
Learning Skills for Small Size League
RoboCup

Devin Schwab(B), Yifeng Zhu, and Manuela Veloso

Carnegie Mellon University, Pittsburgh, PA 15217, USA
digidevin@gmail.com

Abstract. In this work, we show how modern deep reinforcement learn-
ing (RL) techniques can be incorporated into an existing Skills, Tactics,
and Plays (STP) architecture. STP divides the robot behavior into a
hand-coded hierarchy of plays, which coordinate multiple robots, tac-
tics, which encode high level behavior of individual robots, and skills,
which encode low-level control of pieces of a tactic. The CMDragons
successfully used an STP architecture to win the 2015 RoboCup compe-
tition. The skills in their code were a combination of classical robotics
algorithms and human designed policies. In this work, we use modern
deep RL, specifically the Deep Deterministic Policy Gradient (DDPG)
algorithm, to learn skills. We compare learned skills to existing skills
in the CMDragons’ architecture using a physically realistic simulator.
We then show how RL can be leveraged to learn simple skills that can
be combined by humans into high level tactics that allow an agent to
navigate to a ball, aim and shoot on a goal.

Keywords: Reinforcement learning · Robot software architecture ·
Autonomous robots

1 Introduction

RoboCup soccer is an international competition where teams of researchers com-
pete to create the best team of autonomous soccer playing robots [22]. Multiple
leagues from simulation, to full humanoid leagues compete each year. In this
work we focus on the Small Size League (SSL) RoboCup, which is a challenging,
fast paced, multi-agent league.

The Skills, Tactics, and Plays (STP) [3] software architecture has been used
by the 2015 winning champions, CMDragons. STP is a hierarchical architecture
consisting of three levels. Skills are coded policies that represent low-level tasks,
used repeatedly in a game of soccer. These are tasks such as: dribbling the ball,
navigating to a point, etc. Tactics combine skills into behaviors for a single

This research is partially sponsored by DARPA under agreements FA87501620042 and
FA87501720152 and NSF grant number IIS1637927. The views and conclusions con-
tained in this document are those of the authors only.

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 83–95, 2019.
https://doi.org/10.1007/978-3-030-27544-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_7

84 D. Schwab et al.

robot. Typical tactics are roles such as: attacker, goalie, defender, etc. They are
typically coded as state machines, where specific skills are called in each state.
Plays are how multiple tactics are coordinated. Each robot is assigned a tactic
based on cost functions, and then the robots execute these tactics independently.

In prior years, all levels of the STP architecture have been written by hand
using classical robotics algorithms. Low-level policies such as navigation can use
algorithms such as an RRT [9], while the tactic state machines have been written
by intuition and improvement through extensive testing. Writing new skills is a
large investment of human time and coding. Ideally, these low-level skills could
be learned automatically, and then reused by the human-coded tactics in order
to save time and man-power.

Recently, deep reinforcement learning (Deep RL) techniques have made
major breakthroughs in performance. Deep Q-Networks (DQN) [13,14] have
been used to learn policies from pixels in Atari that exceed human performance.
More recently, Deep RL has been used to beat human performance in the game
of Go [17,18]. Outside of games, Deep RL has been used to learn complex con-
tinuous control tasks such as locomotion [7]. It is therefore an attractive idea to
use Deep RL for SSL RoboCup. However, it is unclear how best to learn policies
in such a complex, multi-agent, adversarial game.

In the rest of this paper, we explore how Deep RL can be used to auto-
matically learn skills in an STP architecture. While it would also be useful to
learn tactics and plays, skills are small enough problems to be effectively learned
using Deep RL in a short amount of time. Tactics are much more complicated,
and plays would require multi-agent RL algorithms, therefore, in this work we
focus on learning skills. A learning algorithm can be implemented once and then
applied to learn many different skills. Whereas, each hand-coded skill will require
it’s own implementation, testing and tweaking. By learning skills, human coders
can spend time working on the more complicated tactics and plays. We show
that after skills are learned using Deep RL they can be effectively combined by
humans into useful tactics.

2 Small Size League (SSL) RoboCup

Figure 1 shows an example of the CMDragons SSL robot. The robots are approx-
imately 18 cm in diameter and move omni-directionally. The robots can kick at
various speeds both flat along the ground and through the air. The robots also
have spinning dribbler bars, which apply backspin to the ball.

Figure 1 shows an overview of the field setup. Overhead cameras send images
to a central vision server. The vision server uses colored patterns to determine
ball position and robot field positions, orientations, ID and team. This informa-
tion is sent to each team at 60 Hz. Teams typically use a single computer that
sends radio commands to all robots on the field. Therefore, centralized planning
and coordination can be used.

The full game of SSL has many different parts: kickoff, free kicks, penalty
kicks, main game play, etc. In this work we focus on skills that can be useful

Learning Skills for Small Size League RoboCup 85

Computer

Camera
Images

Robot
Commands

Fig. 1. (Left) A typical Small Size League (SSL) robot and ball. (Right) SSL field
setup. Overhead cameras capture dot patterns on the tops of robots to determine
positions, orientations, team and robot ID. Ball position is also determined from color.
A central computer publishes this position information to each team. Teams then send
radio commands to their robots on the field. (Color figure online)

in many different parts of the game: namely capturing the ball on the dribbler,
and aiming and shooting at the goal.

