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Abstract In finger vein recognition, the palmar view of the finger is used almost
exclusively, with some exceptions where the dorsal view is utilised. Only little atten-
tion has been paid to all other views around the finger’s longitudinal axis. We estab-
lished a multi-perspective finger vein dataset comprising of views all around the fin-
ger’s longitudinal axis, captured using our self-developed rotating multi-perspective
finger vein capture device. The performance of the single views is evaluated using
common finger vein recognition algorithms. Based on these single view scores, sev-
eral score-level fusion experiments involving different fusion strategies are carried
out in order to determine the best performing set of views and feature extraction
methods to be fused in terms of recognition accuracy while minimising the number
of views involved. Our experimental results show that the recognition performance
can be significantly improved over the best performing single view one with as few
as two views and two-feature extraction methods involved.
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10.1 Introduction

Finger vein recognition as one representative of vascular pattern biometrics deals
with the vascular pattern inside the fingers of a human. Since one of the first men-
tions of finger veins as a biometric trait in academia by Kono [1] in 2000, they have
received much attention not only from academia but also from industry. Commercial
off-the-shelf (COTS) finger vein capture devices, as well as most research papers
solely, use the palmar (front side of the finger) view in combination with light trans-
mission (the light source and the image sensor are placed on opposite sides of the
finger) as illumination source. Multi-perspective finger vein recognition deals with
two or more arbitrary perspectives around the finger’s longitudinal axis. Despite the
advantages of multi-perspective finger vein biometrics over single view ones, these
additional perspectives have not got much attention so far. Moreover, there is no
publicly available multi-perspective finger vein dataset yet.

This chapter is based on our previous work [2] where we designed a novel, multi-
perspective finger vein capture device in order to establish the first multi-perspective
finger vein data set. This dataset comprises of images captured all around the finger’s
longitudinal axis in 1° steps. Based on this dataset, each of the different views has been
evaluated individually and some simple fusion experiments have been conducted.
The main focus of this chapter is on the fusion of multiple perspectives and feature
extraction methods in order to determine the best performing combination in terms of
recognition accuracy by employing a more advanced multi-sample score-level fusion
scheme as well as by applying further fusion strategies in terms of view and feature
combinations. We analyse all possible pairs and triples of perspectives and all possible
combinations of the used feature extraction methods. In addition, we combine the
best results of our multi-perspective and multi-algorithm fusion experiments to one
single combined fusion. Our main goal is to minimise the number of views and
feature extraction methods involved, while maximising the recognition accuracy. A
typical multi-perspective finger vein capture device contains one image sensor and
one light source situated at the right position per desired view. The more views are
to be captured, the more camera and illumination modules have to be equipped, thus
increasing the production costs, the complexity and the overall size of the finger
vein capture device. If the number of desired perspectives is further increased, the
construction of a suitable capture device is no longer feasible without the need of
rotating parts. Our current multi-perspective finger vein capture device is such a
rotating device, making it more susceptible to malfunctions and external influences
than a capture device containing no rotating parts. Moreover, the capturing time
is increased as the capture device has to rotate all around the finger. Hence, it is
beneficial to reduce the number of different views to be captured to a minimum in
order to reduce the complexity and production costs of the biometric capture device
and to avoid the need for a rotating device while still preserving the advantages of a
multi-perspective capture device.

The rest of this chapter is structured as follows: Sect. 10.2 starts with a description
of multi-perspective finger vein biometrics including related work regarding other
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views than the palmar and dorsal one in finger vein recognition. Our multi-perspective
finger vein capture device design is described in Sect. 10.3. Section 10.4 introduces
our multi-perspective finger vein dataset captured with the aforementioned device.
Section 10.5 gives an overview of biometric fusion in general followed by related
work on biometric fusion in finger vein recognition. Section 10.6 explains our exper-
imental set-up, including the finger vein recognition tool chain as well as the fusion
framework we utilised and lists the experimental results, followed by a results dis-
cussion. Section 10.7 concludes this paper an gives and outlook on future work.

10.2 Multi-perspective Finger Vein Biometrics

The majority of the available finger vein recognition schemes as well as all available
COTS finger vein capture devices deal with the palmar (also called ventral) view of
the finger. There are only some exceptions where the dorsal view is used. Raghaven-
dra and Busch [3] proposed the first dorsal finger vein acquisition and a complete
recognition tool chain including several different feature extraction schemes. In the
scope of the PROTECT project (http://www.projectprotect.eu), we acquired the first
publicly available dorsal finger vein dataset [4] using the predecessor of our open-
source finger vein capture device. In [5], we established a larger dorsal finger vein
dataset captured using both of our proposed open-source finger vein capture devices,
which design is decribed in Chap. 3 of this book [6].

There are more views around the finger than the palmar and dorsal one that can
be captured. A single finger is an elliptical cylinder-shaped object, hence, there are
all possible views around its longitudinal axis (360° of rotation) available. Multi-
perspective finger vein recognition describes the use of two or more of these per-
spectives around the finger’s longitudinal axis. Multi-perspective finger vein recog-
nition has several advantages over the single perspective one: The vein patterns of
the palmar and dorsal view as well as of the perpendicular views are independent
from each other [7]. By fusing more than one perspective that is independent enough
from each other (i.e. the rotation angle between the single perspectives has to differ
enough for the perspectives to be independent of each other), the overall recognition
performance can be increased easily. Tome et al. [8, 9] showed that finger vein and
hand vein recognition systems are susceptible to a simple type of presentation attack.
By using a paper printout of the vein pattern, they were able to successfully spoof
several finger vein capture devices. This paper printout is a flat, 2D representation
of the vein pattern. If a biometric capture device takes finger vein images from dif-
ferent perspectives, such simple 2D printout attack finger vein presentation will not
be identified as bona fide finger vein presentation. Thus, a multi-perspective finger
vein capture device is successfully able to prevent this kind of presentation attack.
However, multi-perspective finger vein recognition bears some disadvantages too:
The biometric capture devices get more complex, either more than one camera and
illumination module are needed, or the capture device has to be build in a rotating
manner. This leads to higher production costs of multi-perspective capture devices
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and especially rotating capture devices are more error prone due to the moving parts.
Another disadvantage is the bigger size of a multi-perspective capture device com-
pared to single perspective ones. The multiple image sensors/illuminator modules or
the rotating parts need more space than just a single image sensor in combination
with one illumination module.

Lu et al. [10] proposed a multi-perspective finger vein recognition system using
two cameras. The cameras are placed at an angle of 60° next to each other, each
camera is located 30° apart from the palmar view. They applied feature—as well as
score-level fusion using the two views captured simultaneously by the two cameras
and were able to improve the recognition performance of the single view ones.
Zhang et al. [11] employed a binocular stereoscopic vision device to do 3D point
cloud matching of hand veins and knuckle shape. Their capture device set-up consist
of two cameras, placed in a relative position of about 45° next to each other, each one
equipped with an NIR-pass filter. There is only a single light transmission illuminator
placed underneath the palm of the hand. The 3D point clouds are generated by
extracting information from the edges of the hand veins and knuckle shapes and then
compared utilising a kernel correlation method, especially designed for unstructured
3D point clouds. The authors claim that their proposed method is faster and more
accurate compared to 2D vein recognition schemes. In [12] the authors propose a 3D
hand vein capturing system based on a rotating platform and a fixed NIR camera. The
camera is located above the hand, the hand is put on a handle with an integrated light
transmission illuminator. This handle is mounted on a rotating plate. Then the plate
rotates around the z-axis. However, the degree of rotation is limited due to the limited
movement of the hand in this position. A 3D point cloud is generated from the single
view images and matched using kernel correlation. This should help to overcome
hand registration and posture change problems present in hand vein recognition if
only 2D vein patterns/images are available.

Nevertheless, true multi-perspective finger vein recognition (evaluating more than
two different views around the finger) has not been investigated so far, except for
our previous work [2]. One reason herefore might be the lack of available multi-
perspective finger vein datasets. In order to acquire such a dataset a suitable biomet-
ric capture device, able to capture the different views to be acquired, is essential.
Capturing these additional perspectives could be done by utilising either a COTS
capture device or one of the capture devices proposed in other works by simply
turning the finger around its longitudinal axis. However, it is difficult to position the
finger in the correct rotational angle. Thus, rotating the finger itself implies the dis-
advantage of an inaccurate rotation angle and deviations in the rotation angle across
different iterations, leading to a low repeatability and a low quality dataset. In order
to acquire a suitable multi-perspective finger vein dataset comprising of images cap-
tured in several, defined perspectives, either a biometric capture device comprising
of several cameras and illumination modules, able to capture more than one view
simultaneously, or a rotating biometric capture device able to capture these views
consecutively, is necessary. If only a limited number of perspectives are involved, a
suitable biometric capture device can be built without any rotating parts, just by equip-
ping an individual image sensor and an associated illumination module per desired
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Fig.10.1 Multi-perspective finger vein set-up exhibiting three different perspectives based on three
image sensors and three illuminator modules

view (an example with three different views is shown in Fig. 10.1). The illumination
intensity has to be adjusted per view as the path to penetrate the finger is different
for each individual view, requiring a stronger or weaker illumination depending on
the distance. If more perspectives are desired, rotating the capture device around the
finger while the finger remains in a fixed position during the acquisition process is
the only feasible option.

The design and construction of a practicable biometric capture device is a com-
plex task. Furthermore, the actual data acquisition is a tedious and time-consuming
work. In our previous paper [2], we proposed a rotating multi-perspective finger vein
capture device that is able to capture the finger all around its longitudinal axis (360°).
We established a multi-perspective finger vein dataset consisting of 252 individual
fingers. Based on this dataset, we evaluated the different views around the finger in 5°
steps and concluded that the palmar followed by the dorsal one achieve the best sin-
gle view recognition performance. Moreover, we applied a simple score-level fusion
strategy and showed that the recognition performance can be improved by fusing
more than one view. This chapter is an extension of our previous work. Based on
our proposed multi-perspective finger vein capture device, we refine and extend our
previous results by the following:

e Improving the recognition tool chain to improve the single view results, espe-
cially the ROI extraction and by including a new recognition scheme proposed by
Matsuda et al. [13].

e Employing an advanced score-level fusion framework (BOSARIS [14]).

e Exploring different fusion strategies in terms of which views to include in the
fusion.

e Evaluating multi-algorithm fusion per view (fusion is done at score level).
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e Combining multi-perspective and multi-algorithm fusion.

The purpose of our evaluations is to maximise the recognition performance while
minimising the number of single views involved. If only a limited number of views is
involved, the capture device can be built without the need for any rotating parts just by
equipping an individual image sensors and an illumination modules per desired view.
A biometric capture device which relies on rotating parts is more error prone and
more susceptible to external influences, the rotation speed can vary due to increased
friction or it can be completely blocked if the finger is not properly inserted. The
rotating parts exhibit a higher wear than non-moving parts and are thus more prone
to failures. Moreover, the acquisition time of a rotating capture device is higher
compared to a non-rotating one as the device needs to rotate around the finger in
order to capture the different views. Furthermore, a capturing device exhibiting a
closed box design, where the capture subject has to put his finger into a “black
hole” poses psychological disadvantages and leads to discomfort. Hence, in practical
applications of multi-perspective finger vein biometrics only a capture device built
in a non-rotating and open manner is feasible. Consequently, we aim to identify the
best combination of two or three views to include in the fusion in order to build
such a multi-perspective finger vein capture device based on fixed, non-moving parts
only. Figure 10.1 shows the schematic principle of such a capture device for three
perspectives: it consists of three independent image capturing pairs, each consisting
of its own NIR illumination module and NIR camera.

