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Abstract Finger vein biometrics are of growing influence in daily life high-security
applications like financial transactions. Several application areas of finger vein recog-
nition systems exhibit different environmental and non-environmental conditions,
e.g. changes in temperature, illumination, humidity and misplacement of the finger.
Experience in the application of various biometrics (e.g. fingerprints, iris, face) shows
that acquisition condition changes may affect the recognition process. No systematic
analysis on the impact of those condition changes influencing the performance of
finger vein recognition systems has been conducted so far. In this chapter, 17 pos-
sible acquisition conditions are identified, described and a first proper investigation
regarding their influence on the recognition process is performed. This investigation
is done based on several well-established finger vein recognition schemes and a score
distribution analysis. The insights gained in this chapter might help to improve finger
vein recognition systems in the future. The first results reveal several acquisition con-
ditions that significantly decrease the recognition performance. Especially external
illumination condition changes and finger tissue temperature variation shows a severe
impact. On the other hand, slight misplacement of the finger and sport activities (in
particular cycling) has hardly any influence on the recognition performance.
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7.1 Introduction

In various biometric applications, e.g. iris or fingerprint recognition, studies have
been performed to describe and quantify varying acquisition conditions. Concern-
ing challenging aspects in iris biometrics, an overview is given in [6]. In fingerprint
applications, various studies exist too. Some important ones related to the current
study can be found in [23, 25, 27]. In [25], the authors, Simon-Zorita et al., eval-
uated an automatic minutiae-based fingerprint verification system on the MCYT
Fingerprint Database [19], which includes several variabilities of factors that occur
in a typical daily acquisition process. The effects of a controlled image acquisi-
tion (done under ideal environmental, subject and internal conditions) on fingerprint
matching results have been investigated in [23] using various methods to enhance
the quality of imprints acquired under challenging conditions (including changes
in ambient temperature and humidity). Finally, in [27], Stewart et al. took rugged
environmental conditions, especially cold weather, into account during tests regard-
ing the performance of fingerprint recognition technology. The experimental results
show no critical deficiencies in the recognition performance regarding the considered
challenging environmental conditions. Unfortunately, the authors only reported the
results for the false rejection rate (FRR), which indicated no relationship between
the recognition results and the cold weather condition.

According to the investigations done in other biometric fields, it is necessary to
identify, describe and quantify environmental- and non-environmental-based condi-
tions which could influence finger vein (FV) recognition systems. This consideration
might have some impact on the performance evaluation, improvement and more fre-
quent employment of FV recognition systems in daily life. Prior to this, several
conditions have to be selected and suitable data needs to be acquired. Some consid-
ered environmental condition changes will include variations in the skin humidity or
in the finger temperature, placing a light source in front of the scanner or putting the
finger into a water bath to soften the skin. Subject-related condition changes might
exhibit finger misplacement (e.g. finger is not covering the scanner light source
entirely), usage of hand or sun lotion and sport activities. A detailed description of
all investigated variations is given in Sect.7.4.

The rest of this chapter is organised as follows: In Sect.7.2, a detailed review
on related work and research results is given. Then the scanner devices used during
the data acquisition and the considered conditions are described in Sect.7.3 and
7.4, respectively. Section7.5 illustrates the experimental setup. The performance
evaluation together with a discussion of the results are presented in Sect. 7.6. Finally,
Sect. 7.7 concludes this chapter along with an outlook on future work.
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7.2 Varying Acquisition Conditions—A Challenging Aspect
in Research and Practical Applications

Varying environmental- or subject-related variations in acquisition conditions should
not influence the security and reliability of biometric authentication solutions. This
is vital for FV recognition systems as well because they are used in high-security
applications, such as financial services, automated teller machines (ATMs) and for
securing online banking transactions. Especially FV scanners deployed in ATMs
can be influenced by varying environmental conditions easily as those machines are
often located outside and thus prone to changes in illumination, temperature and
humidity (note: in Japan they are usually inside the bank building). A user might
be enrolled inside the bank building but the ATM at which the authentication is
performed might be located outside the building and not inside. Thus, there might
be direct sunlight shining on the FV scanner device situated at the ATM where the
user wants to withdraw money after the authentication. Furthermore, it is possible
that the user presents his/her finger in a slightly different way as he/she did during
the enrolment. These varying acquisition conditions can cause severe problems in
real-life applications because the accuracy and reliability of biometric recognition
systems, in particular, of FV-based systems, are undermined.

As motivated in the introduction, several factors can affect the recognition accu-
racy of vascular pattern based authentication systems. First of all, inherent biological
factors may influence the FV recognition process. According to Kumar et al. [12],
the quality of finger vein images can vary across the population for different users.
This statement was postulated only and was not proven by empirical experiments.
These quality variations might be caused by factors like gender (e.g women usually
have thinner fingers than men), daily physiological composition [28], medical con-
ditions (e.g. thickness of persons’ tissue layers may change due to fat [28]), anaemia,
hypotension, hypothermia and various other aspects as discussed in [5, 24].

