/IEC 24745 standard. This
fixed-length representation can be compressed up to Xx = 256 and Xycpca ~ 24
bits, whereby every template is sized only 0.75kB resulting in a 750 MB database
with 1,000,000 enrolled templates.

9.2.2 Serial Combination of SMR

In the previous section, the SMR variant SML was introduced. As already mentioned,
the SML can be represented as a real- or absolute-valued vector of its complex feature
vector. Experiments in previous work (see [25]) have shown that both representations

4 A reliability of 0% should not be possible since no minutiae would have been detected in the first
place.
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show different results in terms of comparison scores when applied on fuzzy vein
minutiae. We found that for the

absolute-valued SML, the corresponding template is less often the template with
the highest score. However, on the other hand, we observed a much lower pre-
selection error for rank 10 shortlists when using the absolute-valued representation
compared to the

real-valued SML, which more often fails to return a high score for the corre-
sponding template among many templates. However, among just a few templates,
the real-valued SML finds the correct template more reliably with a better score
distribution than the absolute-valued SML.

The discussion of this behaviour is beyond scope of this chapter. However, this
behaviour can effectively be used as an advantage by the proposed biometric system.
Instead of using either absolute- or real-valued SML, both variants are incorporated:
the absolute-valued representation is used during the identification lookup process
to find a rank-1 to rank-10 shortlist, whereas the real-valued representation is then
used to verify the rank-1 shortlist or find the correct reference template among the
rank-n shortlist.

The usage of both representations does not increase the computational workload
when creating the templates over the level of working with the absolute-valued rep-
resentation alone since the real-valued representation is a by-product of calculating
the absolute-valued representation. However, the storage requirements are doubled.
Furthermore, in the shortlist, the comparison costs of the real-valued representation
are also added.

9.2.3 Indexing Methods

In Sect.9.2.1, an efficient data representation to effectively reduce the computational
costs and time spent for template comparisons is presented. Despite the efficient data
representation, the system is still subject to the challenges introduced in Sect.9.1.2.
In this section, two methods necessary to reduce the number of template comparisons
are presented.

9.2.3.1 Bloom Filter

Following the conversion of the SML templates into their binary representation, the
enrolled templates are organised into tree-based search structures by adapting the
methods of [27] and [15].

1. The binary SML templates are evenly split into J equally sized blocks of
adjustable height and width (H x W). Subsequently, a simple transformation
function is applied to the blocks column-wise, whereby each column (cy, . . ., cw)
is mapped to its corresponding decimal integer value.
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2. For each block, an empty (i.e. all bits set to 0) Bloom filter (b) of length 27 is
created and the indices corresponding to the decimal column values are set to 1
(i.e. b [int(c))] = D).

3. Hence, the resulting template (B) is a sequence of J such Bloom filters—
[by,...,bs].

4. The dissimilarity (DS) between two Bloom filter-based templates (denoted B and
B’) can be efficiently computed, as shown in Eq. 9.8, where |-| represents the popu-
lation count, i.e. Hamming weight. Implementations of Eq. 9.8 can utilise intrinsic
CPU operations and are trivially parallelisable, thus fulfilling the requirements
stated in Sect.9.1.3.

. |b; & bj|

1
DSB,B) = — _— 9.8
®.5) Z||b,~|+||b;| 08

I J=0

The Bloom filter-based templates are—to a certain degree—rotation invariant.
This is because H columns are contained within a block and hence mapped to the
same Bloom filter in the sequence, which means that contrary to the raw SML, no fine
alignment compensation (normally achieved via circular shifts of the template along
the horizontal axis) is needed during the template comparison stage. Furthermore,
the data representation is sparse, which is a crucial property for the indexing steps
described below:

1. The list of N enrolled templates is (approximately evenly) split and assigned to T
trees. This step is needed (for any sizeable N values) to maintain the sparseness
of the data representation.

2. Eachnode of a tree (containing I = N/7 templates) is constructed through a union
of templates, which corresponds to the binary OR applied to the individual Bloom
filters in the sequence. The tree root is constructed from all templates assigned
to the respective trees (i.e. Ule B;), while the children at subsequent levels are
created each from half of the templates of their parent node (e.g. at first level—the
children of the root node—U;./z2  Bi and Uf:% 1 B)-

3. The templates (B4, ..., B;) are inserted as tree leaves.

After constructing the trees, the retrieval can be performed as shown below:

1. A small number of the most promising trees (¢) out of T constructed trees can be
pre-selected (denoted %) based on comparison scores between the probe and root
nodes.