10.3 Multi-perspective Finger Vein Capture Device

In order to acquire a multi-perspective finger vein dataset, we designed a custom
finger vein capture device tailored to this purpose. For more details on the general
principle of a finger vein scanner and the vascular pattern recognition basics, the
interested reader is referred to our open finger vein scanner chapter [6] and the
introductory chapter [15] of this book, respectively. Our multi-perspective finger vein
capture device is able to capture images from all around the finger’s longitudinal axis
(360°). An illustration of the unwrapped finger vein capture device with all its parts
labelled can be seen in Fig. 10.2. Its outside dimensions (of the aluminium frame
including the rotating part) are 258 x 325 x 455 mm (width x height x depth).
The rotating part (rotator) has a diameter of 380 mm. The device consists of an
aluminium frame, where the rotation motor and the control board are located and a
rotator, which rotates around the finger. The rotating part is connected to a stepping
motor by two cogwheels. These cogwheels have a gear ratio of 1:5/3 (motor to rotor).
The stepping motor (SY42STH47-1684A [16]) which drives the rotator has 200 steps
per full rotation (1.8° per single step). We use a micro-stepping of 1/16, thus one
step corresponds to 0.0675°. Hence, it is possible to capture a maximum of 5333
different perspectives of the finger. Located on the right side of the device is the
image sensor, an IDS Imaging UI-1240ML-NIR industrial NIR-enhanced camera



10 Different Views on the Finger—Score-Level Fusion ... 267

[17]. It has a max. resolution of 1280 x 1024 pixels, a max. frame rate of 25 fps
and is equipped with a Fujiflim HFOHA-1b 9mm 2/3" wide-angle lens [18]. To
reduce the influence of ambient light, an additional NIR long-pass filter (MIDOPT
LP780 [19], with a cut-off wavelength of about 750 nm and a useful range of 780—
1000 nm) is mounted on top of the camera lens. The illumination module is located
on the opposite side of the image sensor (the left side in Fig. 10.2). Our multi-
perspective finger vein capture device is based on the light transmission principle.
Instead of typical NIR LEDs the illumination module consists of five NIR laser
modules with a peak emission wavelength of 808 nm placed in a strip. Laser diodes
have several advantages over LEDs, especially, if the finger is not placed directly
on top of the illumination module as mentioned in Chapter [6]. Due to the rotating
principle of the biometric capture device, it is not possible for the finger to touch
the illumination module, which prevents the use of LEDs without impacting the
image quality. Each laser module consists of a NIR laser diode, a control PCB for
the laser diode and a housing with a focus-adjustable lens. The plane of focus of
the laser modules is set at the axis of rotation where the finger is placed, leading
to the highest possible amount of illumination at the position of the finger. Each of
the laser modules can be brightness controlled separately (by adjusting the operating
current) and independently, enabling a uniform illumination along the whole finger.
The finger is put into the capture device at its axis of rotation (in the centre of the
image in Fig. 10.2). A fingertip stabiliser (a custom 3D printed part which inside is
shaped like the outside of a fingertip) is located at the inside bottom of the rotating
part and a height-adjustable finger trunk stabiliser, which is basically a wooden plate
with a hole in the middle is located above the rotating part. These finger stabilisers
help to reduce finger movements during one acquisition run to a minimum. The finger
is put into the capture device so that its tip is inside the fingertip stabiliser, pushing
the height-adjustable plate down. Afterwards, this individual finger height is fixed
using four screws on the top of the scanner and remains fixed until a new finger is
to be captured. All parts except the stepping motor, the camera including the lens
and NIR long-pass filter) are self-designed and manufactured by ourselves, including
several 3D printed parts, the wooden housing of the rotating part, the housing of the
control board, the control board itself and the aluminium frame.

The acquisition process is semi-automated. At first, the subject has to put the finger
into the device. Then the height of the finger trunk stabiliser plate has to be adjusted
and the operator initiates one capturing run (360° around the finger’s longitudinal
axis), starting the automated part of the acquisition process.

During this automated data acquisition part, the illumination for each laser module
is set automatically by the help of an automated brightness control algorithm. This
algorithm tries to achieve a sufficient and uniform illumination along the finger in
order to obtain an optimal image contrast. It evaluates the average grey level of the
image area around the centre of each laser module i (GL.,,,,,,) and compares this
value to a predefined target grey level (GL! , ¢er)- If there is a deviation between these
two values, the operating current of the corresponding laser module is adjusted:

GLiy 0 —GLi

Icim = % . 1;%;, where G Ly, is the maximum grey value (255 for 8 bit
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Fig. 10.2 Self-designed multi-perspective finger vein capture device (image originally published
in [2], ©2018 IEEE)

images) and n is the number of the current iteration. Initially, all laser modules are
set to half of their maximum operating current I« (corresponding to its maximum
intensity). The algorithm finishes in at most log, (/max) steps.

After the optimal intensity level for each laser module is set, the video sequence
recording is started. The rotator starts to rotate around the finger and an indicator
LED is turned on to synchronise the video stream. The rotation is stopped when the
rotator reaches its start position again and at this point the indicator LED is turned
off. A few frames later the video sequence recording is stopped too. The videos are
recorded in the MP4 container format using the MJPG video codec with a frame rate
of 15 fps and YUYV colour space. The speed of the rotation and the video frame rate
are synchronised such that a defined resolution (in degree) of images per full rotation
(video frames) is met and the desired degree steps can later be extracted from single,
individual frames without the need for temporal interpolation. The set illumination
intensity remains the same for the whole capturing run until all perspectives are
captured. This ensures the compatibility and comparability of the single, individual
perspectives to each other. The different projections in 1° steps corresponding to
single video frames are then extracted out of the video sequence. The capture device’s
indicator LED is utilised to synchronise the video frames with the beginning and the
end of the rotation. In theory, there should be 361 images per full rotation run (0°
and 360° is captured separately). Due to slight variations in the rotation speed and
the video frame rate, there are between 357 and 362 frames instead of 361. Thus, it
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became necessary to map the frame with the minimum deviation from the desired
rotational angle to the corresponding perspective, resulting in a maximum deviation
of 0.5° from the desired rotation angle.

10.4 Multi-perspective Finger Vein Dataset

With the help of our self-designed multi-perspective finger vein capture device, we
established a multi-perspective finger vein dataset in order to be able to conduct our
multi-perspective score-level fusion experiments. This dataset currently consists of
63 subjects, 4 fingers per subject (index and middle finger of the left and right hand)
and 5 runs per finger. The thumb and the pinky finger were not included as they are
too short compared to the index and middle. The ring finger was skipped as well as
it turned out to be too uncomfortable for the subjects to put it in the capture device
for the whole capturing process. The finger was removed and inserted in the device
again after each run. During each run, a video sequence of a full 360° rotation with a
target resolution of 1° (each frame corresponds to a 1° step) is captured. Figure 10.3
shows the capture device during the data acquisition process. The acquisition process
takes approximately 45 s per capture attempt, hence it takes about 15 min to capture a
single subject, including all four fingers, 5 runs per finger. The whole dataset consists
of 63 x 4 x 5 x 361 = 454,860 images in total. The extracted video frames have a
resolution of 1024 x 1280 pixels and are 8-bit greyscale images stored in png format.

Fig. 10.3 Data acquisition with the multi-perspective finger vein capture device (image originally
published in [2], ©2018 IEEE)



270 B. Prommegger et al.

Age Distribution Country Distribution
25 50
35 70
20 40
< 30 o 160
il Q < =)
8 15 % £ Sa 50 g
8 08 g w0 8
o 10 58 §2 {30 @
10 {20
5 10
5 {10
0 0 [ 0
10-20 20-30 30-40 40-50 50-60 60-70 70-80 AUT GERCHN ITA BRL ETH HUN IRN RUS SLO USA
Age [Years] Country

Fig. 10.4 Age (left, image originally published in [2], ©2018 IEEE) and country of origin distri-
bution (right) for the multi-perspective finger vein dataset

Fig. 10.5 Multi-perspective finger vein dataset example images, from left to right: 0°, 60°, 120°,
180°, 240°, 300° (image originally published in [2], ©2018 IEEE)

The finger is always located in the centre area of the image, thus the images are then
cropped to 650 x 1280 pixels to retain the usable finger area only. Figure 10.5 shows
some example images in different perspectives from 0° to 300°. It can be clearly
seen that the visible vein lines vary among the different perspectives. The black part
at the centre top area in the images results from the finger trunk stabilisation plate,
which is pushed in further or less depending on the length of the finger.

The gender distribution of the 63 subjects is almost balanced with 27 (42.7%)
female and 36 (57.3%) male subjects. The subjects represent a good cross section
among all different age groups, as the age distribution, depicted in Fig. 10.4 left,
shows. There is only a slight overhang among the 20-40 year old subjects. The
youngest subject was 18 and the oldest one 79years old. The subjects are from
11 different countries (Austria, Brazil, China, Ethiopia, Hungary, Iran, Italy, Russia,
Slovenia, USA) while the majority of subjects are white Europeans (73%). The origin
country distribution is depicted in Fig. 10.4 right. The dataset is available for research
purposes and can be downloaded at http://wavelab.at/sources/PLUS Vein-FR/.

10.5 Biometric Fusion

Like every typical biometric recognition system, a finger vein recognition system
consists of five steps/modules: image acquisition, preprocessing, feature extraction,
comparison and the final decision. This recognition tool chain is depicted in Fig. 10.6.
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Fig. 10.6 Basic components of a biometric recognition system including the different levels of
fusion by taking the example of finger veins (second row)

There are two modes, enrolment and authentication. Authentication includes both,
verification as well as identification. During enrolment one or several finger vein
images are captured and the extracted biometric templates are stored in a database.
During authentication a new template is extracted from a newly captured image
and compared against one or more templates stored in the database. The result is
a comparison score. Finally the decision module outputs for the capture subject an
“accept” or “reject” depending on the evaluation of the comparison score against a
threshold.

