
Real-Time Scene Understanding Using
Deep Neural Networks for RoboCup SPL

Marton Szemenyei1(B) and Vladimir Estivill-Castro2

1 Budapest University of Technology and Economics, Budapest, Hungary
szemenyei@iit.bme.hu

2 Griffith University, Brisbane, QLD, Australia

Abstract. Convolutional neural networks (CNNs) are the state-of-the-
art method for most computer vision tasks. But, the deployment of CNNs
on mobile or embedded platforms is challenging because of CNNs’ exces-
sive computational requirements. We present an end-to-end neural net-
work solution to scene understanding for robot soccer. We compose two
key neural networks: one to perform semantic segmentation on an image,
and another to propagate class labels between consecutive frames. We
trained our networks on synthetic datasets and fine-tuned them on a
set consisting of real images from a Nao robot. Furthermore, we investi-
gate and evaluate several practical methods for increasing the efficiency
and performance of our networks. Finally, we present RoboDNN, a C++
neural network library designed for fast inference on the Nao robots.

Keywords: Computer vision · Deep learning ·
Semantic segmentation · Neural networks

1 Introduction

Deep learning [10] is rapidly revolutionising the field of computer science. While
deep neural networks (DNNs) have many usages, they are now undoubtedly the
most popular technique in the field of intelligent perception, especially computer
vision. In RoboCup, especially in the SPL league, several teams [7,12,15,17,
19] have used CNNs to classify relevant objects on the soccer field. However,
due to the limitations of the robot’s hardware, these networks were relatively
shallow and were designed to classify fixed-resolution image patches only. This
straightforward design meant that the teams had to use separate object-proposal
methods to feed their network with candidate image regions.

We propose an end-to-end real-time object detection method for the Nao
robots using deep neural networks. Our method combines two separate networks
to achieve high accuracy at reasonable speed. The first network is a deep neural
network trained to perform semantic segmentation (pixel-wise classification) on
the image from the robot’s camera. The second is a smaller network, trained to
propagate the class labels from the previous image onto the next. Our system

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 96–108, 2019.
https://doi.org/10.1007/978-3-030-27544-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_8&domain=pdf
http://orcid.org/0000-0003-1397-6080
http://orcid.org/0000-0001-7775-0780
https://doi.org/10.1007/978-3-030-27544-0_8


Real-Time Scene Understanding Using DNNs for RoboCup SPL 97

is capable of localizing four foreground classes (ball, robot, goalpost, and field
line), without the use of a separate object proposal system.

Furthermore, we also report on the comparison of methods to accelerate deep
neural networks. These techniques include using field edge detection to reduce
the image size without decreasing the resolution of the relevant image parts,
and pruning the weights of the neural network. We also compare with different
network structures and show how to find the optimal accuracy/runtime trade-off.

Finally, we present RoboDNN, a lightweight C++ deep neural network
library. RoboDNN is a forward-only library, designed for maximum performance
on the Nao robot. The library has no dependencies, and does not use new con-
structs of the C++11 standard, facilitating compilation for the Nao. Moreover,
we designed RoboDNN using the strictest compiler settings. Our implementa-
tion also offers compatibility with the popular Pytorch [1] DNN framework, with
the ability to import neural nets trained using Pytorch. The RoboDNN library,
the code and datasets are all available on our website [2].

2 Related Work

The availability of high-quality datasets and computational resources has
enabled the training DNNs, once some numerical problems were surpassed [9].
The use of deep learning is perhaps most prominent in the field of computer
vision, where DNNs are used for standard classification [13] and (semantic or
instance) segmentation tasks [21,23]. Fast architectures, such as YOLO [20] exist
for object detection, however, segmentation provides a more complete under-
standing of the scene. Also YOLO struggles with cluttered objects, which is
frequent in robot soccer scenes.

Semantic segmentation aims to achieve visual scene understanding. The
objective is to segment the image by classifying each pixel individually. The sim-
plest way to achieve this with neural networks is to use a classification network,
and replace the final fully connected layers by (usually 1× 1) convolutional lay-
ers. This network can output a segmented image at a lower resolution, which can
be upsampled using techniques, such as bilinear upsampling [5]. Other works [25]
employ a superpixel segmentation method, and classify these superpixels indi-
vidually in order to approximate object boundaries with higher accuracy.