Another major impact is related to the optical component used in the applied scan-
ner devices. The NIR light, used to render the vein structure visible in the captured
images, is absorbed, reflected and scattered during the penetration of the humans’
tissue. Light scattering imposes the most severe impact of these three aspects.
In biomedical imaging research, these factors have been extensively investigated.
Dhawan et al. [9] reviewed several models enabling the propagation of visible and
NIR light photons in biological tissue for biomedical and clinical application. This
study included (among others) the usage of transillumination NIR light in clinical
practice. The results of using NIR transillumination have shown a significant poten-
tial in diagnostic applications but there are still difficulties due to scattering of the
NIR light in the biological tissue. A more specific application area was discussed
by Bashkatov et al. [4]. The authors focused on the description of optical proper-
ties of human skin, subcutaneous and mucous tissues using light exhibiting different
wavelengths. They reported specific light scattering and absorption coefficients for
each of the considered tissues. These coefficients vary highly among the investigated
modalities. Consequently, it is not possible to neglect the aspect of biological influ-
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ences in FV applications but they are usually considered as a given constant factor,
which has to be covered by various image preprocessing, restoration and enhance-
ment techniques [29]. Further results regarding optical influences are reported by
Baranoski et al. [3]. They simulated light interaction effects within the human skin
by the application of computer graphics techniques. The authors only investigated
effects introduced by the first layer of the finger tissue. Furthermore, a discussion
regarding light scattering influences on the FV recognition performance was not
given. Another study by Cheong et al. [7], neglecting real-life recognition aspects,
used mathematical models with respect to optical coefficients describing various
human tissue layers. The authors described and discussed optical properties of blood
vessels (in particular the aorta), liver and muscle tissue. There are several other non-
biological factors which might have an impact on the recognition performance of
FV-based systems as well. These non-biological factors can be grouped into internal
factors and external factors.

At first, we focus on various internal factors. The most important ones are those
which are introduced by the biometric scanner device itself. The equipped illumina-
tion source might be too bright or too dark either due to a wrong specification of the
illumination source, due to problems with the brightness control module or due to
fingers being too thick or too thin. Furthermore, the equipped camera module might
be sensitive to ambient light changes as sunlight contains NIR light. Another influ-
encing factor is a high sensitivity to dust which affects the camera as well. Both of
these image sensor specific internal factors lead to a decrease in the FV image qual-
ity. Fortunately, it is possible to cope with these problems by changing the scanner
setup or adding additional components. To reduce the sensitivity to ambient light,
a daylight blocking filter or a housing around the scanner can be mounted addi-
tionally. Moreover, it is possible to use thermal FV imaging as well. Thermal vein
pattern images are insensitive to ambient light changes under a wide range of lighting
conditions as reported in [15]. However, this adds the necessity to cope with other
difficulties like problems with varying ambient temperature or changes in the human
body temperature as discussed by the authors of [13].

A recent study of Kauba et al. [11] investigated the impact of several internal
factors. The authors considered sensor noise, sensor ageing related defects as well
as other image distortions which are potentially present in real-life hand- and FV-
pattern acquisition conditions. Moreover, they considered different levels of artificial
distortions. Such artificial distortions might be present in practical hand vein appli-
cations but fortunately the authors reported that the evaluated hand vein recognition
schemes show a high robustness against the investigated influences. In our present
study, we ensure that the scanner setup is optimal in order to reduce the number of
distorting aspects due to internal factors to a minimum.

The class of external factors can be separated into two independent categories:
environmental aspects and subject-related (non-environmental) aspects. These two
classes of external influencing factors are the main scope of the current work. Non-
environmental-related factors include finger movement during the image acquisition
and misplacement of the finger on the scanner device, including tilt, bending and
rotation of the finger along its longitudinal axis. Matsuda et al. [17] and Yang et
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al. [30] investigated the aforementioned finger tilt and non-planar finger rotation.
In both works, the authors introduced recognition schemes which are able to deal
with non-planar finger rotation up to a certain degree. Matsuda et al. stated that
their deformation-tolerant feature point matching scheme is able to cope with non-
planar finger rotation up to +30°. Yang et al. did experiments with their proposed
recognition scheme regarding finger rotation as well but they did not state to what
extent of rotation their scheme is robust against. Furthermore, both authors claim that
their proposed schemes show a high level of robustness against elastic deformations
of the acquired vein patterns. In a more recent study by Prommegger et al. [20], the
effects of longitudinal rotation within FV datasets have been investigated. The authors
prove experimentally that longitudinal finger rotation poses a severe problem in FV
recognition as the resulting vein image may represent entirely different patterns due
to the perspective projection. This variation in the perspective projection results in a
severe performance decrease using simple recognition schemes if more than +10°
rotation is contained in the images. More sophisticated FV recognition schemes are
able to handle up to +30° without leading to a performance decrease.