According to the ISO/IEC TR 24722:2015 standard [20], biometric fusion can
be regarded as a combination of information from multiple sources, i.e. sensors,
characteristic types, algorithms, instances or presentations in order to improve the
overall system’s performance and to increase the systems robustness.! Biometric
fusion can be categorised according to the level of fusion and the origin of input
data. The different levels of fusion correspond to the components of a biometric
recognition system:

e Sensor-level fusion: is also called multisensorial fusion and describes using multi-
ple sensors for capturing samples of one biometric instance [20]. This can either be
done by the sensor itself or during the biometric processing chain. An example of
sensor-level fusion are finger vein images that have been captured using different
wavelength of near-infrared light and fused by merging the different wavelength
bands to obtain one single output image. This can be done by a single biomet-

TRecognition performance is just one aspect. PAD performance (robustness against presentation
attacks) is another aspect to keep in mind.
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ric capture device. Another example is the acquisition and fusion of fingerprint
images captured using optical, electrostatic and acoustic sensors.

e Image-level fusion: during data acquisition, the biometric capture device itself
might be able to capture multiple samples of the same biometric trait and combine
those samples to a single output sample. Image-level fusion corresponds to fusing
several images captured from the same biometric trait but not necessarily within
the sensor device. Image-level fusion can also be applied after preprocessing so
the input to the fusion module is the preprocessed images. One example of image-
level fusion is a finger vein capture device that captures more than one finger
simultaneously and combines the images from the individual fingers into a single
output image, which is also called multi-instance.

e Feature-level fusion: during template creation, several meaningful features,
describing the biometric trait’s properties, are extracted from the preprocessed
images and stored in a feature vector, commonly denoted as biometric template.
Feature-level fusion combines several such feature vectors to form a new, higher
dimensional feature vector which should represent a subject’s biometric traits in a
different and more discriminant way. Dimensionality reduction methods are ben-
eficial in combination with feature-level fusion to extract the most significant and
discriminative features and to save storage space.

e Score-level fusion: during the comparison step, two templates are compared
against each other and a similarity or dissimilarity score is calculated. Score-
level fusion combines two or more of those scores into a new, single score. The
input scores can originate from different comparison modules. They should either
be compatible with each other (e.g. all are similarity scores exhibiting the same
range of possible values) or else a score normalisation technique has to be applied
during the fusion.

e Decision-level fusion: the output of the decision module is a binary one, which
can be interpreted as match/non-match or accept/reject. Decision-level fusion com-
bines two or more of these binary output decisions to a single output one. Usually,
majority of voting schemes are employed at decision-level fusion. Note that at the
decision level, the least information is available (only a binary decision), compared
to the other levels of fusion.

Regarding the origin of the input data, biometric fusion can be categorised into:

e Multi-modal fusion: multiple different types of biometric traits from the same
subject is fused together. A popular example is the fusion of information from
fingerprints and finger veins or iris and periocular.

e Multi-instance fusion: multiple instances of the same type of biometric trait are
fused together. For example, several finger vein images from different fingers of
the same subject or information from both irises of one subject are fused together.

e Multi-presentation fusion: multiple samples of the same instance of biometric trait
is captured and fused, e.g. several finger veins of the same finger is captured and
fused together.
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e Multi-algorithmic fusion: multiple feature representations are generated using the
same input data, e.g. several different finger vein features are extracted with dif-
ferent algorithms from the same input image and fused together.

There is no direct dependency between the origin of the input data and the level of
fusion that is employed.

10.5.1 Fusion in Finger Vein Recognition

This subsection provides an overview of related work in biometric fusion involving
finger veins. The first subsection discusses several single modality fusion approaches.
The second subsection lists multi-modality fusion approaches which include finger
veins among other biometric traits.

10.5.1.1 Single Modality (Finger Vein Only) Fusion

Table 10.1 gives an overview of related work on single modality fusion in finger
vein recognition, i.e. only data from finger veins is utilised during fusion at different
levels. The table lists the level of fusion applied, the origin of the input data to the
fusion, the number of images and subjects contained in the used dataset, the reported
biometric performance (EER if not stated otherwise) and the year of publication,
sorted according to fusion level and year of publication. All the related works listed
in Table 10.1 are described in the following.

Yang and Jia [21] presented a multispectral finger vein fusion approach by fusing
enhanced finger vein images captured in different wavelengths. They applied an
image denoising method followed by image registration and a brightness adjustment
prior to the image-level fusion of images captured in six different wavelength bands.
Their image-level fusion strategy operates pixel-wise and is based on an improved
regional energy integration method in the spatial domain. The comparison scores are
obtained by phase-only correlation. They achieved a minimum EER of 11.02% by
fusing all six bands.

Guan et al. [22] applied feature-level fusion to Wavelet transform based vein
image features. The high- and low-frequency Wavelet features are obtained indepen-
dently and then fused by a simple nearest-neighbour rule. They did several experi-
ments using different training set sizes and arrived at a maximum recognition rate
of 94.35%. Yang and Zhang [23] proposed a feature-level scheme using global and
local features. The local features are extracted using a Gabor filter framework and
the global ones using 2D invariant moments. The fusion itself is performed by a
weighted fusion strategy based on canonical correlation analysis. They reported a
lowest FAR of 1.15% and a FRR of 2.47% for their fused features. Gupta and Gupta
[24] proposed a feature-level fusion approach of two distinct binary vein features (the
features are binary vein images). The first type of features is extracted using repeated
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Table 10.1 Related work in single modality finger vein fusion, ordered according to fusion level
and year of publication

Reference| Fusion Origin Images/subjects | Performance Year
level (EER)
[21] Image Multi-sample 5760/60 11.02% 2012
[22] Feature Single-sample | 2044/292 Recognition 2009
(fingers) rate: 94.35%
Single-sample | 640/64 FAR: 1.15%, 2010
[23] FRR: 2.47%
Single-sample | 3132/156 2.98% 2015
[24]
Single-sample | 1440/60 0.19% 2016
[26]
Score Single-sample | 1200/100 0.28% 2010
[27]
Multi-instance | 1440/80 0.83% (fusion | 2012
[28] of 3 fingers)
Single-sample | 4000/50 0.011% 2012
[29]
Single-sample | 4080/30 1.56% 2013
[30]
Single-sample | 4260/71 2.63%/0.78% 2013
[31] (680/85)
Single-sample | 3804/634 2.84% 2013
[32] (fingers)
Single-sample | 1440/60 0.27% 2014
[33]
Multi-sample 454860/63 0.04% 2018
(2]
Decision | Single-sample | 1620/54 FAR: 0.0086% | 2009
[35] at 1% FRR

line tracking [25]. The second type of features is obtained by multi-scale matched
filtering. A variational approach is proposed to fuse both feature extraction methods.
The score calculation is conducted by first aligning the two input images with the
help of an affine transformation. The affine transformation matrix is found using
a gradient descent optimisation based on a sum of squared differences cost func-
tion. The authors report a minimum EER of 2.98%. Kauba et al. [26] used different
binary vein feature extraction schemes and applied several advanced feature-level
fusion schemes (COLLATE, STAPLE, STAPLER), which were originally proposed
for segmentation of magnetic resonance imaging (MRI) brain images together with
simple average and majority voting based fusion in the finger vein domain. They
conducted two different sets of experiments exhibiting two different fusion strate-
gies. In the first one, only a single feature extraction scheme was used with a set of
several different feature extraction parameters per input image. The output features
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obtained for the individual parameters where then fused together. In the second set,
different feature extraction schemes were applied per input image and their outputs
were fused. The authors showed that both strategies (single feature extractor as well
as multiple feature extractors) lead to an improvement in the recognition accuracy.
The best EER achieved for the first strategy was 0.29% and for the second one 0.19%
compared to the best EER for the single features of 0.47%.

Zhou and Kumar [27] proposed a score-level fusion scheme for palm vein recogni-
tion based on multiple representations. They extracted four different kinds of features,
two based on their proposed representations. The first ones are using Hessian phase
information from the vein images, the second ones using localised Radon transform
to generate a kind of orientation encoding. The other two ones are based on Ordinal
Code and a Laplacian representation, respectively. These four feature representations
are compared individually to get the output scores which are then fused by apply-
ing a heuristic fusion rule. The authors arrived at a minimum EER of 0.28%. Yang
et al. [28] did a score-level fusion of extracted features from multiple fingers of the
same subject. They used LBP based features and a Hamming distance based com-
parison module to generate the scores. These scores are then fused using a simple
sum rule in combination with triangular norm. Their best reported EER of 0.83%
was achieved by fusion ring, middle and index finger using Frank’s t-norm. In [29]
Kang Park used local as well as global vein features in combination with score-level
fusion. The local features are extracted by the help of LBP and compared using the
Hamming distance. The global ones are Wavelet transform based features which are
compared using the Euclidean distance. The comparison scores are then fused with
the help of a radial basis function based support vector machine. Park reported a
best achieved EER of 0.0011%. Liu et al. [30] proposed a score-level fusion scheme
including pixel as well as super-pixel based finger vein features. LBP, vein pattern
structure based and vein minutiae based features form the pixel based features. The
super-pixel based image segmentation is done using the SLIC method. Histogram,
gradient and entropy features extracted from the super-pixel based segmentation
are then combined and form the super-pixel based features. An Euclidean distance
based comparison of both individual features is performed to calculate the compar-
ison scores. These scores are normalised and fused by using the weighted average
fusion strategy. The weights are tuned to achieve an optimal EER. They reported a
minimum EER of 1.56%. Qin et al. [31] applied score-level fusion to multiple rep-
resentations of the same finger vein pattern. The vein pattern is represented by three
different types of features: finger vein shape based, finger vein orientation based
and SIFT feature point based features. The former two are subregion partitioned
and subregion compared with the help of the SIFT based features, which are treated
individually, leading to three comparison scores. The scores are normalised using
the Z-score normalisation and then fused by applying a weighted-sum rule based
fusion as well as a support vector machine based fusion. They achieved minimum
EERs 0f 2.63 and 0.78%. Lu et al. [32] proposed a score-level fusion scheme based on
Gabor features. Usually, the individual filter responses obtained from the Gabor filter
bank are weighted and/or directly combined into a single output feature. Instead, the
authors extract and compare the output of each single Gabor filter channel separately.
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The corresponding comparison scores are then fused using a simple weighted-sum
rule. The authors were able to get an EER of 2.84% using their proposed method.
Kauba et al. [33] tested different preprocessing cascades in order to improve the indi-
vidual performance of the single finger vein feature extraction schemes. Binary and
SIFT/SUREF based features were compared individually to obtain the output scores.
These scores were normalised using Min-Max normalisation and then fused using
weighted sum/product/average/minimum/maximum fusion rule. The best fusion rule
in terms of lowest EER was chosen accordingly. They were able to achieve a min-
imum EER of 0.27% with the help of score-level fusion compared to a minimum
EER of 0.47% for the single features. In our previous work [2], we performed a
multi-sample score-level fusion of several different perspectives around the finger.
Therefore, we established a multi-perspective finger vein dataset with the help of
our self-designed multi-perspective finger vein capture device, described in Sects.
10.4 and 10.3, respectively. Several different perspectives starting from 2 up to 72
were fused at score-level for 4 different kinds of extracted features using a simple
sum-rule based fusion. We achieved a best overall EER of 0.039% for the fusion of
18 different views and Maximum Curvature [34] features.