The SegNet architecture [5] uses so-called unpooling layers to upsample the
feature maps. In SegNet the max pooling layers in the first half of the network
store the index of the maximum value and share this information with the corre-
sponding unpooling layer. This extra piece of information allows the unpooling
layer to recover the spatial information lost during downscaling. Nonetheless, the
full feature map is not recovered, since the non-maximum values are permanently
lost. Several important advances have improved the accuracy of SegNet-based
segmentation, especially when it comes to capturing the fine details of objects.
The first of these improvements is the Fully Convolutional Network (FCN) archi-
tecture [23], which introduced shortcuts (skip connections) from the front layers
of the network. By adding shortcuts from early layers, the final layer has more



98 M. Szemenyei and V. Estivill-Castro

information on the fine-resolution details of the image, resulting in better approx-
imation of object boundaries. Shortcuts also improve the convergence properties
of deep neural networks considerably [11].

Choosing the upscaling and downscaling methods in the network can also
affect the performance significantly. The FCN network uses strided convolu-
tions instead of pooling. It introduces costly transposed convolutional layers
instead of unpooling to implement learnable downsampling and upsampling
operations [23]. Wang et al. [24] introduced the dense upsampling convolution
operation (DUC), which was shown to increase the accuracy further, but again,
at a considerable increase of computational cost.

The field of view of the final classification neuron also influences the accu-
racy of the segmentation network, since it determines the amount of contextual
information the final neuron can use to determine the class of each pixel. Chen
et al. [6] showed that using dilated/atrous convolutional filters increases the per-
formance without increasing the computational cost. Pooling operations may
also be atrous [6], resulting in a similar improvement.

While convolutional neural networks have achieved staggering accuracy in
numerous applications, their power comes with a high computational cost. Such
high computational cost seems to prohibit the use of CNNs on board of mobile
and embedded platforms. While several methods have been proposed for reduc-
ing the size and computation required for neural networks, the most relevant to
our application is pruning [4]. During the pruning process, a ranking method
is used to order the weights or neurons of a layer by importance, then a fixed
percentage of the least important neurons/connections are deleted/set to zero.
Next, the network is fine-tuned while keeping the pruned elements at zero value.
Several ranking methods exist ranging from brute-force methods, that only use
the magnitude of the weights to more complex ones, such as pruning weights so
that the change in the network’s loss function would be minimal [18].

Computer Vision in RoboCup. Achieving human-level vision and scene
understanding is an essential component of achieving RoboCup’s goals and the
RoboCup environment has steadily changed from featuring objects that are easy
to recognize using low-level features, such as colour, to ones that greatly resemble
objects used in human soccer. The vision pipelines used by the competing teams
have changed in tandem, going from human-engineered vision methods [16,22] to
pipelines relying increasingly on machine learning. Several teams have used con-
volutional neural networks either for binary classification tasks [7,17] or to detect
several relevant object categories [15,19]. These methods, however, use CNNs for
classification only, therefore they still require a separate object proposal method,
and the quality of the system may largely depend on the efficiency of the algo-
rithm used to generate candidates for classification. A further disadvantage is
that running the same neural network on potentially overlapping image regions
is wasteful, since the same features are computed twice.

Hess et al. [12] present a high-quality virtual RoboCup environment created
in Unreal Engine. Their work allows to easily create large datasets of realistic



Real-Time Scene Understanding Using DNNs for RoboCup SPL 99

images of a soccer field along with pixel-level semantic labelling. Since the per-
formance of a trained neural network is highly dependent on the quality and
quantity of the training data, and creating a large hand-labelled database is
highly time-consuming, their work was profoundly valuable for our research.

3 Preparation of the Training Data

To ensure the quality and amount of the training data for training the seman-
tic segmentation network, we created a synthetic image set of 5000 images [12].
We used 100 different random sets of environmental variables, and generated 50
images with each setting. The images were separated into train and test sets ran-
domly, using an 80–20 division. The automatically generated labels are available
as PNG images, and contain labels for all five relevant categories (background,
ball, robot, goal and line).

In addition, we extended the challenge to allow for the creation of image
sequences instead of independent scenes. We used this mode to create a dataset
of 800 images to train the label propagation network. This database also features
100 individual image sequences with different random scene parameters. In each
sequence, however, the position and orientation of the camera and field objects
only changes marginally between consecutive frames.