Apart from finger movement related investigations, there are several studies show-
ing that various environmental factors have a crucial impact on FV recognition. The
most important aspects are varying ambient light conditions [26], light scattering
effects [29] as well as ambient temperature changes as discussed in [18]. Miura et
al. [18], Song et al. [26] and Yang et al. [29] discuss these distortions only briefly
without any further performance experiments targetting the influence of these vari-
ations. However, in [18], an analysis was done in order to quantify the influence
of ambient temperature changes while a more robust matching scheme was intro-
duced. The authors proposed a scheme that calculates local maximum curvatures in
cross-sectional profiles of an FV image. Thus, fluctuations regarding vein width and
brightness, introduced by, e.g. ambient temperature changes and physical activities
involving the fingers/hands, are reduced during the feature extraction. The following
studies introduce different aspects of complicating factors in FV recognition: In [14],
bifurcations and ridge endings (originally fingerprint minutiae types) are selected for
image alignment followed by a unique FV code extraction, which is based on local
binary patterns. The minutia points’ extraction can easily be influenced by distortions
introduced during the acquisition of the FV pattern. However, the authors only men-
tion that the number and the positions of minutia points may vary among the acquired
data due to possible changes in finger location, different posture and varying lighting
conditions. Hashimoto [10] mentions that variations within the FV data need to be
controlled. Body metabolism changes, brightness fluctuations due to individual vari-
ations in finger size or lighting conditions are discussed as major influencing factors
without considering these aspects in the performance evaluation of the recognition
process. A recent study by Qin et al. [21] states that a proposed convolutional neural
network (CNN) on the one hand makes the recovery of missing vein patterns possi-
ble and on the other hand is able to suppress noise resulting from segmentation in
case a low-quality image is processed. The detection of such low-quality images is
mandatory in the first place and can be done by the application of several available
FV quality measures [22, 28].
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The main aspects of these studies have in common are (a) challenging aspects
are only seen as a given problem and therefore no further investigation is dedicated
to them and (b) there are only very few studies available which try to describe the
influence on the recognition performance. One recent investigation focusing on the
impact of different meteorological aspects like temperature, humidity, atmospheric
pressure and wind was performed by Zheng et al. [33]. Based on the experimental
results the authors concluded that ambient temperature is the most significant factor.
They further proposed two methods, dynamic template selection and a so-called
threshold adjustment, to reduce the impact of ambient temperature changes during
the recognition process.

For the further development of FV recognition systems, it would be of great value
to understand which acquisition variations are causing which amount of degradation
in the FV recognition process. This work is dedicated to this important aspect.

7.3 Deployed Scanner Devices

It is possible to categorise the various types of FV scanners into several classes:
contactless/full contact scanners and LED/laser light devices are the most important
ones. All available COTS FV scanners are full contact and based on transillumination
using LEDs. According to the fact that almost all COTS FV scanners do not enable
direct access to the raw vein images they acquire, they would be only of little use
during this study as we need to conduct arecognition toolchain on the raw vein images
to evaluate the used algorithm performance on the dataset containing influenced FV
images. This evaluation is mandatory to improve the algorithm’s robustness against
varying acquisition conditions and could not be done by using COTS FV scanners.

Two different types of illumination can be distinguished. Their classification is
based on the relative positioning of the camera module, the finger and the equipped
light source. The first method is called light transmission or transillumination and
the second one is called reflected light. NIR LEDs as well as NIR laser modules can
be deployed for both illumination setups.

In the transillumination concept, the light source and the image sensor are placed
on opposite sides of the finger that is acquired. The emitted NIR light passes through
the finger, where it is absorbed by the blood vessels and is captured by the imaging
module on the opposite side. The veins, or to be more precise the blood vessels,
appear as dark lines in the images. We decided to deploy only the transillumination
concept as the FV image quality is better compared to the quality of images acquired
using reflected light.

Two self-designed FV scanner devices were used to acquire the FV images and
are similar to the scanners discussed in Chap.3. The main difference is that the
deployed devices are not able to capture FV images of three fingers at the same time.
Only one finger after the other can be processed to acquire the blood vessel pattern.
However, one scanner is equipped with a NIR laser illumination module and one
with an LED illumination module, both are arranged in a strip placed underneath
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Fig. 7.1 NIR LED and laser-based finger vein scanner (camera on top and finger at bottom)

the finger support. Both scanners are designed in the same way and are based on
the transillumination principle. The NIR LEDs have a peak wavelength of 860 nm,
while the laser modules have a peak wavelength of 808 nm. The captured FV images
have a resolution of 1280 x 1024 pixels and are stored as 8-bit greyscale images.
Furthermore, an additional NIR pass-through filter is mounted to reduce the influence
of ambient light and to improve the quality of the acquired images. The used image
sensor is an industrial NIR-enhanced camera, IDS Imaging UI-1240ML-NIR [2],
equipped with a Fujifilm HFOHA-1B 9mm wide-angle lens [1]. The scanners are
depicted in Fig.7.1.