2. The chosen trees are successively checked until the first candidate identity is
found or all the pre-selected trees have been visited. Note that for the genuine
transactions, thanks to the pre-selection step, the trees most likely to contain the
sought identity are visited first. A tree is traversed by—at each level—computing
the comparison score between its nodes and the probe, and choosing the path
with the best score. Once a leaf is reached, a final comparison and check against
a decision threshold takes place. The tree traversal idea is based on the represen-
tation sparseness: as long as—at each level—the relation DS gepine <K DS imposior
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Fig. 9.3 Indexing and retrieval in the Bloom filter-based system. In this case, the retrieval follows
the bold arrow path down to a leaf, where the final decision is made

generally holds true, the genuine probes will be able to traverse the tree using the
correct path to reach a matching leaf template.

The complexity of a single lookupis O (T + t % (2 % log,I)). Asitis sufficient to pre-
select only a small fraction of the constructed trees, i.e. t < T, the lookup workload
remains low, while arbitrarily many enrollees can be accommodated by construct-
ing additional trees. For reference, Fig.9.3 shows the indexing and retrieval in a
single tree. If multiple trees are constructed, the search is trivially parallelisable by
simultaneously traversing many trees at once.

9.2.3.2 CPCA-Tree

The second approach—called an SMR-CPCA binary search tree (CPCA-Tree)—
follows the same tree construction and traversal strategy as the Bloom filter-Tree
introduced in the previous section. However, instead of using a Bloom filter or another
template transformation approach, the CPCA-Tree stores binary SML-CPCA tem-
plates directly. The CPCA-Tree approach has shown an advantage in terms of biomet-
ric performance over the Bloom filter-Tree in previous experiments (see [25]) when
benchmarking both indexing methods with heavily degraded (i.e. very fuzzy) data
since the comparison of CPCA templates does not strongly rely on stable columns
like the Bloom filter. However, while the CPCA-Tree is more robust in fuzzy environ-
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ments, it is to be expected that one single CPCA-Tree cannot store as many templates
as one single Bloom filter-Tree: the binary SMR-CPCA features a high inter-class
variance, whereby all set bits in the binary SMR-CPCA matrices are differently dis-
tributed and there are few unanimous bits. Therefore, the bits set in a binary SMR-
CPCA have few bit collisions with SMR-CPCA from other subjects, respectively,
from other biometric instances and when merging SMR-CPCA, the population count
rises quickly, thus diminishing the descriptive value. In other words, the sparsity of
upper level nodes quickly decreases to a point—typically around more than 65% of
the bits set—where no correct traversal direction decisions are possible.
There are at least three approaches to store the binary SMR-CPCA templates.

SMR-CPCA Components (SMR-CPCA-C) The spectral binarisation method by
Xu and Veldhuis [32] yields two binary matrices: a sign bit and a mask bit. These
two matrices represent the two components of the SMR-CPCA-C representation.

SMR-CPCA Applied (SMR-CPCA-A) Instead of keeping both binary compo-
nents, the mask bit is applied to the sign bit, yielding the applied bit. The applied
bit matrix represents the single-component representation of SMR-CPCA-A.

SMR-CPCA Mixed (SMR-CPCA-M) Fusing both concepts by keeping the mask
bit but replacing the sing bit with the applied bit.

In the experiments, the SMR-CPCA-M is used since it achieved the best biometric
performance of these three representations in previous work [25]. Thus, it is required
to extend the binary tree to store the applied bit and the mask bit, since both are
required for the SMR-CPCA-M approach, which is commonly referred to as an
auxiliary data scheme. In terms of tree construction, the applied bits are merged and
the mask bits are merged upon fusing two leaves to one node.

9.2.4 Hardware Acceleration

Strictly speaking, the usage of hardware acceleration in the sense of multi-threaded
systems, parallel systems or distinct hardware like FPGA processors is no workload
reduction per se, as it does not reduce the number of template comparisons needed
or reduce the size of the data. However, it is an important step to achieve an optimum
efficiency of the system’s hardware and is therefore also in scope of this chapter. As
already accentuated in Sect. 9.1.3, the selected approaches should be implementable
in congruency with the requirements of parallel and multi-threaded systems. Our
system combines two approaches (SML and indexing with binary search trees) that
are evaluated for these requirements.