Synthetic images are an excellent way of pre-training a network on a large
dataset, yet due to the differences between a synthetic and a real environment we
require a database of real images to fine-tune the network. But the pre-training
allows a much smaller dataset for fine tuning than would be otherwise required.
For these reasons, we created a real semantic segmentation database consisting
of 570 images taken at 3 separate locations: at the venue of RoboCup17, at the
venue of IJCAI17 and in our lab at Griffith University. The images are from
the top camera, since these usually contain more complex scenes, justifying the
use of neural networks. A portion of this database consists of image sequences,
which are used as a dataset for label propagation.

We manually annotated the images using a tool of our own creation. Our tool
provides several ways to aid the annotation process, such as tools for drawing
polygons and lines, as well as square and circular brush tools. The program also
uses the superpixel segmentation method proposed by Li and Chen [14] to speed
up the labelling process. In the case of successive images, the tool is able to use
dense optical flow to approximate the labels of the next image. Using the tool, it
is also possible to mark the edges of the field, setting pixels and labels outside the
field to black and background respectively. This dataset can be used for detection
easily by computing bounding boxes for the connected label components.

Despite having a fair number of real images, they were considerably less
varied than the synthetic images, since they included only three locations with
their unique environmental settings (such as lighting and carpet colour). To
compensate for this disadvantage, we used aggressive, unique data augmenta-
tion in addition to standard techniques, such as flipping images horizontally.
To emulate changes in lightning conditions, we applied random changes in the



100 M. Szemenyei and V. Estivill-Castro

Conv16

Conv16

DConv16

Conv32

Conv32

DConv32

Conv64

Conv64

DConv64

Conv128

Conv128

TrConv64

TrConv32

TrConv16

Classifier

(a) Standard FCN-based design.

Conv8

DConv16

Conv16

DConv32

Conv32

DConv64

Conv128

Conv128

Conv128

Conv128

Conv64

TrConv32

TrConv16

TrConv8

Classifier

(b) “Pot-Bellied” FCN

Fig. 1. Our architectures: green nodes are strided convolution, while red nodes are
transposed convolution. We have batch normalization in every node. (Color figure
online)

brightness and contrast of the images. To introduce further variation into the
dataset, we also applied random shifts to the hue and saturation of our pictures,
which may help the robots with unique carpet colours. In Sect. 6 we show that
our data augmentation techniques improve the accuracy of the trained models
greatly.

4 Model Selection and Training

We used the Pytorch framework [1] for training the network. We applied stochas-
tic gradient descent (SGD) optimisation with momentum and weight decay reg-
ularisation. During training, we used an adaptive learning rate schedule, which
reduced the learning rate of the network after N consecutive epochs in which the
validation loss could not fall below the current lowest value. We made a slight
modification to Pytorch’s learning rate scheduler, to allow us to reload the cur-
rent best model in every learning-rate reduction event. We remark that this



Real-Time Scene Understanding Using DNNs for RoboCup SPL 101

variation results in the optimiser finding a new optimum more often after reduc-
ing the learning rate. Table 1 displays the hyperparameters used for pre-training
and fine-tuning the semantic segmentation and label propagation networks.

The nature of the scenes specific to robot soccer fields offers a major chal-
lenge. Typical soccer images offer few pixels belonging to objects of interest. In
our datasets, the ratio of background pixels is around 93–94%. Moreover, the
rest distribute somewhat unevenly amongst the relevant classes. This uneven
dataset usually complicates convergence and may result in a final network that
is heavily biased towards making false negative-type errors. We stress that this
imbalance stems from the distribution of classes in the individual images them-
selves. Therefore it is not possible to re-sample the training set.

We propose two solutions to overcome this difficulty. First, we selected the
images for the training set so that they would contain a relatively high percent-
age of pixels from objects of interest (so called foreground). Second, we used a
weighted version of the 2-dimensional negative log-likelihood (NLL) loss func-
tion, which is implemented in Pytorch, encouraging the network to emphasize
more the relevant object categories.

The next challenge is to define an efficient and powerful network structure.
Our review of the literature suggests an architecture based on FCN [23], using
strided convolution for downsampling and transposed convolution for upsam-
pling, as well as employing dilated convolutions to increase the field of view of
the final classification layer. But, we avoided using DUC for upsampling, due
its higher computational requirements. This first design (refer to Fig. 1a) had
three modules consisting of convolutional and downsampling layers, combined
with three upsampling layers.