A wooden box (left image) surrounds all parts of the device, including the camera
module, the NIR light strip and the finger support, in order to reduce the amount
of ambient light to a minimum. The middle and right images of Fig.7.1 reveal the
light transmission concept. The camera is placed on top, the finger can be seen in
the middle placed on the finger support, and the illumination module is located at
the bottom of the wooden box. In the middle image, the LED-based version of the
scanner is shown, while the right image represents the laser-based one. Compared to
other FV scanners this positioning concept is different and results in the visualisation
of the blood vessel patterns which are located at the upper side of the finger.

7.4 Finger Vein Acquisition Conditions Dataset

Currently, there is no publicly available dataset FV that exhibits various environ-
mental and non-environmental acquisition conditions. Thus, we established our own
subset, including different environmental and subject-related acquisition variations.

In general, every biometric authentication system consists of an enrolment and
a verification stage. During the mandatory enrolment stage, the considered biomet-
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ric pattern of the user is acquired under controlled and supervised conditions. This
ideal situation will likely not be present during the second stage of the authentica-
tion process, the verification. Each time the user wants to authenticate him-/herself,
he/she has to present his/her biometric trait which is then acquired once again. This
biometric data acquisition during authentication might be performed under different
environmental conditions.

To simulate a more realistic enrolment and authentication procedure, the data
acquisition was performed under a controlled environment. At first, the enrolment
was done under optimal and stable environmental conditions and a correct sub-
ject’s scanner handling was ensured. The authentication was simulated in a second
acquisition session, on the same day by manually introducing one specific condi-
tion change (environmental or subject related) at a time. This controlled acquisition
environment ensured the capturing of data acquired under exactly one varying aspect
(disregarding other, additional influences).

The first subset included in our database “reflects” this enrolment subset. This
first subset is exhibiting no distorting aspect which is important as a reference and
for the baseline recognition evaluation.

Besides the enrolment subset we acquired a total of 17 subsets exhibiting acquisi-
tion variations. Seven of these subsets have been acquired under varying environmen-
tal conditions and 10 subsets exhibit subject-related condition changes. We aimed
to include the most promising aspects relating to acquisition conditions present in
real-life deployments of FV recognition systems.

The entire data acquisition was done indoors with indirect illumination (fluores-
cent lamps at the ceiling) only. The humidity and temperature in the room have been
kept stable during the entire process at a level of 23 °C and approximately 75%
humidity. Each of the investigated acquisition conditions are introduced intention-
ally and manually during the acquisition of the specific subset independent from the
others. If the humidity of the fingers was changed or sports activity was performed
before the acquisition process, the necessary alternations were introduced in a dif-
ferent room or outside (sports) to preserve stable acquisition conditions in the room,
where the FV device was placed. This reduces the influence of other conditions than
the desired acquisition condition changes. In the following, each of the considered
acquisition conditions is described in detail and example images are displayed in
Figs.7.2 and 7.3 for the laser scanner and the LED scanner, respectively. The top-left
image in both figures corresponds to the enrolment stage (subset base). The other
images, all captured from the same finger, are exhibiting one acquisition condition
variation each:

base: baseline (no distortion included)

Environmental Condition Changes :

humid: increasing the humidity by putting the fingers next to a humidifier
placed in a neighbouring room to prevent humidity changes in the
acquisition room.
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Fig. 7.2 Laser FV scanner images (same finger) of all subsets—1. row: base (left), light (right)-2.
row: temp — 5 (left), badpl (right)-3. row: sunlot (left), cycle (right)

Fig. 7.3 LED FV scanner images (same finger) of all subsets—1. row: base (left), [ight (right)-2.
row: temp — 5 (left), badpl (right)-3. row: sunlot (left), cycle (right)

light: placing a battery torch with a low light emission intensity in front of
the scanner
dark: shutting off the room light.

temp —5: lowering the finger’s temperature, introduced by an ice water bath
where the finger was put in for Smin.
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temp +5: increasing the finger’s temperature introduced by a hot water bath where
the finger was put in for 5 min.

skin10: putting the fingers in a body temperature water bath for 10 min (this
does not alter the temperature of the finger, but the skin structure is
influenced—besides, the fingers are dried afterwards to avoid influ-
ences by the wet fingers).

skin25: putting the finger in a body temperature water bath for 25 min.