Implementing the binary search tree in a parallel manner is not feasible. Search
trees might not be balanced or when using multiple trees, the trees differ in size.
However, they are well suited for multi-threaded computation. When multiple trees
were built (as would be the case in any sizeable system), each tree can be searched
in one of a pool of threads. However, the SMR is perfectly suited for real parallel
processing. Each element of its fixed-length feature vector can be calculated equally
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without any jumps or conditions. Furthermore, the calculation of one single element
can be broken down to very few instructions and basic arithmetic. For example, in
SSE-SIMD environments, up to four 32 bit vector elements can be calculated at a time
[2] and in modern AVX-512-SIMD up to 16 32 bit vector elements at a time [1] for the
real- or absolute-valued SMR. The whole calculation is also easily implementable in
languages like OpenCL, which enables parallel computation on GPGPUs and other
parallel systems. Next, the comparison process is also free of jumps or conditions
and can also be processed in a paralleled environment where the previous statements’
also apply.

9.2.5 Fusion of Concepts

The previous sections introduced several workload reduction concepts. In fact, these
concepts can be combined. This section describes the process visualised in Fig. 9.4,
where all concepts are joined to one biometric system.

In terms of data processing, both the enrolment and query process are equal: after
extracting the minutiae from the biometric sample, the absolute- and real-valued
representations of the SML are calculated and the binary form of the absolute-valued
SML is derived as introduced in Sect.9.2.1. For the enrolment process, a binary
representation (X?) of an SML template (X) is now enrolled in the indexing trees
and the floating-point representation (X/) is kept for each enrolled template.

Upon receiving a biometric probe that has to be identified, the binary represen-
tation is used to find a shortlist (rank-1 or rank-n) by traversing the built trees.
Choosing n > T, respective n > t is not feasible since every tree will always return
the same enrolled template for the same query. Figure 9.4 is simplified to the case
where ¢t = n. Subsequently, the floating-point representation of the SML query will
then be compared to the real-valued SML reference templates found in the shortlist
by the comparison and decision subsystem.

Accordingly, all previous concepts are fused: the binary representation—regardless
of whether it is extracted from the real- or absolute-valued representation—is used
to efficiently look up a small shortlist and the floating-point representation— again
independent of whether it is the real or absolute valued—is used to receive a more
distinct comparison score distribution. There are multiple combination possibilities,
e.g. real-valued binary for enrolment and real-valued floating point for the shortlist
comparison or absolute-valued binary for enrolment and real-valued floating point
for the shortlist comparison. It is expected that the former yields the best biometric
performance since similar experiments in [25] already revealed competitive results
and it is unclear, whether the binary representation of the absolute-valued SML
retains the same properties (see Sect.9.2.2) as the floating-point SML.

31t has to be noted, that for the binary SMR, up to two rows can be processed with one AVX-512-
SIMD instruction.
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retrieval follows the bold arrow path down to a leaf, where the final decision is made

9.3 Experiments

The following sections describe the vein data used for experiments, its preparation
and a description of how the experiments to evaluate the proposed methods were
conducted. This chapter merely focuses on open-set scenarios, whereby verification
experiments are beyond the scope.

9.3.1 Experimental Setup

9.3.1.1 Dataset

At the time of writing, the PolyU multispectral palm-print database (PolyU) [3] is the
largest publicly available vascular dataset containing Near-Infrared (NIR) palm-print
images usable for (palm) vein recognition known to the authors. It comprises images
of 250 subjects with 6 images per hand. The images have a predefined and stable
Region of Interest (ROI). All images have a very low-quality variance and are all
equally illuminated. It is not possible to link the left- and the right-hand instance of
one subject by their labels and vascular pattern; therefore, every instance is treated
as a single enrolment subject identifier (in short “subject”) as listed in Table 9.1.
Since the PolyU dataset aims for palm-print recognition, it features a high amount
of skin texture, which interferes with the vein detection and makes it a challenging
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Table 9.1 Dataset overview

Instances Images Resolution ROI
500 3000 128 x 128 px 128 x 128 px

dataset for the feature-extraction pipeline, which comprises the maximum curvature
[24] approach with some prepended image optimisation like noise removal.

9.3.2 Performance Evaluation

Comparison scores are obtained in an open-set identification as follows:

1. One reference template is enrolled for each subject.
2. All remaining probe templates are compared against the enrolled references.
3. The scores are then categorised as

false-positive identification identification transactions by data subject not
enrolled in the system, where an identifier is returned.

false-negative identification identification transactions by users enrolled in the
system in which the user’s correct identifier is not among those returned.

The dataset has been split into four groups: enrolled, genuine, impostor and train-
ing (for the CPCA feature reduction). An overview of the relevant numbers is listed
in Table 9.2. In order to ease the indexing experiments, an enrolment set of 2" is
preferred.

With a limited number of subjects (500), 256 enrollees offer the best compromise
between largest 2"-enrolment and the number of impostor queries.