Most CNNs used for semantic segmentation are relatively waist-heavy, mean-
ing that the middle section of network, where the feature map has the smallest
spatial dimensions has the largest number of filters. This has obvious advan-
tages when it comes to memory consumption and computational efficiency. In
our experiments, we decided to push this feature even further, using few and shal-
low layers to downsample the feature map quickly, then using a larger number of
deep convolutional layers at the lowest level, followed by a similarly shallow and
quick upsampling. In Sect. 6 we demonstrate that this network structure is much
more efficient, providing better accuracy for lower computational cost. Figure 1b
illustrates our new alternative, the “Pot-Bellied” (PB-FCN) architecture.

Our training procedure consists of three steps. First, the first half of the
segmentation network is trained on the dataset provided using Hess et. al [12]
generation for classification. We modified the dataset by separating the back-
ground and field line classes. Next, the full segmentation network is trained on
the synthetic database. Finally, the full segmentation network is fine-tuned on
the real database. The training procedure for the label propagation network is
similar, except the first step is omitted.



102 M. Szemenyei and V. Estivill-Castro

Table 1. Hyperparameters used for the training procedures.

Parameter LR Momentum Decay Reduction Patience Batch Epochs

Segmentation 0.1 0.5 1e−3 0.5 20 32 200

Fine-tune 0.01 0.1 1e−3 0.5 50 8 500

Label prop 0.2 0.5 1e−5 0.5 10 16 100

LP fine-tune 0.05 0.1 1e−5 0.5 25 8 250

5 Real-Time Implementation

To ensure real-time performance of our object detection pipeline, we must employ
several techniques to improve the speed of the trained neural network. For the
Nao hardware, these improvements are critical, since the networks resulting from
training as in the previous section require approximately 1 s to run on a Nao V5
robots using the Darknet library [20]. For all our experiments, we used 160× 120
images in YUV colour space.

The first technique we employ is weight pruning: since convolution is imple-
mented as a matrix multiplication, setting weights to zero increases the efficiency
significantly, even when an extra operation (checking if the weights are zero) is
introduced. We used a brute-force pruning technique, simply setting 75% of the
smallest weights in every layer to zero, and then fine-tuning the network, while
forcing the pruned weights to remain zero. We found, that this technique reduced
the runtime of the network by approximately 70%.

Moreover, our vision pipeline includes a hand-crafted field detection system,
which is used by our network to crop part of the image (the outside the field is
usually the top part of the image). This approach comes with two advantages.
First, it reduces the number of pixels to be processed without reducing the level
of detail. Second, if the network is trained on images where the parts outside the
field are omitted, it avoids learning complex backgrounds outside the field (which
are easily confused with field objects). While this technique provides considerable
improvement in the networks speed, this improvement is highly dependent on
the robot’s position in the field. For this reason, we used uncropped images when
comparing the execution times of different models and methods.

Our second technique for increasing the speed of our pipeline is label propa-
gation. Here, we estimate the labels of the next image by using the labels of the
previous one. We can achieve a considerable increase in speed, by only running
the main neural network every 10 or 20 frames, and provided that accurate label
propagation can be implemented using a significantly faster algorithm.

We first employed Gunnar Farneback’s dense optical flow (OptFlow method)
algorithm [8] to move the labels to their new location. While the algorithm’s
speed was satisfactory, the accuracy suffered. Namely, small, single-pixel errors
would accumulate over time, constantly eroding small objects. Also, the optical
flow-based method is completely unable to handle faster movements or new
objects appearing in the image (or partially seen objects sliding in).



Real-Time Scene Understanding Using DNNs for RoboCup SPL 103

Table 2. Accuracy variations from the baseline by the training techniques.