Subject Related Condition Changes :

ups: putting both arms straight upside to the vertical position and hold this
position for 5 min.

upl0: putting both arms straight upside to the vertical position and hold this
position for 10 min.

tremb: imitating that the finger placed inside the scanner is trembling.

badpl: placing the finger inside the scanner in a way that the light source is
not covered entirely.

bend: bending the finger inside the scanner.

tip: tilting the finger forward, so only the fingertip is placed on the light strip

(the tilting angle is about 10 degrees, and hence most of the illumination
goes through the finger’s tissue).

trunk: tilting the finger backwards, so the fingertip is not touching the light
strip but the trunk touches the scanner surface (the tilting angle is about
10 degrees, and hence most of the illumination goes through the finger’s

tissue).
handlot:  applying hand lotion to the finger’s surface.
sunlot: applying sun lotion to the finger’s surface.
cycle: cycling for about 20 min before the image acquisition.

The subsets represented by the given example images have been selected because
they are likely to exhibit severe impact in practical applications. From a visual point
of view, it can be concluded that variations as displayed by the middle and last
image located in the left column and the first two images in the right column could
cause some problems during the recognition process. The visibility of the blood
vessel patterns in each of these four images is clearly suppressed by the variation
as compared to the top-left baseline image. During the experimental discussion, we
will come back to these subsets.

There is currently no detailed knowledge of which variation introduces the most
severe impact in terms of recognition accuracy degradation. This study is the first of
its kind focusing on environmental- and non-environmental (subject)-related acqui-
sition conditions in the scope of FV recognition. It can serve as a basis for further
investigations on this topic. Only two subjects have been acquired due to the very
time-consuming process of acquiring the images. This leads to a total of 60 images
per condition (six fingers per subject—index, middle and ring finger, each finger was
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acquired five times). Although the number of images per finger is limited, there is
still sufficient data available to quantify the impact of the various distortions.

7.5 Finger Vein Recognition Toolchain and Evaluation
Protocol

The first part of the FV recognition toolchain is the FV preprocessing to enhance
the vein pattern quality. This process consists of Region-of-Interest (ROI) extrac-
tion, image filtering and enhancement. At first, the ROI is extracted from the input
images using edge detection. Afterwards, the vein pattern’s visibility is enhanced by
the application of various techniques: High Frequency Emphasis Filtering (HFE)
[32], Circular Gabor Filter (CGF) [31] and CLAHE (local histogram equalisation)
[34]. The second part of the FV recognition toolchain includes feature extraction
and feature comparison resulting in a list of comparison scores. We selected two
well-established binarisation-type feature-extraction methods, Maximum Curva-
ture (MC) [18] and Principal Curvature (PC) [8], as well as one key point (SIFT)
[16] based method with additional key point filtering for the feature extraction. The
binarisation-type methods aim to extract the vein pattern from the background result-
ing in a binary output image, which represents the extracted features. After the feature
extraction is completed, it is followed by a comparison of these binary images as
proposed by [18].

To obtain the comparison scores, all possible genuine and impostor comparisons
are performed. This is done by comparing each image against all remaining ones
which finally results in 120 genuine and 1650 impostor comparisons per subset.
The comparison scores can be downloaded from: http://www.wavelab.at/sources/
Kirchgasser19a/. We utilised the PLUS-OpenVein SDK which was presented in
Chap. 4 of this book. A publicly available implementation of the complete process-
ing toolchain can be downloaded from: http://www.wavelab.at/sources/Open Vein-
Toolkit/.

We have selected several well-established measures to quantify and categorise
the different acquisition conditions. Thus, the average genuine score values (avGen)
as well as the average impostor score values (avimp) have been calculated first. The
tendency of the avGen and avImp values gives a first hint which acquisition condition
might have the most severe impact on the recognition process. The avGen and avimp
are listed in the result Tables 7.1 till 7.5 in the second and third columns. Additionally,
we have selected the equal error rate (EER), the lowest FNMR for FMR less or equal
to 1% (FMR;qp), the lowest FNMR for FMR less or equal to 1% (FMR ), Zero
Match Rate (zFMR) and Zero Non-Match Rate (ZFNMR) as performance measures.
These values will be listed in the result tables in columns four till eight given in
percentage.
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Fig. 7.5 LED subsets matching score distributions MC (left column), PC (middle column) and
SIFT (right column): 1. row: base-2. row: light-3. row: temp — 5—4. row: badpl-5. row: sunlot

and 6. row: cycle
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Table 7.1 Performance evaluation results for MC using the laser scanner data

Name  |avGen |avimp |EER  |FMRyg |FMRjopo |zFMR  |zFNMR
Baseline

base 017 007  |415  [103 164  |189  |124]
External condition changes

humid 0.14 0.07 10.82 25.8 325 48.3 88.7
light 0.12 0.07 12.48 333 50.8 61.66 85.7
dark 0.13 0.07 13.29 33.0 47.5 47.5 97.2
temp —5 [0.12 0.07 18.34 39.2 51.7 54.2 96.9
temp +5 |0.13 0.07 11.45 30.8 433 44.2 73.7
skin10 0.12 0.07 11.66 34.2 533 55.8 92.3
skin25 0.13 0.07 8.39 25.8 43.3 43.3 933
Subject-related condition changes