The results of the experiments are reported as a Detection Error Trade-off Curve
(DET). To report the computational workload required by the different approaches,
the workload metric

W=NxpxC (9.9)

where N represents the number of enrolled subjects, p represents the penetration
rate and C represents the costs of one single one-to-one template comparison (i.e.
number of bits that are compared), and the fraction

Wropor
[ = proposed (910)
Wbaseline

introduced by Drozdowski et al. [15] will be used.

In tables and text, the biometric performance is reported with the Equal Error
Rate (EER). However, when evaluating the best biometric performance, the results
are first ordered by the False-Negative Identification Rate (FNIR) at FPIR = 0.1%,
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Table 9.2 Dataset partitioning overview and resulting number of comparison trials in a naive
system, samples in parentheses

Enrolled templates (N) | Genuine comparison | Impostor comparison | Training samples
trials trials

256 327,680 (1280) 350,208 (1368) 96

then ordered by the EER. This is due to the nature of the EER, whereby it does not
describe the biometric performance at important low FPIR, i.e. an experiment with
EER = 5% can feature an FNIR at FPIR = 0.1% of 20% while an experiment with
EER = 5.5% can feature an FNIR at FPIR = 0.1% of 13%. In real-world scenarios,
the latter example result is more relevant than the former.

9.3.3 Experiments Overview

The following enumeration serves as an overview of the experiments conducted in
this chapter:

Spectral Minutiae Representation The basic implementation, comparing vein
probes based on minutiae with the SML in both absolute- and real-valued rep-
resentation. In an identification scenario, the database is searched exhaustively,
e.g. every query template (probe) is compared with every enrolled template (ref-
erence). These experiments represent the biometric performance and workload
baseline for the workload reduction approaches in the following experiments.

CPCA Feature Reduction Repetition of the above identification experiments, but
with CPCA feature reduction for both binary and floating-point SML—further
called SML-CPCA—to evaluate whether the biometric performance suffers from
the feature reduction.

Binary Spectral Minutiae Representation The same experiments (for both SML
representations) as above are repeated with the binary representations of the SML
to evaluate whether the biometric performance is degraded by this binarisation
process.

Serial Combination of SMLL  With the baseline for all representations of the
SML,° these experiments are used to validate the assumption that the observed
advantages of both SML representations can be used to increase the biometric
performance.

Indexing Methods The binary representations of both absolute- and real-valued
SML are indexed with the presented Bloom filter-Trees and CPCA-Trees
approaches to evaluate whether the biometric performance is degraded by these
indexing schemes.

6Real-valued, absolute-valued, real-valued SML-CPCA, absolute-valued SML-CPCA, binary real-
valued SML-CPCA and binary absolute-valued SML-CPCA.



9 Efficient Identification in Large-Scale Vein Recognition Systems ... 243

Fusion of Concepts Both indexing and serial combination of SML will be com-
bined as presented in Sect. 9.2.5. This experiment evaluates whether both concepts
can be combined to achieve a higher biometric performance due to the serial
combination, combined with a low computational workload due to the indexing
scheme.

9.4 Results

This section reports and comments on the results achieved by the experiments pre-
sented in the previous section.

9.4.1 Spectral Minutiae Representation

The SML experiments are split in multiple stages to approximate its ideal settings
and tuning for fuzzy vascular data.

94.1.1 Baseline

In order to assess the results of the main experiments (indexing approaches), a base-
line is needed. Figure 9.5a shows the DET curves of the introduced SML and QSML
in both real- and absolute-valued sampling. It is clearly visible that the real-valued
representation is much more accurate than the absolute-valued representation. Fur-
thermore, Fig. 9.5b contains plots of the real-valued SML, QSML and Spectral Minu-
tia Location Representation with minutiae pre-selection (PSML) thresholds of *0.1,
0.2 and 0.3.

While the authors of [31, 34] recorded good results using the absolute-valued
sampling for their verification purposes, it falls far behind the real-valued sampling
in identification experiments.

The selected dataset introduces some difficulties for the feature-extraction pipeline
used. Recall that the PolyU dataset is a palm-print and not palm vein dataset, and
therefore it includes the fuzzy skin surface, which would not be included in a desig-
nated vascular dataset. It is mainly selected because due to its size rather than quality.
Various optimisation experiments were run and are reported in the following section
to increase the recognition performance. Implementing a robust feature extractor is
beyond the scope of this chapter.
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9.4.1.2 Optimisation

The feature extractor (maximum curvature [24]) used is able to report quality (relia-
bility; g), ) data in the limits of (0, 1]—where 1 represents a 100% minutiae reliability
and 0 no minutiae at all—about the extracted pattern; therefore, the QSML can be
used. Using this data to remove unreliable minutiae in terms of defining a gy, thresh-
old (i.e. a minutiae reliability of at least 20%), the recognition performance can be
increased as shown in Fig.9.5b. Using g) > 0.2 as a threshold for the so-called
PSML and quality data-enhanced Spectral Minutia Location Representation with
minutiae pre-selection (PQSML) achieved the best results in the experiments.