Yang et al. [35] proposed a decision-level fusion approach based on three differ-
ent finger vein feature representations. They extracted a topological feature, a local
moment based feature and a vein shape based feature. These features were compared
individually by means of a nearest cosine classifier outputting the class which the
input feature belongs to. These output decisions were then fused by the help of the
Dempster—Shafer algorithm. The authors reported a lowest FAR of 0.0086% at a
FRR of 1%.

10.5.1.2 Multi-modality Fusion Including Finger Veins

In addition to the single modality fusion approaches, several multi-modality fusion
approaches including finger veins as one of the involved biometric traits were pro-
posed. Table 10.2 gives an overview of these approaches, including the reference to
the original publication, the fusion level, the involved biometric traits, the number of
subjects in the dataset used, the reported performance (EER if not stated otherwise)
and the year of publication. Most approaches fuse finger-related biometrics, includ-
ing fingerprint, finger texture, finger shape, finger knuckle and finger veins. There
are only two approaches involving other biometrics than finger-related ones. Razzak
et al. [36] fused face and finger veins and He et al. [37] fused face, fingerprints and
finger veins. Both applied score-level fusion. The number of involved traits varies
between at least two and at most four. Fingerprint is the most prominent one [37-46]
besides finger veins that is included in the fusion followed by finger texture [38, 43,
45, 47-49] as the second most prominent one and finger shape [42, 43, 50-52] as
the third one. The majority of the approaches is based on feature-level and score-
level fusion, there are only two decision-level fusion approaches compared to eight
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Table 10.2 Related work in finger vein fusion, multi-modality fusion involving finger veins, ordered
according to fusion level and year of publication

References | Fusion level Involved traits | Subjects Performance | Year
(EER)
[40] Feature Fingerprint, 40 1.85% FRR 2011
finger veins and 0.97%
FAR
Fingerprint, 64 1.35% FAR at | 2012
[44] finger veins 0% FRR
Fingerprint, 40 1.485% 2012
[46] finger veins
Finger texture, | 220 0.45% 2012
[48] finger veins
Finger texture, | 220 0.435% 2014
[49] finger veins
Finger texture, | 100 0.00796% 2015
[43] finger shape,
fingerprint,
finger veins
Finger texture, | 300 0.415% 2016
[45] fingerprint,
finger veins
Score Finger shape, | 816 0.075% 2010
[51] finger veins
Face, 510 99.8% GAR | 2010
[37] fingerprint, at 0.01% FAR
finger veins
Face, finger 35 5% FAR and | 2010
[36] veins 92.4% GAR
Finger texture, | 312 0.08% 2012
[47] finger veins
Finger shape, | 120 4% 2013
[52] finger veins
Finger shape, |492 1.78% 2014
[50] finger veins
Finger shape, | 100 0.0319% 2014
[42] fingerprint,
finger
knuckle,
finger veins
Finger texture, | 378 0.109% 2015
[38] fingerprint,
finger veins
Decision Fingerprint, 33 1.86% 2011
[41] finger veins
Feature/decision | Fingerprint, 165 0.04% 2016
[39] finger
knuckle,

finger veins
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feature-level and eight score-level ones. All proposed fusion approaches showed a
significant improvement in the recognition accuracy of the fusion compared to using
finger veins only.

10.6 Experimental Analysis

This section describes the experimental part of this chapter. At first, the used subset of
the dataset introduced in Sect. 10.4 is explained. Afterwards, the finger vein recogni-
tion tool chain which is employed during the experimental analysis is described. This
is followed by a presentation of the fusion strategy and the applied score-level fusion
framework. Afterwards, the experimental protocol to determine the FAR and FRR
and consequently the recognition performance in terms of EER/FMR1000/ZeroFMR
is explained. Then the results of the individual fusion strategies are given and dis-
cussed. Finally, this section is concluded with an overall results discussion.

10.6.1 Finger Vein Dataset

To reduce the amount of data during the fusion, we used a subset of the multi-
perspective finger vein dataset [2] only. Not all 360 different perspectives are eval-
uated, but only each fifth one is considered. Thus, there is a total of 73 different
perspectives (503/672; = 72 plus the last one which is 360° = 0° again results in 73).
All 63 capture subjects, 4 fingers per subject and 5 images per view and finger are
considered. This results in a total of 73 x 63 x 4 x 5 = 91,980 images instead of
454,860 for the total dataset.

10.6.2 Finger Vein Recognition Tool chain

The finger vein recognition tool chain includes all steps of a biometric recognition
system starting with the extraction of the Region of Interest (ROI) to preprocessing,
feature extraction and comparison. The input data are the images of the different
individual perspectives acquired from the 3D capture device, the output is a com-
parison score that can be used to determine whether the provided finger belongs to
a certain (enrolled) data subject or not.

ROI Extraction

Prior to the ROI extraction, the finger is aligned and normalised. The alignment
should place the finger always in the same position in the image, independent of the
relative position of the finger during the acquisition. To achieve this, the finger lines
(edge between finger and the background of the image) are detected and the centre
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Fig. 10.7 ROI extraction process (images originally published in [2], ©2018 IEEE)

line (in the middle of the two finger lines) is determined. Afterwards, the centre line
of the finger is rotated and translated in a way that it is placed in the middle of the
image and the image region outside of the finger is masked by setting the pixels to
black. The final step is to extract a rectangular ROI of a fixed size (1100 x 300 pixel)
from a fixed position. The three steps are visualised in Fig. 10.7. The implementation
used is based on the method proposed in [53].

Preprocessing

Preprocessing tries to enhance the low contrast and improve the image quality. In the
following the preprocessing methods, we employed in our finger vein recognition
tool chain are explained.

Simple CLAHE [54] or other local histogram equalisation techniques are most
prevalent according to the literature for this purpose. A localised contrast enhance-
ment technique like CLAHE is a suitable baseline tool to enhance the vein images
as they exhibit unevenly distributed contrast. CLAHE has an integrated contrast
limitation (clip limit) which should avoid the amplification of noise.

High-Frequency Emphasis Filtering (HFEF) [55], originally proposed for hand
vein image enhancement tries to enhance the vein images in the frequency domain. At
first, the discrete Fourier transform of the image is computed, followed by the appli-
cation of a Butterworth high-pass filter of order n. The authors originally proposed
to use a global histogram equalisation but we decided to apply CLAHE instead.

Circular Gabor Filter (CGF) as proposed by Zhang and Yang [56] is another
finger vein image enhancement technique which is rotation invariant and achieves an
optimal joint localisation in both, the spatial and the frequency domain. The authors
originally suggested to use grey level grouping for contrast enhancement but we
again apply CLAHE instead.

Furthermore, the images were resized to half of their original size, which not only
speeded up the comparison process but also improved the results. For more details on
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the preprocessing methods, the interested reader is referred to the authors’ original
publications.

Feature Extraction

We used five different feature extraction methods. The first three techniques discussed
aim to extract the vein pattern from the background resulting in a binary image (vein
pattern based methods) followed by a comparison of these binary images using
a correlation measure. All algorithms are well-established finger vein recognition
algorithms. We used the publicly available implementations published in [5].

Maximum Curvature (MC [34]) aims to emphasise only the centre lines of
the veins and is therefore insensitive to varying vein widths. The first step is the
extraction of the centre positions of the veins by determining the local maximum
curvature in cross-sectional profiles obtained in four directions: horizontal, vertical
and the two oblique directions. The cross-sectional profile is determined based on
the first and second derivates. Then each profile is classified as either being concave
or convex, where only the local maxima belonging to a concave profile indicate a
vein line. Afterwards, a score according to the width and curvature of the vein region
is assigned to each centre position and recorded in a matrix called locus space. Due
to noise or other distortions, some pixels may not have been classified correctly at
the first step, thus the centre positions of the veins are connected using a filtering
operation in all four directions taking the 8-neighbourhood of pixels into account.
The final binary output image is obtained by thresholding of the locus space using
the median as a threshold.

Principal Curvature (PC [57]): At first the gradient field of the image is cal-
culated. In order to prevent the unwanted amplification of small noise components,
a hard thresholding which filters out small gradients by setting their values to zero
is done. Then the gradient at each pixel is normalised to a magnitude of 1 to get a
normalised gradient field. This normalised gradient field is smoothed by applying a
Gaussian filter. The next step is the actual principal curvature calculation. The cur-
vatures are obtained from the Eigenvalues of the Hessian matrix at each pixel. The
two Eigenvectors of the Hessian matrix represent the directions of the maximum and
minimum curvature and the corresponding Eigenvalues are the principal curvatures.
Only the bigger Eigenvalue which corresponds to the maximum curvature among
all directions is used. The last step is a threshold based binarisation of the principal
curvature values to arrive at the binary vein output image.

Gabor Filter (GF [47]): Gabor filters are inspired by the human visual system’s
multichannel processing of visual information and have been widely used in biomet-
rics. A Gabor filter is a Gaussian kernel function modulated by a sinusoidal plane
wave. Kumar and Zhou [47] proposed a Gabor filter based finger vein extraction
approach. Therefore, a filter bank consisting of several 2D even symmetric Gabor
filters with different orientations (in 7- steps where k is the number of orientations) is
created. k feature images are extracted by filtering the vein image using the different
filter kernels contained in the Gabor filter bank. The final feature image is obtained
by summing all the single feature images from the previous step and thresholding
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the resulting feature image. This image is then post-processed using morphological
operations to remove noise to get the final binary vein output image.

In contrast to the vein pattern based techniques described above, two key-point
based techniques were used. Key-point based techniques try to use information from
the most discriminative points as well as considering the neighbourhood and context
information around these points by extracting key-point locations and assigning a
descriptor to each detected key-point location.

The first one is a Scale-Invariant Feature Transform (SIFT [58]) based tech-
nique with additional key-point filtering along the finger boundaries to suppress
information originating from the finger shape instead of the vascular pattern. This
technique was originally proposed by Kauba et al. [33].

Deformation-Tolerant Feature Point Matching (DTFPM [13]): The second
key-point based technique replaces the conventional SIFT descriptor and key-point
detector by vascular pattern tailored ones. This method is robust against irregular
shading and vein deformations due to posture changes. At first, the authors apply a
technique originally proposed by Yang and Yang [59] for enhancing the vein images.
Then a minimum-curvature map is calculated from the enhanced vein images based
on Eigenvalue analysis. The feature point locations are determined from this curva-
ture image (smaller Eigenvalue) at any point where the vein shape is non-linear. The
feature descriptor takes the vein shape around the key-point location into account
and is extracted from the so-called vein pattern map (larger Eigenvalue). The feature
vector contains a quantification of the different vein directions inside a variable-sized
window around the key-point location. The descriptor is normalised with the help
of a finger shape model in a way that the descriptor area becomes smaller the closer
the key-point location is to the finger boundaries. The authors claim that their pro-
posed method is tolerant against several different types of finger posture changes,
e.g. longitudinal finger rotation, translations and bending of the finger.

Comparison

For the comparison of the binary feature images we extended the approach in [25]
and [34]. As the input images are neither registered to each other nor aligned, the
correlation between the input image and in x- and y-direction shifted versions of the
reference image is calculated. The maximum of these correlation values is normalised
and then used as the final comparison score.