upS 0.13 0.07 45.64 7.5 16.6 19.3 99.8
upl0 0.12 0.07 43.44 6.9 155 18.1 98.3
tremb 0.11 0.07 18.65 54.4 79.4 86.6 93.0
badpl 0.09 0.07 22.51 93.5 97.4 97.4 99.9
bend 0.1 0.07 12.14 20.6 33.6 45.6 97.2
tip 0.13 0.07 9.40 61.3 88.0 96.5 62.0
trunk 0.1 0.07 20.85 82.5 98.3 98.3 89.7
handlot |0.14 0.07 15.81 30.8 40.8 433 86.4
IDsunlot | 0.12 0.07 11.66 28.3 36.6 45.8 98.2
cycle 0.16 0.07 8.60 12.5 30.3 30.3 67.4

7.6 Experimental Results Analysis

In the following, all results are discussed in detail together with the general trend of
the different acquisition conditions highlighted by the worst and best results which
have been achieved.

Figures 7.4 and 7.5 display the score distribution plots for the laser-based and
the LED-based scanner, respectively. Each column of both figures corresponds to
a single recognition scheme: the left column shows the values for MC, the middle
column displays the results obtained using PC and the right column depicts the SIFT
results. Each row is dedicated to one subset that has been described before. These
subsets have been selected because they are likely to exhibit severe impact in practical
applications.

The calculation of the baseline results is a special case: they are calculated by
comparing subset base with itself, while for other results the comparison is always
done between subset base as gallery and one of the probe subsets humid till cycle.
This setup is in regards with the usual enrolment/authentication scenario in real-life
applications. However, it must be mentioned that the number of performed compar-
isons is lower for the baseline experiments. As comparisons with the same images
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Table 7.2 Performance evaluation results for PC using the laser scanner data

Name  |avGen |avimp |EER  |FMRyg |FMRjopo |zFMR  |zFNMR
Baseline

base |04 10.31 086 |09 2.6 2.6 12
External condition changes

humid 0.38 0.31 3.52 4.2 5.0 5.8 61.1
light 0.38 0.31 3.33 5.0 5.8 9.2 91.8
dark 0.37 0.31 0.01 10.8 11.7 11.7 91.8
temp —5 | 0.37 0.3 6.67 8.3 14.2 15.8 96.8
temp +5 |0.38 0.31 2.49 2.5 33 5.8 92.9
skinl10 0.37 0.31 4.99 9.2 10.8 15.8 68.3
skin25 0.37 0.31 2.49 2.5 5.8 5.8 73.8
Subject-related condition changes

upS 0.38 0.31 40.01 7.1 15.9 18.9 97.3
upl0 0.36 0.31 40.56 6.7 15.1 17.3 96.6
tremb 0.37 0.31 12.51 13.4 214 24.1 95.1
badpl 0.34 0.3 19.85 57.1 70.1 70.1 95.2
bend 0.34 0.31 12.92 17.2 18.9 21.5 99.7
tip 0.38 0.31 5.97 67.6 77.6 77.9 87.6
trunk 0.35 0.31 16.55 55.0 70.8 88.3 99.9
handlot |0.38 0.31 4.99 8.3 12.5 133 71.7
sunlot 0.37 0.31 4.99 6.7 7.5 12.5 96.7
cycle 0.4 0.31 3.64 53 53 53 35.1

are excluded the number of impostor scores using subset base is reduced. The reader
must be aware of this fact while the performance measures of subset base and the
other subsets are discussed.

The score distribution plots in Figs.7.4 and 7.5 visually reveal that MC and PC
achieve a better performance on the individual subsets as reported for the key point
based method SIFT. The high overlap of genuine (coloured blue) and impostor
(coloured red) score distribution is not only valid for the presented examples but
also for all other considered subsets. The observations are in-line with the subse-
quent metric based quantification analysis of the results. Except for subset cycle a
significant increase in the score distributions overlap for all acquisition condition
changes can be clearly seen. The distribution plots of subset base (first row) and
cycle show well-separated genuine and impostor comparison scores, only a small
intersection area is present for all recognition schemes. This is proven by the perfor-
mance measures EER, FMR oo, FMR ;900, ZFMR and zZFNMR as shown in Tables 7.1,
7.2,7.3,7.4 and 7.5, respectively. All the other subsets exhibit a much higher over-
lap between the score distributions, which again is proven by the other performance
measures, in particular, described by an EER increase reporting a recognition per-
formance decrease. For almost all other subsets and feature-extraction methods, the
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Table 7.3 Performance evaluation results for SIFT using the laser scanner data