Additionally, it is possible to reduce the SML and QSML samplings A, to fade
out higher (more accurate) frequencies, which increases the significance of the lower,
more stable (but less distinct) frequencies. Experiments showed that using A, &
0.45 instead of the original A,,,, =~ 0.6 resulted in the best compromise between low
and high frequencies. This optimisation process is further referred to as tuning.

94.1.3 CPCA

In order to investigate the impact of the CPCA compression on the recognition
performance, the same procedure as for the SML and QSML is repeated using the
CPCA compression.

Applying CPCA to the tuned SML and QSML results in no noticeable perfor-
mance drop, as shown in Fig.9.6. Again, using A,,,, ~ 0.45 instead of the original
Amax = 0.6 resulted in the best compromise between low and high frequencies. One
mentionable result of these experiments is that the tuned QSML-CPCA performs
slightly better than the full-featured and tuned QSML.

94.1.4 Summary

In summary, even with a moderately reliable feature-extraction pipeline, the SML
achieved acceptable results. Employing quality data in terms of minutiae reliability
improved the biometric performance and an additional A,,,.-tuning also improved
the biometric performance (as shown in Fig.9.7). For the following experiments,
the tuned QSML-CPCA with minutiae pre-selection of ¢y > 0.2 will be used as
a biometric performance baseline and will further be called PQSML-CPCA. The
corresponding workload for the SML” is W & 2.52 x 107.

N = 256, p=1,C =256 x 128 x 3; Measurements on the machine running the experiments
resulted in three times slower floating-point SML comparisons than binary SML bit comparisons.
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Fig. 9.7 DET curves comparison of the best performing configurations of each approach. Used
parameters: lqM > 0.2, Apax = 0.45 and 2qM > 0.2, Apax = 0.44

9.4.2 Binary Spectral Minutiae Representation

The next SML optimisation step is to binarise the SML floating-point vector. This
step shrinks the feature vector by a factor of 32 and enables the usage of highly
efficient binary and intrinsic CPU operations for template comparisons. Intrinsic CPU
operations are also available for floating-point values. However, the binary intrinsics
are favourable since they are more efficient and allow for a higher number of feature
vector element comparisons with a single instruction. Practically, it is possible to
binarise the full-featured SML, as well as the more compact SML-CPCA. However,
it holds special interest to achieve a high biometric performance with the binarised
(P)SML-CPCA or (P)QSML-CPCA to receive the smallest possible feature vector.
Interestingly, the binary CPCA-reduced variants perform better than their larger
counterpart, as is visible in the DET plots of Fig.9.8. Moreover, the binary QSML-
CPCA outperforms its minutiae-pre-selection counterparts. By analysing the other
binary QSML-CPCA results, this result could be a coincidence. At this point, the
256 x 128 floats sized (PQ)SML got shrunk to a256 x 20-bit sized (PQ)SML-CPCA
without exhibiting a deterioration of the biometric performance. The workload for
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the binary (PQ)SML-CPCA3® is only at W ~ 1.31 x 10°. This results in f ~ 5% for
the binary (PQ)SML-CPCA compared to the full-featured (PQ)SML.

9.4.3 Serial Combination of SMR

The serial combination of PQSML experiments was run with different settings
ranging from rank-1 to rank-25. Only the PQSML was experimented with since
it mostly performed better than the other representations. Using a rank-10 to rank-
15 (~5%) pre-selection with the absolute-valued PQSML then comparing the real-
valued PQSML templates of the generated shortlist achieved the best results as shown
in Fig.9.9. Both were sampled with the same settings, whereby only one SMR sam-
pling is needed; recall that, the real-valued SMR is a by-product when calculating
the absolute-valued SMR. However, it is questionable whether the EER decrease

8N =256,p =1, C =256 x 20.
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Fig. 9.9 DET curves benchmark for different Serial Combination of QSML settings. Used param-
eters: lqM > 0.2, Apaxr = 0.44

achieved justifies the introduced online workload W ~ 2.64 x 107 (f ~ 105%),
compared to the W ~ 2.52 x 107 calculated for the (PQ)SML, yielded by this
method if the shortlist is not generated using the efficient, binary representation.