The SIFT features are compared by finding their nearest neighbours/best corre-
spondences and calculating a score based on the distances between the corresponding
key-points.

DTFPM employs a deformation tolerant comparison strategy by using non-rigid
registration. At first, the correspondences between the key-points in the two images
for comparison are found. These correspondences are filtered using a local and global
histogram technique based on the relative distances between the corresponding key-
points. After this filtering step, the key-point coordinates of one of the involved
feature vectors are transformed by applying a non-rigid transformation based on an
outlier-robust thin-plate spline model as proposed in [60]. Afterwards, the corre-
spondences between the adjusted key-points are determined again. These updated
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correspondences are filtered by a comparison of the descriptor distances with fixed
thresholds. The final comparison score is determined as the ratio of the matched
points and the sum of the number of detected key-points in both images.

10.6.3 Score-Level Fusion Strategy and Toolkit

We applied three different fusion strategies. The first strategy involves the fusion of
all possible combinations of pairs of distinct views (which are (}) = (7)) = 2628
combinations, 73 different views are considered) as well as all possible three tuples
of distinct views (which are (23) = 62196 combinations) for each of the five-feature
extraction methods. As motivated in the introduction, it is beneficial if the number
of involved views is as little as possible to reduce the complexity and the production
costs of the biometric capture device and to be able to build such a device without
any moving parts. Thus, only pairs and three tuples are considered here. The sec-
ond strategy employs the fusion of all possible combinations of feature extraction
methods per view. There are (;) + (g) + (Z) + (g) = 26 combinations per perspec-
tive, resulting in a total of 10,830 different fusion combinations. Here, our aim is to
identify the best combination of features for each individual view which does not
necessarily have to be the same across all the different views. The third strategy is a
combination (fusion) of the best results obtained during the first and second one.

All three fusion strategies are applied at score-level. The second strategy could be
applied at feature-level too, but not for all the involved feature extraction types as they
are not compatible with each other. The feature-level fusion of MC, PC and GF is
possible while the fusion of DTFPM and SIFT with any of the other feature extraction
types is not possible. Feature-level fusion is not possible for the first strategy at all,
as there is no meaningful way to combine the features of different perspectives, e.g.
by merging the extracted vein lines or using majority voting as the visible vein lines
differ for each view. Score-level fusion usually performs better than decision-level
fusion, as there is more information available at the score level and there are more
variants to fuse the individual scores. Hence, we decided to apply score-level fusion
in all three fusion strategies.

In our previous work [2], a simple sum based fusion rule, without any weights
for the input scores, was applied. In this work, a more advanced score-level fusion
approach, namely the BOSARIS toolkit [14] is utilised. BOSARIS provides a MAT-
LAB based framework for calibrating, fusing and evaluating scores from binary
classifiers and has originally been developed for automatic speaker recognition. It
can be applied to any biometric trait where two alternate classes are distinguished
(genuine/impostor). The toolkit provides several functionalities, e.g. a normalised
Bayes error rate plot, ROC and DET plots, including efficient algorithms to gen-
erate these plots for large score files, logistic regression solutions for the fusion of
several subsystems, solutions for calibration (mapping scores to likelihood ratios),
a logistic regression optimiser and an efficient binary score file format. During this
work, we only harness the fusion capabilities of BOSARIS though. BOSARIS needs
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a supervised training phase where combination weights are trained based on logistic
regression in order to fuse multiple input systems into a single output one providing
well-calibrated log-likelihood-ratios. This is achieved by employing a general pur-
pose, unconstrained convex optimisation algorithm, which is used to train the logistic
regression fusion and calibration methods. Hence, BOSARIS needs a training set of
data to find the optimal combination of weights for the actual fusion in order to min-
imise the classification error and thus to maximise the recognition performance based
on the fused output scores. BOSARIS has the option to set a target prior according
to the costs of a miss and a false alarm for the training phase of the fusion. We set
this target prior to 0.5 assuming that the costs of a miss and a false alarm are both
weighted equally.

10.6.4 Evaluation Protocol

The experiments are split into four parts: in the first part, we analyse the recognition
performance of all single perspectives. Every perspective is considered as a separate
dataset. Here, we do not perform any cross-projection comparison. The images are
processed as described in Sect. 10.6.2 and 73 projections all around the finger in 5°
steps are extracted. The recognition performance is quantified in terms of the EER
as well as the FMR1000 (the lowest FNMR for FMR = 0.1%) and the ZeroFMR
(the lowest FNMR for FMR = 0%). The performance values are calculated for each
single perspective. For the parameter optimisation, the data set is divided into two
roughly equal-sized subsets. The division is based on the contained subjects, i.e.
all fingers of the same person are in one subset. Each subset is used to determine
the parameters which are then applied to the other subset. This ensures a 100%
separation of the data used for determining the optimal parameters and the actual
test set. The necessary comparison scores for the FAR/FRR calculation, which is
the basis for the EER/FMR1000/ZeroFMR calculation, are determined according to
the test protocol of the FVC2004 [61]: to compute the genuine scores, all possible
genuine comparisons are done. Instead of computing all possible impostor scores
only the first image of a finger is compared against the first image of all other
fingers. The final results are evaluated based on the combined scores (genuine and
impostor) of both test runs. The parameter optimisation is executed only for the
palmar dataset. The same parameter settings are also applied for the experiments
on the other perspectives. The resulting number of comparisons for both subsets are
listed in Table 10.3. All performance-related result values are given in percentage
terms, e.g. 0.04 means 0.04%.

In the second part of our experiments, we fuse different features originating
from the same feature extraction method but extracted from different perspectives as
described in Sect. 10.6.3. The third part of the experiments is dedicated to a multi-
algorithm fusion. We fuse all possible combinations of the five employed feature
extraction methods at score level based on the scores obtained during the first part
of the experiments, resulting in 2-, 3-, 4- and 5-tuples. In the last part, we com-
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Table 10.3 Number of comparisons for each subset

Name Subjects Genuine Impostor Total
Subset 1 32 1280 8128 9408
Subset 2 31 1240 7626 8866
Total 63 2520 15,754 18,274

bine the two strategies of multi-perspective and multi-algorithm fusion. Based on
the results from the two individual fusion strategies we determine the best possible
combinations/fusion of perspectives and feature extraction methods. All four parts
are evaluated using the same protocol to determine the performance figures. For
all fusion experiments, the input data are the comparison scores generated during
the single perspective experiments. We apply a fivefold cross-validations procedure,
where we use every fold once for the training of the fusion module. The determined
fusion parameters are applied to the test data consisting of the four remaining folds.
The final results are evaluated based on the combined scores (genuine and impostor)
of all five test runs.

We provide the scores files for each individual perspective and feature extraction
methods as well as a script to run BOSARIS and generate all the fused scores files
and performance figures we used during our experiments. These files and the scripts
can be downloaded at http://www.wavelab.at/sources/Prommegger19b/.

10.6.5 Single Perspective Performance Results

The single perspective analysis for MC, PC, GF and SIFT have already been carried
out in our previous work [2]. We added DTFPM as an additional key-point based
recognition scheme. We had to change our ROI extraction to make the ROIs compat-
ible with DTFPM. Our previous ROI approach selected a fixed size rectangle placed
at the centre of the finger, independent of the finger’s width. DTFPM is sensitive
to parts of the finger outline and background areas that are contained in the input
images and expects the finger width normalised to the ROI height. Thus, we updated
our ROI extraction scheme as described in Sect. 10.6.2 and recalculated the results
for the already evaluated algorithms based on the new ROIs. Note that due to the
new ROIs these updated results are different from our previous work. Figure 10.8 top
shows the results in terms of EER. There are two lines for every method: the thin line
shows the actual EER value, the thicker line is a smoothed version calculated based
on the EER using a moving average filter of size 5, which should highlight the trend
of the recognition performance. The images captured of neighbouring views contain
quite a similar vein structures (note that our step-width is 5°), thus the recognition
performance is similar too. The best results are obtained around the palmar (0°, 360°)
and dorsal (180°) region. The results of the perspectives in-between are inferior. This
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Fig. 10.8 Recognition performance for different projections: EER (top) and relative performance
degradation in relation to the best performing view (bottom)

is due to the fact, that they contain fewer visible vein lines and thus fewer vein infor-
mation than the palmar and dorsal view. Figure 10.9 shows the original ROI, the ROI
after preprocessing and the extracted features (using MC) for the views 0°, 90°, 180°
and 270°. It reveals that the 90° and 270° views contain less vein information than
the palmar and dorsal view. Moreover, the vein extraction algorithms include some
features related with the texture of the finger. This is especially visible at 180° where
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Perspective: 0° Perspective: 90° Perspective: 180° Perspective: 270°

Fig. 10.9 ROI (first row), enhanced images (second row) and extracted MC features (third row)
for different projections (originally published in [2], ©2018 IEEE). Note that there are less vein
lines visible for 90° and 270° compared to 0° and 180°

some of the features are related with the finger knuckles instead of veins. These
features are visible as horizontal lines in the feature image.

For the key-point based algorithms, especially SIFT, the palmar region exhibits
a better performance than the other perspectives as well, but the best performance
is achieved around the dorsal region. For SIFT this can be explained based on the
employed preprocessing: only image (vein) enhancement and no vein extraction
(binarisation) ahead of the SIFT key-point calculation is applied. Hence, the non-
vein finger texture information is not suppressed in the input images of SIFT. Espe-
cially, the structure of finger knuckles seem to contain a lot of additional information
which SIFT is able to exploit during feature extraction. Finger knuckles have been
introduced by Zhang et al. [62] as an independent biometric characteristic. Yang
et al. [63] experienced a similar behaviour. They fused the finger texture of the dor-
sal view with the vein structure of the palmar view which leads to an improvement in
the recognition performance. Consequently, the additional information originating
from the finger knuckles and the finger texture present at the dorsal view leads to the
superior performance of SIFT for the dorsal view compared to the palmar one.

Table 10.4 lists the information regarding the best and worst perspective for each
feature extraction method. MC, PC and GF perform best around the palmar view
(note that 360° = 0°), while SIFT and DTFPM perform best around the dorsal view.
The overall best result was achieved for MC at 0° with an EER of 0.44% (40.15)
where the number in brackets is the confidence interval. For all feature extraction
methods, the worst results can be reported around 270°. The Relative Performance
Degradation (RPD) of the different perspectives is visualised in Fig. 10.8 bottom. The
RPD, stated in Eq. (10.1), is calculated with respect to the minimum EER (EERFT
reached for a certain feature extraction method, where EERST. ., is the EER of
the current perspective. The maximum performance degradation across the different
algorithms is between 200 and 800%.