Name  |avGen |avimp |EER  |FMRyg |FMRjopo |zFMR  |zFNMR
Baseline

base  |0.11 002 [528  [198 345 1345 43.6
External condition changes

humid 0.04 0.01 20.62 52.5 65.8 74.2 78.5
light 0.04 0.01 19.09 49.2 62.5 62.5 99.9
dark 0.03 0.01 23.18 62.5 85.8 91.7 99.9
temp —5 |0.04 0.01 28.20 73.3 83.3 86.7 99.9
temp +5 |0.04 0.01 16.93 533 71.7 72.5 99.9
skin10 0.03 0.01 16.35 55.0 65.0 82.5 99.9
skin25 0.04 0.01 24.99 61.6 83.3 87.5 99.9
Subject-related condition changes

up5 0.03 0.01 44.54 48.5 63.2 67.1 99.9
upl0 0.04 0.01 43.01 46.5 59.4 63.8 99.9
tremb 0.02 0.01 26.72 67.8 72.3 75.0 99.9
badpl 0.02 0.01 29.23 93.5 99.9 99.9 99.9
bend 0.04 0.01 18.94 51.7 68.1 68.9 99.9
tip 0.06 0.01 8.47 19.6 78.6 88.8 99.9
trunk 0.03 0.01 17.33 70.0 80.8 83.3 99.9
handlot | 0.04 0.01 20.75 56.6 67.5 73.3 99.9
sunlot 0.02 0.01 28.08 78.3 87.5 89.1 99.9
cycle 0.06 0.01 25.00 10.6 35.7 35.7 68.0

genuine scores are shifted to the left as the number of low-valued genuine scores is
higher compared to those of subset base or cycle. In these subsets, EER, FMRq,
FMR 00, ZFMR and zFNMR values are higher as well. When comparing the laser
and the LED scanner’s score distribution plots (comparing Figs.7.4 and 7.5) it can
further be observed that there is hardly any difference in the detected overall trend of
both scanners detectable. This suggests that the selected illumination module does
not have an impact on the recognition process for the considered subsets and thus
for the evaluated conditions.

The avGen and avImp scores do not show significant differences among the subsets.
Furthermore, their values do not exhibit differences within each of the three recogni-
tion schemes, so it is not possible to distinguish between the different subsets. Thus,
they do not provide any additional information regarding the impact of the various
acquisition conditions. It is not possible to distinguish between the single subsets
because the values belonging to one of the recognition schemes (MC, PC or SIFT)
are nearly identical. This can be seen in column 2 and 3 of each of Tables 7.1, 7.2 and
7.3. Considering subsets humid till sunlot, the avGen values for MC, PC and SIFT
are lower compared to the results of subset base and cycle. Further details upon
the performance metrics for the data acquired by the laser scanner are displayed in
Tables 7.1 (for MC), 7.2 (for PC) and 7.3 (for SIFT), respectively.
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Table 7.4 Performance evaluation results for MC using the LED scanner data

Name  |avGen |avimp |EER  |FMRyg |FMRjopo |zFMR  |zFNMR
Baseline

base 021 008  [177 |5 6.7 6.7 4.5
External condition changes

humid 0.16 0.08 10.03 17.5 27.5 31.7 84.8
light 0.12 0.07 25.58 49.2 60.8 70.8 100.0
dark 0.16 0.08 7.50 15.8 25.0 25.0 96.1
temp —5 |0.13 0.08 18.34 375 43.33 48.33 96.9
temp +5 |0.16 0.08 11.80 21.7 26.7 325 99.9
skinl0 0.16 0.08 7.69 9.4 17.0 18.8 96.5
skin25 0.16 0.08 7.50 15.0 30.0 36.7 98.3
Subject-related condition changes

up5 0.14 0.08 42.49 98.3 99.2 99.2 99.9
upl0 0.16 0.08 40.00 99.2 99.9 99.9 99.6
tremb 0.15 0.08 10.91 29.4 41.2 42.9 94.8
badpl 0.12 0.08 34.06 84.0 89.4 89.4 97.2
bend 0.12 0.08 16.66 433 58.3 64.2 99.9
tip 0.15 0.08 13.33 233 55.0 55.9 99.9
trunk 0.11 0.08 6.66 16.7 21.7 23.3 58.9
handlot |0.15 0.08 17.41 21.7 29.2 29.2 96.8
sunlot 0.15 0.08 8.34 20.0 28.3 31.2 87.7
cycle 0.17 0.08 2.05 1.5 3.0 3.5 4.0

The performance measures for the LED setup are listed in Tables7.4 and 7.5.
The corresponding values of SIFT will not be displayed separately due to the low
recognition performance of SIFT. The SIFT results are quite similar to the results of
the laser lights scanner, which are presented in Table 7.3. To summarise the results it
can be said that there is no difference regarding the overall trend between laser and
LED concerning avGen and avImp. However, there are some differences regarding
the considered performance metrics. First, the performance on the LED data is better
compared to the laser subsets, especially for PC in the most cases. Second, the
results exhibit bigger differences among the acquisition conditions. In particular,
subset light, temp — 5 and temp + 5 are showing the highest number of FMR ),
FMR 000, ZFMR and zFNMR values related to environmental condition changes,
while the EER is worst for zemp — 5. If non-environmental acquisition variations
are taken into account, up35, up10 and badpl! are the most influencing conditions.
They exhibit much higher error measures as detected in the baseline results which
indicates a much worse overall performance of these subsets.