Technique Baseline Augment. Field Reload Prune

TPA 97.72 0.61 0.31 0.09 −0.18

MCA 92.19 2.55 0.82 1.08 −0.8

MIoU 75.57 6.66 2.36 0.19 −0.4

This problem can be remedied by training a neural network to predict the
labels of the next image from the labels of the previous one. Since this is much
easier, than predicting the labels from the raw image, we used considerably
smaller version of PB-FCN (Fig. 1), which would run at approximately twice
the speed of the segmentation network (PB-FCN-LP method). The network
takes an 8-channel input, consisting of the Y channels of the two images, their
difference and the 5-channel label image. For numerical reasons, the binary labels
were scaled between −1 and 1. The label propagation network was trained using
sequential the synthetic and real datasets mentioned in Sect. 3. We used the same
data augmentation techniques, and trained the network to be able to predict the
new labels in both ways (previous-to-next and vice versa), since the vast majority
of movements might occur in both directions.

Since this method combines knowledge about the visual appearance of the
classes and the movement between the images it is arguably able to account
for the appearance of new objects and handle larger movements. Moreover, for
the same reason, the label propagation network has some form of self-correcting
ability, thus misclassifying a pixel in one frame does not mean that the error
will be carried on until the next run of the segmentation network. We observed
during our experiments that the label propagation network seemed to be able to
incrementally correct the mistakes made by the segmentation network, especially
when the robot was not moving (Fig. 2).

While implementation could use an existing library, the target platform (Nao
robot) is a challenge. For example, Caffe [3] is a relatively old library with numer-
ous dependencies, making it difficult to compile for the Nao robot. While the
newer Darknet [20] has no dependencies, it lacks support for several important
features we used in our design, such as dilated convolutions and affine batch
normalization. Thus, we created our own C++ library called RoboDNN, based
on Darknet, implementing the most common neural network layers. Our library
is designed for inference only, therefore all code for training the networks was
stripped. Our library has no external dependencies, does not require C++11,
and - like all of MiPal’s code - compiles using the strictest compiler settings.

The current version of RoboDNN is compatible with Pytorch. Our code
includes support for dilated convolutions, output padding for transposed con-
volutions, and layers for affine batch normalization. Thus, RoboDNN is fully
compatible with neural networks trained in Pytorch, and we provide code to
export the weights Pytorch models along with the library. Our library is also



104 M. Szemenyei and V. Estivill-Castro

Table 3. Comparison of the different neural network architectures.

Model FCN PB-FCN PB-FCN-VGA ResNet-DUC OptFlow PB-FCN-LP

TPA 98.42 98.50 98.87 98.71 95.82 96.52

MCA 94.95 94.40 96.50 94.88 86.15 90.7

MIoU 80.31 81.30 84.00 83.98 82.70 79.15

optimized for maximum efficiency, including support for accelerating pruned net-
works, running on cropped images and several in-place operations for memory
efficiency.

6 Results

We now demonstrate experimentally the virtues of our design and training
method. First we evaluate the accuracy across model design and learning tech-
niques. Second, we asses the speed of our pipeline on the Nao V5 robots. Figure 3
shows some of the best and worst results of the segmentation.

Tests on Accuracy. We use three measures to evaluate accuracy. The first is
the percentage of pixels classified correctly, called Total Pixel Accuracy (TPA).
Taking the average of TPA per class is what we call Mean Class Accuracy
(MCA). These two measures are relevant because our class imbalance. Note that
TPA will favour models that are more likely to err on the side of background, but
MCA will be higher for models that are more likely to make false positive pre-
dictions. The third measure is Mean Intersection over Union (MIoU), which (on
our dataset) prefers models with minimal confusion between foreground classes.

We now demonstrate the change in accuracy provided by our data augmenta-
tion operations, field extraction, reloading learning rate scheduler, and pruning.
We measured the improvements of these techniques separately on a fine-tuned
PB-FCN network. Table 2 presents variations in accuracy from the baseline. The
results indicate that our techniques increase the accuracy considerably, while our
brute-force pruning retains most of the predictive power.

Table 3 compares four different models: The standard FCN-based model,
our PB-FCN used on both 160× 120 and 640× 480 (PB-FCN-VGA) resolu-
tion images, and a fourth model using ResNet152 [11] and deep DUC upsam-
pling. From these results, we can draw several conclusions. First, PB-FCN is
slightly more powerful compared to the standard FCN structure. Second, a
comparatively shallow PB-FCN loses surprisingly little accuracy compared to
the ResNet152 model, and even outperforms it considerably when used at VGA
resolution.