EER'T — EERfT

T perspective min
RPDperspective - EERFT (101)

min
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Fig. 10.10 Recognition performance among the different projections: FMR1000 (top), ZeroFMR
(bottom)

The FMR1000 and ZeroFMR are visualised in Fig. 10.10 top and bottom, respec-
tively. They follow the same trend as the EER: a good performance around the palmar
and dorsal region and an inferior one for the views in between.
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Table 10.4 Best/worst single perspective results per feature extraction method and single perspec-
tive

Feature | Best perspective Worst perspective
type
View EER FMR1000 | ZeroFMR | View EER FMR1000 | ZeroFMR

MC 0° 0.44 0.76 1.15 260° 2.67 4.46 7.69
(£0.15) (£0.37)

PC 10° 0.60 0.87 1.35 280° 2.47 5.02 9.79
(£0.18) (£0.36)

GF 0° 1.55 2.54 5.13 275° 8.87 18.76 22.54
(£0.28) (£0.65)

SIFT 180° 0.55 1.35 6.98 265° 533 20.67 42.98
(£0.17) (£0.53)

DTFPM | 160° 0.56 1.31 3.13 285° 2.87 8.51 12.56
(£0.17) (£0.38)

10.6.6 Multi-perspective Fusion Results

In the second part of our experiments, we analyse the impact of fusing the extracted
features of the same feature extraction method from multiple perspectives (MPF). In
detail, we evaluate the fusion of all possible pairs and three tuples.

The first part of this section deals with the fusion of all possible pairs. Figure 10.11
shows heat maps of the EER for all combinations per feature extraction method (top
row: MC, PC, bottom row: GF, SIFT and DTFPM). The perspectives involved in
the fusion are plotted on x- and y-axis, whereas the performance in terms of EER is
visualised using a colour scheme from light/white which corresponds to a low EER
(good performance) to dark/red which corresponds to a high EER (bad performance).
The actual logarithmic scale is given in the colour bar on the right side of the plots.
Note that the results are symmetric with regard to the main diagonal (45°). This
diagonal corresponds to the single perspective performance results and is visible as
dark line (high EER) in all five plots.

According to the performance analysis of the single perspectives (Sect. 10.6.5),
the palmar and dorsal region perform best. Although, there are slight variations
among the different feature extraction methods, the results obtained from the single
perspectives are confirmed by the two-perspective fusion: a combination of two
perspectives including the palmar (close to 0°, 360°) or dorsal (close to 180°) region
always results in a good recognition performance. A fusion of two views in-between
those two regions result in an inferior performance. For MC, PC and GF the EER
for all fusion combinations including the palmar (area along the outer edges of the
plot) and dorsal view (cross lines in the centre) perform better (light, white to yellow
colours) than fusion combinations without these views (dark, orange to red colours),
achieving the best results when both regions are fused (light, white colour).
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Fig. 10.11 Recognition performance for two-view fusion. Top row: MC (left), PC (right), bottom
row: GF (left), SIFT (middle) and DTFPM (right)

Both key-point based methods show a different behaviour. The fusion of the
palmar and dorsal region is still superior to all other fusion combinations, but SIFT
and DTFPM perform well if the dorsal perspective is included in the fusion in general.
This can also be seen in the plots as the 180° cross shows light, white to yellow colours
which indicates a good performance. For SIFT, this is even more pronounced than
for DTFPM.

Table 10.5 lists the best results in terms of EER, FMR1000 and ZeroFMR for
each feature extraction method in detail. MC when fusing 0° and 180° achieves the
overall best performance with an EER of 0.12%. For the evaluation of the results, the
single perspective baseline EER and the relative performance increase (RPI) with
respect to the baseline EER, as calculated in Eq. (10.2), are stated. The performance
increase compared to the best single view result is between 110% (PC) and 270%
(MC), which corresponds to a 2-3.5 times lower EER than the single perspective
performance, respectively.

EERBaseline - EERFusion

RPI = (10.2)
EERF usion

In addition to all pairs, all possible triples are evaluated. Table 10.6 shows the five
best performing combinations per feature extraction method. Again the single per-
spective baseline EER and the relative performance increase is included. The highest
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Table 10.5 Best two-perspective fusion results per feature extraction method. Best result is high-
lighted bold font. For comparability also the single perspective baseline EER and the relative
performance improvement (based on the single perspective performance) is included

Feature | 2 Perspective fusion Single perspective | Rel.
type Perf.
View 1 |View2 |EER FMR1000 | ZeroFMR | View EER Incr. [%]

MC 0° 180° 0.12 0.12 0.16 0° 0.44 264.90
(£0.08)

PC 10° 190° 0.28 0.36 0.56 10° 0.60 113.14
(£0.12)

GF 140° 360° 0.60 0.80 1.56 0° 1.55 156.48
(£0.18)

SIFT 165° 205° 0.17 0.36 1.63 180° 0.55 229.72
(£0.09)

DTFPM 0° 160° 0.24 0.32 1.55 160° 0.56 132.27
(£0.11)

recognition performance improvement is between 150% for PC and 1100% for MC
which is in any case better than the best two-perspective fusion (see Table 10.5). The
overall best result with an EER of 0.036% is achieved using MC when fusing the 5°,
170° and 235° view.

Table 10.6 also includes the perspectives of interest. It is striking, that once again
a lot of combinations include perspectives close to the palmar (0°, 360°) and dorsal
(180°) regions. Thus, we additionally analysed the occurrence of the palmar and
dorsal view in the top 25 results for each feature extraction method. All angles
within a certain range around 0° and 180° are mapped to the palmar and dorsal
region, respectively. Three different mapping ranges are evaluated: +15° (345° —15°,
165° —195°), £20° (340°—20°, 160° —200°) and 4 25° (335°—25°, 155°—205°).
The results are presented in Table 10.7. It turns out that the best performing individual
region (palmar for MC, PC, GF and dorsal for SIFT and DTFPM) is present in most
of the top 25 fusion combinations. At a mapping range of £25° it is even included
in at least 96% of the top 25 results. For this mapping range also the opposite region
is part of at least 80% of the combinations, except for GF (only 24%). For GF, this
can be explained by the big performance difference of palmar (~1.5%) and dorsal
region (~3.6%).

In order to be able to decide whether a three-perspective fusion is beneficial com-
pared to a two-perspective approach, one way is to calculate the significance of the
recognition performance improvement. We use the method proposed in [64] to cal-
culate a boundary for the significance from the achieved EERs. Table 10.8 lists the
x? values in detail. The following translations of x? values into p, values can be used
to interpret the values stated in the table: x> = 6.6 corresponds to p, = 0.01(=1%),
x> =17.9 to p, = 0.005(=0.5%) and x> = 10.8 to p, = 0.001(=0.1%). Thus, all
performance improvements exhibiting x? > 6.6 are regarded as significant. The
resulting x? values indicate that a fusion of two and three perspectives lead to
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Table 10.6 Recognition performance for three-view fusion: five best results per feature extraction
method. Best result per feature extraction method is highlighted bold font. For comparability also
the single perspective baseline EER and the relative performance improvement (based on the single
perspective performance) is included

Feature | 3 Perspective fusion Single perspective | Rel.
type Perf.
View 1 | View 2 | View 3 | EER FMR1000 | ZeroFMR View EER Impr.
[%]
MC 5° 170° 235° 0.036 0.040 0.240 0° 0.44 1111.78
(£0.04)
0° 210° 235° 0.036 0.040 0.120 1107.27
(0.04)
10° 165° 215° 0.039 0.040 0.159 1019.25
(£0.05)
20° 160° 235° 0.039 0.040 0.040 1014.94
(£0.05)
165° 235° 355° 0.039 0.040 0.159 1014.94
(£0.05)
PC 10° 175° 200° 0.238 0.401 0.602 10° | 0.60 150.21
(£0.11)
20° 205° 235° 0.239 0.319 0.638 149.65
(£0.11)
175° 235° 360° 0.239 0.399 0.518 149.65
(£0.11)
140° 190° 360° 0.239 0.282 0.524 149.59
(£0.11)
155° 210° 360° 0.239 0.399 0.839 149.45
(£0.11)
GF 125° 225° 360° 0.284 0.401 1.325 0° 1.55 446.48
(£0.12)
90° 205° 360° 0.313 0.638 1.794 394.98
(£0.13)
75° 140° 360° 0.321 0.442 1.165 383.32
(£0.13)
120° 220° 355° 0.321 0.758 1.475 383.09
(£0.13)
120° 200° 360° 0.321 0.481 0.882 382.82
(£0.13)
SIFT 165° 205° 350° 0.058 0.040 0.635 180° 0.55 857.58
(£0.05)
20° 170° 210° 0.075 0.040 0.714 643.62
(£0.06)
170° 205° 350° 0.081 0.079 0.476 585.30
(£0.06)
170° 205° 335° 0.081 0.079 0.635 585.30
(£0.06)
140° 205° 350° 0.081 0.079 0.714 585.30
(£0.06)

(continued)
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Table 10.6 (continued)

Feature 3 Perspective fusion Single perspective | Rel.
type Perf.
View 1 | View 2 | View 3 | EER FMR1000 ZeroFMR View EER Impr.
[%]
DTFPM 5° 160° 280° 0.159 0.559 1.837 160° 0.56 249.88
(£0.09)
0° 180° 295° 0.162 0.439 1.276 243.31
(£0.09)
15° 160° 295° 0.162 0.439 1.637 243.04
(£0.09)
0° 180° 185° 0.165 0.437 1.033 237.24
(£0.09)
0° 180° 245° 0.169 0.439 2.396 228.78
(£0.09)

Table 10.7 Analysis of the occurrence of palmar and dorsal views per feature extraction method
in the 25 best three-perspective fusions. Both means that palmar and dorsal are present at the same
combination.

Feature | Max distance £15° Max distance +20° Max distance +25°
type
(%)

Palmar | Dorsal | Both Palmar | Dorsal | Both Palmar | Dorsal | Both
MC 84.0 |52.0 40.0 92.0 76.0 68.0 100.0 84.0 84.0
PC 92.0 |68.0 68.0 100.0 68.0 68.0 100.0 80.0 80.0

GF 100.0 8.0 8.0 100.0 16.0 16.0 |100.0 24.0 24.0
SIFT 80.0 |88.0 68.0 84.0 88.0 72.0 92.0 96.0 88.0
DTFPM| 92.0 |60.0 56.0 100.0 |100.0 |100.0 |100.0 |100.0 |100.0

a significant improvement compared to the single view performance, whereas the
improvement for a three perspective fusion compared to fusing two views is lower
but still significant for MC, GF and SIFT.

10.6.7 Multi-algorithm Fusion Results

This time different feature extraction methods per perspective are fused (MAF)
instead of perspectives per feature extraction method. We evaluate all possible pairs,
triples, quadruples and the combination of all five- feature extraction methods, result-
ing in 26 different combinations per perspective. Figure 10.12 shows the best fusion
result per number of fused feature extraction methods. The best result, for example,
two-feature extraction methods included in the fusion at 0° means that the best per-
forming pair of features in terms of EER of all pairs calculated at 0° is depicted. It
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Table 10.8 Estimated x2 from the EER for multi-perspective fusion. Best results per number of
involved views is highlighted bold font

Feature Best EER for [n] involved views Significance ny — np (x? value)

extraction

method
n=1 n=2 n=3 n=1-n=2 n=1-n=3 n=2—-n=3

MC 0.44 0.12 0.036 33.415 62.660 8.265
(£0.15) (£0.08) (£0.04)

PC 0.60 0.28 0.238 21.264 28.576 0.622
(£0.18) (£0.12) (£0.11)

GF 1.55 0.60 0.284 76.708 159.698 20.642
(£0.28) (£0.18) (£0.12)

SIFT 0.55 0.17 0.058 36.650 72.755 10.054
(£0.17) (£0.09) (£0.05)

DTFPM | 0.56 0.24 0.159 23.391 140.869 3.005
(£0.17) (£0.11) (£0.09)
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Fig. 10.12 Recognition performance for multi-algorithm fusion: best result in terms of EER per
number of feature extraction methods fused is depicted for each perspective

can be seen that even the fusion of two-feature extraction methods increases the per-
formance remarkably. Adding the third feature extraction method further improves
the result, whereas fusing four- or five-feature extraction methods does not further
improve the recognition performance significantly.