Based on the EER, FMR o9, FMR (g9, ZFMR and zFNMR results it can be sum-
marised that the impact of varying acquisition conditions on the recognition perfor-
mance seems to be influenced by (a) certain acquisition conditions and (b) the applied
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Table 7.5 Performance evaluation results for PC using the LED scanner data

Name  |avGen |avimp |EER  |FMRyg |FMRjopo |zFMR  |zFNMR
Baseline

base 042 |03l 084 |08 17 17 13
External condition changes

humid 0.4 0.31 2.49 2.5 2.5 33 91.6
light 0.35 0.30 21.53 333 35.8 40.8 99.9
dark 0.39 0.31 0.84 0.8 0.8 1.7 44.7
temp —5 [0.37 0.30 7.50 10.8 11.7 14.2 79.7
temp +5 |0.39 0.30 10.00 11.7 14.2 15.0 99.9
skin10 0.4 0.30 0.85 0.0 0.9 0.9 0.9
skin25 0.39 0.30 0.84 0.8 1.7 1.7 75.3
Subject-related condition changes

upS 0.38 0.3 49.15 98.3 99.9 99.9 97.2
upl0 0.39 0.31 43.33 99.9 99.9 99.9 98.8
tremb 0.39 0.31 3.35 34 10.0 11.0 48.5
badpl 0.34 0.3 27.64 51.1 574 61.7 99.8
bend 0.38 0.3 9.15 11.7 133 17.5 99.6
tip 0.35 0.31 6.66 7.5 133 15.0 93.7
trunk 0.38 0.3 5.79 5.8 11.6 11.7 79.0
handlot |0.38 0.31 9.18 12.5 12.5 12.5 98.5
sunlot 0.38 0.3 3.33 4.2 4.2 5.0 74.5
cycle 0.4 0.31 1.24 0.6 1.2 1.3 1.1

recognition system. The recognition accuracy across all performed experiments is
influenced by acquisition condition changes. Some display a high amount of perfor-
mance degradation, while others hardly show any influence. Furthermore, it is not
clear how the impact of the different acquisition variations will change if the number
of available distorted FV images is increased. These first results—showing an impact
on the recognition process using images acquired under varying conditions—may
not necessarily be observed in a large database to the same extent. Nevertheless,
we are quite sure that based on the first results, several of the considered acquisi-
tion conditions have a high impact on the FV recognition process. These especially
include changes in ambient light and temperature as well as misplacement of the
finger inside the scanner. In order to get a deeper insight in the particular influence of
these conditions, we plan to extend the database in terms of subjects and acquired FV
images to perform a more reliable analysis with respect to the influence of varying
acquisition conditions on FV recognition systems in practical application scenarios.
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7.7 Conclusion

In this chapter, the influence of varying environmental and non-environmental acqui-
sition conditions in FV recognition was evaluated. The main purpose was the quan-
tification and selection of the most influencing factors in terms of recognition accu-
racy. It is known from other studies that many biometric recognition schemes are
influenced by environmental and subject-related factors. However, this aspect has
not been investigated comprehensively for FV recognition so far. We selected sev-
eral promising environmental and non-environmental acquisition condition changes
which are likely to influence the acquired vascular pattern images acquired under
different acquisition conditions. The current investigation was designed to get some
first results in order to identify the potentially most challenging condition changes.
For this purpose, we established a first FV image database containing 18 different
conditions in total. 60 images per condition have been acquired from 12 individ-
ual fingers. Although that only 12 fingers from 2 subjects have been acquired, the
results are showing a clear trend. The evaluation, focusing on the quantification of
false accepted and rejected comparisons, confirmed that several of the considered
conditions have a severe influence on the recognition performance. The recognition
performance is decreased for FV images acquired under varying conditions com-
pared against images acquired under optimal conditions, which corresponds to prac-
tical applications of FV recognition systems including enrolment and authentication
phase.

We identified several severe influencing conditions regarding the recognition per-
formance. The highest influence is observable in subset up5 using LED lights and
PC. Subsets badpl, light and temp — 5 were detected as most challenging condi-
tions regardless of the type of the considered FV scanner devices. Thus, variations
in environmental and non-environmental acquisition conditions can both result in
severe FV recognition performance problems.

Based on these promising first results we plan to extend the acquired subset. It is
mandatory to increase the number of subjects in order to gain a better insight into
the issues with varying conditions during the application of FV recognition systems
in daily life. We are confident that this will contribute to the development of FV
recognition systems that are more robust against the influence of typical acquisition
conditions present in practical deployments and lead to a more widespread use of
FV biometrics in various everyday applications.
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