9.4.4 Indexing Methods

The previous experiments demonstrated that it is possible to reduce the workload
drastically without a major impairment of the biometric performance by compressing
and subsequently binarising the PQSML. However, it is still necessary to exhaustively
search the whole database. In this section, the results of the indexing experiments
conducted to reduce the number of necessary template comparisons are reported.

9.4.4.1 Bloom Filter

First experiments showed a severely impaired biometric performance loss of about
15% points (Fig. 9.10) compared to the results reported in Sect. 9.4.2 when employing
Bloom filter indexing. The origin of the poor performance of the applied to binary
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Fig. 9.10 DET curves benchmark for the Bloom filter and CPCA-Tree indexing approach using
binary PQSML-CPCA (BF — Bloom filter; CT — CPCA-Tree)

PSML-CPCA templates is the high number of bit errors when comparing two mated
binary PSML-CPCA. This Bloom filter implementation strongly relies on stable
columns in the J blocks of the binary vector across their height H to offer a high
biometric performance. The iris naturally yields comparatively stable columns when
aligned and unrolled and therefore the Bloom filter performs exemplary. However,
due to the nature of the SMR— which includes various frequencies—this stability
is not ensured: smaller feature-extraction inconsistencies yield much more noise in
the upper frequencies of the SMR, which then result in more Bloom filter errors,
mostly along the columns. A more in-depth discussion of this behaviour is given in
Sect.9.4.2 of [25]. Even at a very high MT of 0.9, the average bit error rate is 13%
with an error in more than 50% of the columns, which is excessive for a reliable
Bloom filter transformation that needs stable column bits.

While analysing the issue in further depth, it was found that the Bloom filter
reliably looked up correct templates for genuine queries but failed to achieve a sep-
arable score distribution. Therefore, the Bloom filter indexing might not be feasible
if used on its own, although it performs well in a serial combination approach. The
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best biometric performance was recorded at /7 = 31/64 resulting in a workload’ of
W & 7.7 x 10°, achieving f ~ 3.1%.

9442 CPCA-Tree

In its basic implementation, the CPCA-Tree surpasses the basic Bloom filter indexing
in both the FNIR-to-FPIR ratio, as well as EER. It achieves a similar EER to the
naive binary QSML-CPCA and naive QSML-CPCA. Thus, the CPCA-Tree indexing
approach reaches a similar biometric performance as the naive approaches, albeit
with a much lower workload!® of W & 6.8 x 10°, which results in f = 1.7%.

Therefore, if a serial combination approach is not desired because due to its
complexity, the CPCA-Tree is a good compromise between complexity, workload
and biometric performance.

9.4.5 Fusion of Concepts

As already mentioned in the experiment’s description, the fusion of concepts com-
bines the serial combination of (PQ)SML and the indexing schemes following the
scheme presented in Sect.9.2.5. In the first run of the experiment, X’ was extracted
from the real-valued QSML and X’ is the real-valued QSML, and out of ¢ selected
trees only one (rank-1) template was selected for the shortlist. While this did not
affect the biometric performance of the CPCA-Tree indexing, the Bloom filter index-
ing transcends the biometric performance of the CPCA-Tree indexing approach for
lower FPIR with the rank-1 serial combination scheme. However, the Bloom filter
indexing could not catch up at higher FPIR rates. Using a higher pre-selection rank
for the Bloom filter indexing scheme did not result in a higher biometric performance.

In these experiments, the pre-selection rank is set equal to the number of searched
trees . Upon first glance, the results of the higher pre-selection rank experiments
for the CPCA-Tree indexing do not deviate much compared to the rank-1 experi-
ments, whereby only the EER is slightly lower. Note the number of searched trees
t, with a higher rank, a comparable biometric performance is achieved by travers-
ing lesser trees. This is an important property for scaling in large-scale databases.
For medium-scale databases, the overhead introduced by the additional floating-point
comparisons when comparing the query with the templates in the shortlist would void
the workload reduction achieved by the reduction of traversed trees. Furthermore, the
experiments using a real-valued pre-selection/real-valued decision achieved a higher
biometric performance than the absolute-valued pre-selection/real-valued decision

ON =256, Xycpca =20, W = 5,H = 4, C = (27 5 Xcrany 4 Xx — 4096, p =
T+rx(2xloga (W)
el & 0.73.