Lastly, we compare our pruned, fine-tuned PB-FCN-based label propagation
network with the optical-flow based method (see Table 3). Note that neural label
propagation clearly outperforms the optical-flow method. Moreover, optical flow



Real-Time Scene Understanding Using DNNs for RoboCup SPL 105

Table 4. Detection results on our validation set.

Model PB-FCN PB-FCN-VGA ResNet-DUC BBN-L BBN-MC BBN-L BBN-MC

Accuracy 95.53 98.86 95.36 83.36 81.39 95.39 94.89

False pos. 2.69 1.00 2.32 26.19 21.58 5.27 4.45

False neg. 4.47 1.14 4.64 16.64 18.61 4.61 5.11

Table 5. Comparison of the execution times of different models.

Model PB-FCN Pruned VGA FCN ResNet Opt-flow Neural LP BBN-L BBN-MC

Time (ms) 1480 380 2850 640 8000 80 170 70 22

FpS 0.7 2.6 0.35 1.56 0.125 12.5 5.9 14 46

produces slightly better MIoU results due to the heavily unbalanced dataset
(optical flow introduces minimal confusion between foreground classes). We used
the real-image dataset for all the results in this section.

Comparison Against Other Solutions. We also compare our results against
the networks used by other teams. First, we evaluate the first half of our PB-FCN
network against the classification results reported by Hess et al. [12] using the
same test dataset. Our algorithm clearly outperforms theirs, producing 96.66%
accuracy compared to 94.4% and 93.52% with their BBN-L and BBN-M-C mod-
els respectively. Moreover, we managed to achieve this result on a significantly
smaller dataset, consisting of 9,000 images per class only (compared to 25,000
per class). This improvement is largely due to our data augmentation methods.

Since to our knowledge this is the first work to publish semantic segmentation
results in the context of robot soccer, there is no established baseline to compare
our method against. We are also aware that other teams may use an object
detection method instead of a pixel-wise classification algorithm. For this reason,
Table 4 presents the performance of our networks in a detection task by simply
counting the percentage of relevant objects that were correctly detected. Note,
that a portion of false negatives and false positives may be objects that were
incorrectly merged or separated by our network.

We also evaluated BBN-L and BBN-M-C on this dataset by providing it with
all the relevant image patches, as well as three background patches per image to
measure the false positive rate. This setting is equivalent to an object candidate
generation method with zero false negative rate and here our PB-FCN clearly
outperforms the two other networks. The comparison is fair since we test all
classification networks on patches extracted form our training database.

Evaluating Execution Time. We tested the execution time of our entire
vision pipeline on a Nao V5 robot, using the top camera image. We used a
single core to run the neural network, and we ran the pipeline with other soccer
subsystems active. Table 5 shows the execution time of the pruned versions of



106 M. Szemenyei and V. Estivill-Castro

(a) Original image (b) Original (c) After 5 frames (d) After 10 frames

Fig. 2. The self-correcting ability of the label propagation network.

Fig. 3. A few examples of good (top) and bad (bottom) results.

the models compared in the previous subsection. For reference, we also included
the non-pruned version of PB-FCN. The results show a clear improvement as a
result of pruning, and that PB-FCN outperforms the vanilla FCN in speed as
well. We remark that the data shows that running a relatively shallow network
on a higher resolution image seems to be much faster than running ResNet on a
downscaled version, while providing superior accuracy.

In Table 5 we also present the comparison of label propagation using optical
flow and CNNs. The results show that the extra accuracy coming with the neural
network comes at lower speeds. Still, the fully neural vision pipeline runs at 6
frames per second, which is sufficient to enable real-time reactions at robot soccer
speeds. For reference, we include our measurements of the speed of the neural
network used by Hess et al. [12]. The comparison shows, that although we could
achieve significant improvements in accuracy and the neural network’s efficiency,
it is still several times slower than other methods.

7 Conclusion

In this paper, we presented a deep neural network-based method for scene under-
standing in the context of robot soccer. Our method uses a semantic segmenta-
tion network and a separate label propagation net to increase the frame rate of
the vision system. With our experiments, we demonstrated the efficiency of our
method, including the improvements we achieved using our data augmentation



Real-Time Scene Understanding Using DNNs for RoboCup SPL 107

techniques, pruning and field-edge cropping. Our method has superb accuracy
at satisfactory speed.