Table 10.9 lists the results of the MAF in more detail. The column occurrence
states how often in terms of perspectives a feature extraction method combination
performs superior to all other combinations of the same number of included feature
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Table 10.9 Multi-algorithm fusion results per number of included features. Occurrence indicates
the numbers of perspectives for which the specified combination achieves the best score, the given
EER values are calculated over all perspectives. The two view columns state at which view the best
and worst performance has been achieved. The best result per number of included feature extraction
methods is highlighted bold face

# Features |Feature types Occurrences Best Avg Worst
included
EER View | EER EER View
1 MC 34 (46.58%) |0.44 0° 1.46 2.67 260°
(£0.15) (£0.37)
PC 19 (26.03%) |0.60 10° 1.47 2.47 280°
(£0.18) (£0.36)
DTFPM 16 (21.92%) |0.56 160° 1.71 2.87 285°
(£0.17) (£0.38)
SIFT 4 (5.48%) 0.55 180° 2.75 5.33 265°
(£0.17) (£0.53)
GF - 1.55 0° 4.89 8.87 275°
(£0.28) (£0.65)
2 PC, DTFPM 31(42.47%) |0.20 180° 0.66 1.32 205°
(£0.10) (£0.26)
MC, DTFPM 22 (30.14%) |0.13 185° 0.68 1.47 285°
(£0.08) (£0.28)
MC, SIFT 11 (15.07%) |0.12 170° 0.78 1.83 265°
(£0.08) (£0.31)
SIFT, DTFPM 8 (10.96%) 0.16 175° 1.04 2.08 265°
(£0.09) (£0.33)
MC, PC 1 (1.37%) 0.32 10° 0.95 1.95 285°
(£0.13) (£0.32)
PC, SIFT - 0.24 180° 0.92 1.88 265°
(£0.11) (£0.31)
GF, DTFPM - 0.32 180° 1.17 2.32 265°
(£0.13) (£0.35)
GF, SIFT - 0.40 170° 1.63 3.56 265°
(£0.14) (£0.43)
MC, GF - 0.44 0° 1.39 2.54 300°
(£0.15) (£0.36)
PC, GF - 0.51 360° 1.28 2.32 265°
(£0.16) (£0.35)

(continued)
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Table 10.9 (continued)
# Features |Feature types Occurrences Best Avg Worst
included
EER View | EER EER View
3 MC, SIFT, 33 (45.21%) |0.04 170° 0.50 0.99 285°
DTFPM (£0.05) (£0.23)
MC, PC, DTFPM | 23 (31.51%) |0.12 185° 0.52 1.23 205°
(£0.08) (£0.25)
PC, SIFT, 11 (15.07%) |0.12 165° 0.53 0.96 270°
DTFPM (£0.08) (£0.22)
PC, GF, DTFPM | 3 (4.11%) 0.23 245° 0.62 1.31 205°
(£0.11) (£0.26)
MC, GF, DTFPM | 2 (2.74%) 0.16 185° 0.66 1.47 285°
(£0.09) (£0.28)
MG, PC, SIFT 1(1.37%) 0.12 170° 0.64 1.31 265°
(£0.08) (£0.26)
MC, GF, SIFT - 0.12 170° 0.77 1.76 265°
(£0.08) (£0.30)
GF, SIFT, - 0.12 175° 0.82 1.68 265°
DTFPM (£0.08) (£0.30)
PC, GF, SIFT - 0.25 170° 0.82 1.71 265°
(£0.11) (£0.30)
MC, PC, GF - 0.32 0° 0.94 1.91 285°
(£0.13) (£0.31)
4 MC, PC, SIFT, 51(69.86%) | 0.04 170° 0.42 0.88 265°
DTFPM (£0.05) (£0.21)
MC, PC, GF, 10 (13.70%) |0.12 185° 0.51 1.23 205°
DTFPM (£0.08) (£0.25)
MC, GF, SIFT, 9 (12.33%) 0.04 170° 0.50 1.07 275°
DTFPM (£0.05) (£0.24)
PC, GF, SIFT, 3(4.11%) 0.11 185° 0.50 1.00 265°
DTFPM (£0.08) (£0.23)
MC, PC, GF, - 0.09 170° 0.63 1.32 265°
SIFT (£0.07) (£0.26)
5 MC, PC, GF, 73 (100.00%) | 0.04 170° 0.41 0.84 265°
SIFT, DTFPM (£0.05) (£0.21)

extraction methods. The minimum, average and maximum EER are determined based
on the results for all perspectives of the given feature extraction method combination.
Considering single feature extraction methods, MC or PC are included in more than
70% of the best results. GF is not included in any combination that performs best for
any perspective. The results of fusing feature extraction method pairs clearly show
that it is beneficial to fuse a vein pattern based algorithm (MC, PC, GF) to a key-point
based one (SIFT, DTFPM). The combinations of either MC/PC and SIFT/DTFPM
are leading to 98% of the best results in two-feature extraction methods fusion.
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Table 10.10 Estimated 2 from the EER for multi-algorithm fusion

Nr of features |n=1 n=2 n=3 n=4 n=>5
EER 0.44 (£0.15) |0.12 (£0.08) |0.04 (£0.05) |0.04 (£0.05) |0.04 (£0.05)
n=1 - 33.42 60.91 60.91 60.91
0.44 (£0.15)

n=2 33.42 - 7.31 7.31 7.31
0.12 (0.08)

n=3 60.91 7.31 - 0 0
0.04 (£0.05)

n=4 60.91 7.31 0 - 0
0.04 (£0.05)

n=>5 60.91 7.31 0 0 -
0.04 (£0.05)

DTFPM (83%) is involved more often than SIFT (26%). Again, GF is not present
in any of the best combinations. The overall best result with an EER of 0.04% is
achieved when fusing MC, PC, SIFT and DTFPM. Once again, the analysis of the
perspective, at which the best result is achieved, confirms, that views from the palmar
(0°, 360°) and dorsal (180°) region perform best.

Same as for the two-perspective fusion, we also check the performance increase
of three-perspective fusion on its significance. Table 10.10 lists the results in detail.
The resulting x2 values indicate, that a fusion of two or more feature extraction
methods is always beneficial compared to a single feature extraction method. The
same holds true when comparing a two-feature extraction method fusion to a three,
four or five one. However, applying a four or five feature-type fusion instead of a
three feature-type one leads to no significant improvements anymore.

10.6.8 Combined Multi-perspective and Multi-algorithm
Fusion

In this section, we combine multiple perspectives and multiple feature extraction
methods into one combined fusion method (CMPMAF). For the selection of the
relevant perspectives and feature extraction methods we considered the results for
multi-perspective fusion (Sect. 10.6.6) and feature extraction method fusion (Sect.
10.6.7). Although the x? values for the multi-perspective fusion in Table 10.8 are
only boundaries, they still indicate that the performance increase from two to three
perspectives is significant for MC, GF and SIFT. The drawback of adding addi-
tional perspectives is the added cost/complexity to the system (additional camera
and illumination module, higher computational costs). Therefore, we decided that
the significance of the improvement is not high enough to justify the extra effort. As
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Table 10.11 Performance results: Fusion of vein pattern based with key-point based features for
both, palmar and dorsal view. The best result is highlighted bold face

Feature types Perspectives EER FMR1000 ZeroFMR
MC, SIFT 0°, 180° 0.04 (£0.05) 0.04 0.64
MC, DTFPM 0°, 180° 0.08 (£0.07) 0.08 0.12
PC, SIFT 0°, 180° 0.16 (£0.09) 0.16 0.32
PC, DTFPM 0°, 180° 0.16 (£0.09) 0.16 0.24
GF, SIFT 0°, 180° 0.20 (£0.10) 0.20 0.60
GF, DTFPM 0°, 180° 0.20 (£0.10) 0.20 0.28

aresult of this, we only consider the two perspective fusion. The results presented in
Fig. 10.11 and Table 10.5 show that the best results are achieved when fusing palmar
and dorsal view. This behaviour can be confirmed when analysing the occurrence of
certain perspectives of the three-perspective fusion: Table 10.7 states that the palmar
and dorsal region is part of most of the top 25 results. Therefore, we selected 0° and
180° for our combined fusion.

For MAF, the significance analysis (see Table 10.10) indicates that the perfor-
mance increase from a two to a three feature extraction method fusion is significant
but would lead to additional computational costs (for score-level fusion, every fea-
ture extraction method needs to be processed by the whole processing chain up to the
comparison). Thus, we decided to include the two-feature extraction method MAF
into our combined fusion strategy only. Furthermore, the results listed in 10.9 state
that 88% of the best two-feature extraction method fusion combinations include one
vein pattern based (MC, PC, GF) and one key-point based (SIFT, DTFPM) feature.
Therefore, we analysed all possible combinations of those feature extraction methods
using both, palmar and dorsal view. Table 10.11 lists the results of the CMPMAF.
We evaluated all six possible combinations and arrived at a best EER of 0.04% with
a confidence interval of 0.05% for the combined fusion of MC and SIFT for palmar
and dorsal view. This result is 11 times better than the best single perspective result
(MC at 0° with an EER of 0.44%). All other combinations also perform well. The
worst result with an EER of 0.20% is achieved when fusing GF with either SIFT
or DTFPM. This is still more than two times better than the best single perspective
result. For the sake of completeness, we also calculated the results of the best 3-,
4- and 5-MAF combinations with the palmar and dorsal view. These results, listed
in Table 10.12, show that the EER can be further improved. The best result with an
EER of 0 is achieved when fusing the scores of all five feature types.