N
ION = 2567 XyCPCA = 207 C=Xx *XyCPCA7]7 = w

~0.51.
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3 omax =041, MT =0.11,T = 64,6 =25W =5,H =4
max =043, MT = 0.61,T = 64,1 = 26| Apar = 0.46, MT = 0.72,T = 64,n =t =18
mar = 0.45, MT = 0.69,T = 64,1 = 29| Ao = 0.59, MT = 0.68,T = 64,n =t = 30
S mar =041, MT =0.54,T =64, n=1t=24W =4,H=4
Dmar =041, MT =045 T =64,n=t=31,W =4,H=4
BF — Bloom filter; CT — CPCA-Tree; SC — Serial Combination
""" — real-v. pre-selection, real-v. decision; " — absolute-v. pre-selection, real-v. decision
44 — absolute-v. pre-selection, absolute-v. decision

Fig. 9.11 DET curves benchmark for the Bloom filter and CPCA-Tree indexing approach using
binary PQSML-CPCA
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Table 9.3 Workload for the best performing indexing scheme of each approach

Rank-1 SC™-BF?

Rank-1 SC™-CT*

Rank-n SC’"-BF®

Rank-n SC™-CT?

w 6.9 x 107 8.8 x 10° 9.7 x 10° 1.2 x 10°
F (%) 2.7 3.5 3.9 4.7
EER (%) 6.4 5.6 5.6 5.5

and the absolute-valued pre-selection/absolute-valued decision. Therefore, the state-
ment of Sect.9.2.2 that the absolute-valued SML is better suited for lookup but the
real-valued SML yields more distinctive comparison scores does not apply on the
binary representation of the absolute-valued (PQ)SML. The recorded workloads in
this experiment are consolidated in Table 9.3 and the DET curves are shown in
Fig.9.11.

9.4.6 Discussion

Most results have already been discussed in previous sections. Finally, at least three
properties for a new biometric deployment have to be considered when choosing one
of the presented approaches: scalability, complexity and biometric performance. If
a system simple to implement is desired, the CPCA-Tree indexing is recommended,
given that it is easy to implement and it achieved biometric performance comparable
with the contestants. Conversely, if the implementation complexity is less an issue,
scalability and biometric performance have to be considered. In terms of scalability,
the rank-n serial combination is the recommended approach, whereby it achieved a
biometric performance comparable with that of the other approaches at the smallest
number of traversed trees (smallest computational workload). Regarding the biomet-
ric performance, the rank-1 serial combination real/real indexing scheme achieved
the best results. Table 9.4 summarises the rating for all best performing configura-
tions of each approach from best (4+) to worst (——) with gradations of good (+),
neutral (o) and bad (—).

To deterministically benchmark the different indexing methods and configura-
tions, the Euclidean distance between the baseline operation point (Bggg = 5.5%,
By = 1%) and the best performing configuration of each approach—as shown in
Eq.9.11—can be used.

A(EER, ) = \J(EER — Begn)® + (F — By )? ©.11)
The smaller the A(TP, ) for an approach, the closer that its point of operation is
to the baseline operation point, whereby smaller is more preferable. Choosing the
baseline operation point (f = 1%, EER = 5.5%) instead of the optimal operation
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Table 9.4 Qualitative rating of each indexing scheme from best (4++) to worst (——) with gradations
of good (+), neutral (o) and bad (—)

Approach Complexity Biometric Workload
performance
Naive PQSML ++ ++ -
Bloom filter + - +
CPCA-Tree ++ + ++
Rank-1 SC""-BF o + +
Rank-1 SC""-CT + +
Rank-n SC'"-BF - + o
Rank-n SC""-CT - + [
6 .
X Bloom filter
x  CPCA-Tree
% Rank-1 SC"-BF
51 X Rank-1 SC"-CT
% Rank-t SC"-BF
X Rank-t SC"-CT
—_— 4 7
9
£
w
31 X X
X
21 5
X
e
x
é é 1'0 1'2 1'4
EER (in %)

Fig. 9.12 Scatterplot of Table 9.5

point (EER = 0%, F =~ 0%) moves the emphasis of the distance to the performance
of the indexing schemes rather than to the performance of the baseline system.

The data of Table 9.5 is visualised as scatterplot in Fig.9.12. Note that the
naivePQSML system is not plotted since / = 100% would render the y-axis scaling
of the plot impractical.
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Table 9.5 Rating by Euclidean distance (A (EER, F )) to baseline operation point (f = 1%, EER =
5.5%)

Approach w F (%) EER (%) A(EER, F)
CPCA-Tree 6.8 x 10° 2.7 5.9 1.7
Rank-1 SC""-BF [ 6.9 x 10° 2.7 6.4 2.0
Rank-1 SC"-CT |8.8 x 10° 35 5.6 25
Rank-n SC""-BF |9.7 x 10° 3.9 5.6 2.9
Rank-n SC""-CT |1.2 x 10° 47 55 3.7
Bloom filter 7.7 x 103 3.1 13.3 8.1
Naive PQSML | 2.5 x 107 100.0 55 99.0

9.5 Summary

Vascular patterns are an emerging biometric modality with active research and
promising avenues for further research topics. With the rising acceptance of biomet-
ric systems, increasingly large-scale biometric deployments are put into operation.
The operation of such large deployments yields immense computational load. In
order to maintain a good biometric performance and acceptable response times—to
avoid frustrating their users—computational workload reduction methods have to
be employed. While there are many recognition algorithms for vascular patterns,
most of them rely on inefficient comparison methods and hardly any computational
workload reduction approaches for vein data can be found.