We also presented large semantic segmentation and label propagation
datasets consisting of synthetic images, as well as small real datasets for the
same tasks, including a tool for manual pixel-wise labelling of images. Finally,
we presented a Pytorch-compatible C++ deep neural network library designed
for fast inference on the Nao robots supporting the acceleration techniques dis-
cussed in this paper. Our library has been designed to compile for the Nao robots
using the strictest compiler settings.

Acknowledgments. Our research was supported by NVIDIA and Erasmus Mundus
PANTHER.

References

1. http://www.pytorch.org
2. http://3dmr.iit.bme.hu/research/robocup/index.html
3. http://caffe.berkeleyvision.org
4. Anwar, S., Hwang, K., Sung, W.: Structured pruning of deep convolutional neural

networks. ACM J. Emerg. Technol. Comput. Syst. 13(3), 1–11 (2017)
5. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional

encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 39(12), 2481–2495 (2017)

6. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: seman-
tic image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2017)

7. Cruz, N., Lobos-Tsunekawa, K., Ruiz-del-Solar, J.: Using convolutional neural net-
works in robots with limited computational resources: detecting NAO robots while
playing soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.)
RoboCup 2017. LNCS, vol. 11175, pp. 19–30. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-00308-1 2

8. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X 50

9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256 (2010)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778 (2016)

12. Hess, T., Mundt, M., Weis, T., Ramesh, V.: Large-scale stochastic scene generation
and semantic annotation for deep convolutional neural network training in the
RoboCup SPL. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.)
RoboCup 2017. LNCS, vol. 11175, pp. 33–44. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 3

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

http://www.pytorch.org
http://3dmr.iit.bme.hu/research/robocup/index.html
http://caffe.berkeleyvision.org
https://doi.org/10.1007/978-3-030-00308-1_2
https://doi.org/10.1007/978-3-030-00308-1_2
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/978-3-030-00308-1_3
https://doi.org/10.1007/978-3-030-00308-1_3


108 M. Szemenyei and V. Estivill-Castro

14. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1356–1363
(2015)

15. Menashe, J., et al.: Fast and precise black and white ball detection for RoboCup
soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS, vol. 11175, pp. 45–58. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00308-1 4

16. Metzler, S., Nieuwenhuisen, M., Behnke, S.: Learning visual obstacle detection
using color histogram features. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U.
(eds.) RoboCup 2011. LNCS, vol. 7416, pp. 149–161. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32060-6 13

17. Javadi, M., Azar, S.M., Azami, S., Ghidary, S.S., Sadeghnejad, S., Baltes, J.:
Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In:
Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS,
vol. 11175, pp. 338–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00308-1 28

18. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. arXiv:1611.06440 (2016)

19. O’Keeffe, S., Villing, R.: A benchmark data set and evaluation of deep learning
architectures for ball detection in the RoboCup SPL. In: Akiyama, H., Obst, O.,
Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS, vol. 11175, pp. 398–409.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00308-1 33

20. Redmon, J.: Darknet: open source neural networks in C (2013–2016). http://
pjreddie.com/darknet/

21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

22. Schwarz, I., Hofmann, M., Urbann, O., Tasse, S.: A robust and calibration-free
vision system for humanoid soccer robots. In: Almeida, L., Ji, J., Steinbauer, G.,
Luke, S. (eds.) RoboCup 2015. LNCS, vol. 9513, pp. 239–250. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-29339-4 20

23. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

24. Wang, P., et al.: Understanding convolution for semantic segmentation.
arXiv:1702.08502 (2017)

25. Xing, F.Z., Cambria, E., Huang, W.B., Xu, Y.: Weakly supervised semantic seg-
mentation with superpixel embedding. In: IEEE International Conference on Image
Processing (ICIP), pp. 269–1273 (2016)

https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-642-32060-6_13
https://doi.org/10.1007/978-3-030-00308-1_28
https://doi.org/10.1007/978-3-030-00308-1_28
http://arxiv.org/abs/1611.06440
https://doi.org/10.1007/978-3-030-00308-1_33
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-29339-4_20
http://arxiv.org/abs/1702.08502

	Real-Time Scene Understanding Using Deep Neural Networks for RoboCup SPL
	1 Introduction
	2 Related Work
	3 Preparation of the Training Data
	4 Model Selection and Training
	5 Real-Time Implementation
	6 Results
	7 Conclusion
	References