Table 10.13 compares the performance of the best combined two-perspective two-
algorithm fusion with the best results of all other fusion strategies. One can see that
the calculated x2 indicates a significant performance improvement with respect to
the single perspective, the 2-MPF and the 2-MAF strategy. All other fusion strategies
achieved about the same EER.
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Table 10.12 Performance results: Fusion of vein pattern based with key-point based features for
both, palmar and dorsal view. The best result is highlighted bold face

Feature types Perspectives EER FMR1000 ZeroFMR
MC, SIFT, 000°, 180° 0.04 (£0.04) 0.00 0.36
DTFPM

MC, PC, SIFT, | 000°, 180° 0.01 (£0.01) 0.00 0.12
DTFPM

MC, PC, GF, 000°, 180° 0.00 (£0.00) 0.00 0.00
SIFT, DTFPM

Table 10.13 Comparison of the best two-perspective two-algorithm fusion combination to the best
result of the other fusion strategies including the relative performance improvement, the factor, by
which the EER decreased and the boundary y? for significance

Fusion EER EER Rel. Perf. Factor x2
strategy CMPMAF Impr. [%]

Single 0.44 (£0.15) 1000 11 60.91
perspective

2-MPF 0.12 (£0.08) 200 3 7.31
3-MPF 0.04 (£0.04) 0 1 0.00
2-MAF 0.12 (£0.08) |0.04 (£0.05) 200 3 7.31
3-MAF 0.04 (£0.05) 0 1 0.00
4-MAF 0.04 (£0.05) 0 1 0.00
5-MAF 0.04 (£0.05) 0 1 0.00

10.6.9 Results Discussion

The evaluation of the independent recognition performances for different projections
revealed, that indeed the widely used palmar perspective performed best, followed by
the dorsal one performing second best. The views in-between exhibit a slightly worse
performance, which is still acceptable. Our results indicate that the presence of finger
texture and finger knuckles has a positive influence on the recognition performance.
Figure 10.9 shows, that the well-established feature extraction algorithms not only
extract features resulting from the finger veins but also from the skin texture of the
finger and therefore inherently fuse texture and vein structure. The best single view
result was achieved using MC features at the palmar view with an EER of 0.44%.
However, the main objective of this work was to find a suitable trade-off between
the number of involved views and feature extraction methods and the recognition
performance. In order to arrive at a design decision for a multi-perspective finger
vein capture device, several aspects have to be considered: first of all, the gain in
recognition accuracy, followed by the production costs and complexity of the bio-
metric capture device which is directly related to the number of involved views and
finally the computational complexity of the finger vein recognition system including
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the capturing time, i.e. the total processing time, which is related to both, the number
of different views and the number of different feature extraction methods involved.
Adding more perspectives or feature extraction methods increases the complexity
of the finger vein sensor and the recognition tool chain. For every feature extraction
method, all steps of the recognition tool chain from preprocessing to comparison
need to be executed. Adding further perspectives additionally increases the cost and
complexity of the capture device’s hardware by the need of either adding more cam-
era/illumination modules (one per perspective) or a rotator that moves camera and
illumination module into position. Ideally, the number of perspectives and feature
extraction methods are kept to a minimum. Furthermore, additional aspects like an
improved resistance against presentation attacks and an increased robustness against
environmental influences should be included too. Therefore, the decision on how
many perspectives and feature extraction methods are used has to be a trade-off
between added cost/complexity and improvement of the recognition performance.
Our proposed design is based on the findings during the fusion evaluations.

The multi-perspective fusion results showed that by fusing two independent
views, in particular, the palmar and dorsal view, a significant performance gain can
be achieved. Adding a second perspective improved the recognition performance
between a factor 2-3.5, depending on the feature extraction method. The best result
with an EER of 0.12% was achieved using MC features fusing the palmar and dorsal
view. Adding a third view still improves the performance compared to two perspec-
tives, but not to the same extent (significance) as from a single perspective to the
2-MPF. In this case, the best result of 0.036% EER was achieved using MC when fus-
ing 5°, 170° and 235°. A biometric capture device able to capture the palmar and the
dorsal view simultaneously can be built without any moving parts. Two cameras and
two illumination modules are sufficient. Each additional view poses noticeable extra
costs in terms of hardware (camera and illumination modules) and complexity of the
capture device construction. Therefore, one must decide whether the improvement
in accuracy justifies the extra effort. As our results show, the performance improve-
ment from a 2-MPF to a 3-MPF is not as significant as from a single perspective
to a 2-MPF, a two-perspective capture device, capturing the vein structure from the
palmar and dorsal region is the best choice.

For MAF, a single perspective capturing device is sufficient. Such a biometric
capture device can be built in a more compact and less expensive manner than a multi-
perspective one. Moreover, existing finger vein capture devices acquiring images of
the palmar view, can be utilised to apply multi-algorithm fusion too. However, adding
an additional feature type to the MAF increases the computational cost. The MAF
results showed, that the fusion of different feature extraction methods per single view
improves the overall performance remarkably as well. The best results were obtained
when fusing vein pattern based algorithms (especially MC and PC) with key-point
based methods (SIFT, DTFPM). The best MAF result with an EER of 0.04% was
achieved when fusing MC, SIFT and DTFPM in the dorsal region. Including more
feature types does not improve the performance compared to the 3-MAF. As the
computational complexity for the calculation and comparison of DTFPM features
are higher than for the other features types, and the performance increase compared
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to the best 2-MAF utilising MC and SIFT (EER = 0.12%) features is not as significant
as from a single perspective to the 2-MAF, the best MAF option is a 2-MAF including
MC and SIFT features.

In a third step, we combined MPF and MAF. By using the best performing per-
spectives of the two-perspective approach (palmar and dorsal) and combining them
with a vein pattern based (MC, PC or GF) and a key-point based method (SIFT
or DTFPM), we were able to achieve an EER of 0.04% utilising MC and SIFT.
This corresponds to an improvement by a factor of 11 compared to the best single
perspective performance, while achieving similar results as for the best MPF and
MAF strategies. Adding more feature types to the combined fusion strategy further
improved the result. Combining palmar and dorsal view together with all five feature
types resulted in a perfect result with EER, FMR 1000 and ZeroFMR of 0%.

A multi-perspective finger vein capture device is more resistant against presen-
tation attacks, especially against simple paper printout based attacks. Depending on
the actual construction of the multi-perspective capture device, it might also be more
robust against contamination (e.g. dust and dirt, sun protection lotion or hand cream
on the finger surface) of the finger due to the fact that more than one perspective is
captured. Hence, the two-perspective capture device is the preferred option over the
single perspective, multi-algorithm fusion one regarding these additional aspects.

Taking all the above-mentioned considerations into account, especially the addi-
tional advantages provided by a multi-perspective capture device in terms of resis-
tance against presentation attack and robustness against external influences, the most
preferable option is to design a two-perspective capture device capturing the palmar
and the dorsal view applying a two-algorithm fusion including MC and SIFT features,
whereas by including only one view the advantages of multi-perspective recognition
can not be retained. The second feature extraction method can be included without
involving additional hardware costs just by extending the recognition tool chain and
putting up with the extended processing time, which makes the two-feature version
beneficial in any case. This proposed finger vein capture device set-up arrives at
an EER of 0.04%, which is a performance gain by a factor of 11 compared to the
best single-view, single feature performance. Hence, this option provides an optimal
trade-off between recognition accuracy, construction costs and processing time.

10.7 Conclusion and Future Work

In this chapter, we introduced multi-perspective finger vein recognition. For most
work reported in the literature, only the palmar view is used in finger vein recognition.
However, as the finger is an elliptically shaped cylinder, there are several other views
available all around the finger’s longitudinal axis. In order to be able to exploit
these additional views, a suitable biometric capture device able to capture these
different views is necessary. This chapter is based on our previous work [2], where we
constructed a rotating, multi-perspective finger vein capture device which was then
utilised to capture a multi-perspective finger vein data set. Based on this dataset, the
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recognition performance of each view was evaluated individually. Then we applied
three different score-level fusion strategies, the first one fusing all possible pairs and
triples of distinct views, the second one fusing all different feature combinations
per each single view and the third one combining the first two approaches. The first
strategy was employed to find out the best performing pairs and three tuples of views
in terms of recognition performance. The more views are desired to be captured, the
higher the complexity and production costs of a suitable biometric capture device.
At some point (a certain number of desired views), only a rotating device is able
to capture the desired views. A rotating capture device bears several disadvantages,
e.g. itis more prone to failures and has an increased capturing time. If only a limited
number of views is involved, the production costs and the complexity of the biometric
capture device are kept low. The second strategy was applied to investigate the best
feature extraction method combination per view. The third strategy, which combines
the first two approaches, was applied to find out if the recognition results can be
further improved.

The single view evaluation results confirmed that the widely used palmar per-
spective, followed by the dorsal one (not taking views which are only a few degrees
off from the palmar and dorsal view into account), achieves the best performance in
finger vein recognition. All the perspectives in-between the palmar and dorsal one
exhibit an inferior recognition performance to the palmar and dorsal one. Regarding
the multi-perspective score-level fusion it turned out that a fusion of only two per-
spectives increases the recognition performance significantly, where a fusion of the
palmar and the dorsal view performed best. Adding a third perspective still improves
the results over the two perspective ones, but not to the same extent as the two
perspective ones. The multi-algorithm fusion achieves similar results to the multi-
perspective one, arriving at an EER of 0.04% for the combination of three-feature
extraction methods. A pure multi-algorithm fusion is preferable in terms of hard-
ware costs and capture device’s complexity but does not exhibit the advantages of a
multi-perspective recognition in regards to resistance against presentation attacks and
increased robustness against external influences. By applying both fusion approaches
at the same time for the best performing two perspectives (palmar and dorsal) and the
best performing two distinct feature extraction methods (MC, a vein pattern based
one and SIFT, a key-point based one), we were able to improve the recognition per-
formance by a factor of 11 compared to the best single view result, achieving an EER
of 0.04%.

Regarding recognition performance, hardware costs, processing time and robust-
ness against presentation attacks and external influences the overall best option is to
go for the combined multi-perspective and multi-algorithm fusion. In particular, a
finger vein capture device capturing the palmar and the dorsal view including MC
and SIFT features in a combined fusion provides the best trade-off between the above
mentioned considerations and is, therefore, our preferred design decision.

Future Work

The first step will be the construction of a combined multi-perspective and multi-
algorithm type fusion finger vein capture device to prove its applicability in real-life
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applications of finger vein recognition. We plan to do extended tests with this device,
regarding presentation attacks, robustness against external influences like changing
ambient conditions as well as subject-related influences.

Besides the capture device construction, our future work will include further anal-
ysis using our multi-perspective finger vein dataset. There are several other aspects
besides the single perspective performance and the fusion of multiple perspectives
which can be evaluated based on this dataset. One example is the robustness evalua-
tion of different finger vein recognition algorithms against longitudinal finger rota-
tion, which we already performed in a separate work [65]. We showed that this kind
of rotation poses a severe problem for most algorithms. Since for our dataset the lon-
gitudinal rotation angle is known, we will test different techniques to compensate the
finger rotation, either by estimating the rotation angle based on the captured images
only or by using the known rotation angle and then applying a rotation compensating
transform.

Another interesting question is if the best performing view is consistent across
different subjects/fingers. To perform this analysis we will extend our dataset to
contain at least 100+ subjects and then conduct a subject/finger based analysis to
find out if the palmar perspective is the best one for all or at least a majority of the
subjects/fingers or if there are significant differences.

Another field of interest is finger vein recognition in the 3D space. Therefore,
we want to reconstruct a 3D model of the finger vein structure based on multiple
images captured in different perspectives and apply different feature extraction and
comparison strategies.
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