A recently published biometric indexing approach based on Bloom filters and
binary search trees for large-scale iris databases was adopted for vascular patterns.
In order to further develop this indexing approach, the vascular pattern skeletal repre-
sentation of the raw palm vein images was extracted and the minutiae—the endpoints
and bifurcations—of the extracted vascular pattern were then transformed using a
Fourier transformation based approach originally presented for the fingerprint char-
acteristic. When transforming the floating-point representation yielded by the Fourier
transformation to a binary form, it is possible to apply the Bloom filter indexing. It
has been demonstrated that the Bloom filter indexing system is capable of achieving
a biometric performance close to the naivebaseline, while reducing the necessary
workload by an additional ~37% on top of the workload reduction achieved with
the CPCA compression and binarisation. Some of the approaches used by the Bloom
filter in [15] were not feasible and the fuzziness of the vascular pattern prevented a
higher workload reduction without losing too much biometric performance. How-
ever, the most important approaches have been successfully applied, and thus the
system appears to be scalable in terms of workload reduction, biometric performance
and enrollees.

An additional, less complex, biometric indexing approach merely using a reduced
form of the binary Fourier transformation representation and binary search trees has
been presented. It adopts most workload reduction strategies that are used for the
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Bloom filter indexing approach and achieved a better biometric performance with
only a slightly lower computational workload reduction (compared to a naiveim-
plementation using the reduced binary Fourier representation) of &~ 36%. Since the
presented approach follows the same theory and implementations as the binary search
trees of the Bloom filter indexing, it also appears to be scalable in terms of workload
reduction, biometric performance and enrollees.

The respective advantages and disadvantages of the two indexing methods were
outlined based on the results from the previous sections. It has been shown that the
CPCA-Tree achieves good performance with less stable templates than the Bloom fil-
ter. However, it is to be expected that the Bloom filter will outperform the CPCA-Tree
approach with more stable templates. Furthermore, the potential for computational
workload reduction is much higher using the Bloom filter based method.

The overall workload is reduced to an average of 3% compared to the baseline
of the naiveimplementation using the Fourier representation in both systems. All
approaches used are perfectly implementable in either multi-threaded or parallel
environments. The presented indexing approaches are well suited to run in multi-
ple threads yielding hardly any overhead. Furthermore, the data representation used
can efficiently be computed and compared with SIMD introduction and intrinsics,
whereby both computation and comparison do not rely on jumps or conditions. There-
fore, it is perfectly suited for highly parallel computation on GPGPUs or manycore
CPUs, hence utilising the maximum potential of the system’s hardware.

The workload reduction approaches achieved very promising results, which were
doubtless limited by the biometric performance of the base system. It is to be expected
that with a higher biometric baseline performance, a higher workload reduction can
be achieved: with more stable templates, a more robust indexing can be achieved,
thus further reducing the workload. Several early experiments and approaches in [25]
already achieved a significant biometric baseline performance gain (EER < 0.3%),
which will be used in future work. Since the base system achieved a very high
biometric performance for fingerprints, the workload reduction approaches can be
adopted to the fingerprint modalities and is subject to future work.

Finally, it should be noted that there is a lack of publicly available large (palm-)
vein datasets (with more than 500 palms) suitable for indexing experiments. Most
datasets comprise only 50—100 subjects (100-200 palms). In order to fairly and com-
prehensively assess the computational workload reduction and scalability of indexing
methods, large-scale data is absolutely essential. As such, entities (academic, com-
mercial and governmental alike) that possess or are capable of collecting the requisite
quantities of data could share their datasets with the academic community, thereby
facilitating such evaluations. Another viable option is an independent benchmark
(such as, e.g. FVC Indexing [6], IREX one-to-many [4] and FRVT 1:N [5] for fin-
gerprint, iris and face, respectively), which could also generate additional interest
(and hence research) in this field from both the academic and the commercial per-
spective. Lastly, the generation of synthetic data (e.g. finger veins [19]) is also a
possibility, albeit on its own, it cannot be used as a substitute for real large-scale
data.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
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