3 Related Work

Deep RL algorithms, such as Deep Q-Networks (DQN), Asynchronous Advan-
tage Actor (A3C) and others, have been shown to work in complex Markov
Decision Processes (MDPs) such as Atari games and the game of Go [12–14,17].
There have also been some initial successes in applying Deep RL to continuous
control tasks using policy gradient methods such as Deep Deterministic Policy
Gradients (DDPG), Trust Region Policy Optimization (TRPO) and Proximal
Policy Optimization (PPO) [10,15,16]. Unlike traditional RL, Deep RL algo-
rithms can often work from low-level features such as joint angles or even pixels.
This can alleviate the need for domain specific feature engineering.

Our work is not the first attempt to apply learning to RoboCup domains.
Many techniques have been developed and applied for the game of Keep-
away [20]. In Keep-away, teams or robots must learn to coordinate by moving
and passing the ball so that an opponent team cannot steal the ball. Many tech-
niques have been applied including genetic algorithms [1,8,11] and reinforcement
learning [21,23].

Multiple groups have applied genetic programming techniques to learn team
robot soccer policies [1,8,11]. Genetic programming uses genetic algorithm opti-
mization techniques with a set of composable functions in order to “evolve” a
program capable of completing some objective. Prior attempts have had limited
success, either relying heavily on carefully hand-coded sub-policies or failing to
learn cooperative team behaviors.

Reinforcement learning (RL) based approaches have also been popular in
this domain [4,21,23]. Stone et al. [21], utilized an options [19] like framework.
The low-level controls were hand-coded. The agent learned to call these sub-
policies at the appropriate times. They were able to successfully train in up to
a 4 teammates vs 3 opponents scenario. While their approach was successful, a
significant amount of effort went into determining the proper low level actions

86 D. Schwab et al.

and the proper state-features to use. There is also no guarantee that the higher
level features chosen are the best possible features. The features chosen can have
a large impact on the final policy performance, and are in practice difficult to
choose.

Most of these previous works have focused on learning multi-agent policies
in sub-games, such as Keep-away. In this work, we are focused on learning small
single agent skills that a human coder can combine into higher level behaviors
in the STP architecture.

There has been more recent work on applying Deep RL to single agent skills
with parameterized action spaces [5,6]. In Hausknecht, Chen and Stone [5], exist-
ing Deep RL techniques were extended to work in an action space that combines
discrete and continuous components. They then learned a policy from demonstra-
tions, that allowed the agent to navigate to the ball and score on an empty goal.
Hausknecht and Stone [6] later extended this work to learn ball manipulation
in this setting completely from scratch. Both of these approaches demonstrated
the applicability of Deep RL based algorithms to robot soccer, however, they
learned an end-to-end policy to go to the ball and score on the goal. It would
be difficult to divide up this policy after training and use the different parts in
other contexts. In this work, we aim to learn small reusable skills that can be
combined by human written tactics.

4 Approach

4.1 Algorithm

In this work we use the Deep Deterministic Policy Gradient (DDPG) algorithm
to train our skills [10]. DDPG is an actor critic, policy gradient algorithm that
has been shown to work for continuous action spaces in complex control tasks.
Like DQN, DDPG uses a target network for the actor-critic along with a replay
memory. Samples are collected and stored in a replay memory. Batches of the
samples are used to optimize a critic network which estimates the Q-value of a
state-action input. Then the actor network, which takes in a state and returns a
continuous action, is optimized to maximize the critic’s estimate. We use DDPG
in this work, because it is well studied and has been shown to work on a variety
of interesting continuous control tasks [10].

4.2 Simulation

We train our skills in the CMDragons simulator. This simulator is physically
realistic including configurable amounts of radio latency, observation noise and
different robot dynamics models. This simulator has been used to develop the
existing STP. The API of the simulator is similar to the real robots, so that a
network trained on the simulator can then be run directly on a real robot.

To train the skills we setup different initial conditions in the simulator and
applied the DDPG algorithm. When training the simulation is set in “step

Learning Skills for Small Size League RoboCup 87

mode”, meaning that the simulation will only advance when a new command is
sent. This guarantees that when training, the extra computation time for updat-
ing the network does not cause the agent to miss observation steps. However,
when we evaluate the skills we set the simulator to real-time mode. In this mode,
the physics runs in real time, and if the agent takes more than 16ms to send a
command, then it will miss control time steps.

4.3 Skills

All of the skills use a vector of relevant state features as the input. While Deep
RL algorithms such as DDPG can work with pixel based inputs, the state vector
allows us to directly include information about velocities. The state-vector rep-
resentation also requires less computation than an image based representation.

Go to Ball Skill. go-to-ball is a skill where the robot learns to navigate
to the ball and get the ball on it’s dribbler. The go-to-ball environment uses
positions and velocities in the robot’s own frame. By making the coordinates
relative to the robot, the learned policy should generalize to different positions
on the field better.

The state input for go-to-ball skill is as follows:

s = (PB
x ,PB

y , V R
x , V R

y , ωR,

dr−b, xtop, ytop, xbottom, ybottom, xleft, yleft, xright, yright)

where PB
x and PB

y are the ball position, V R
x and V R

y are the robot’s translational
velocity, ωR is the robot’s angular velocity, dr−b is the distance from robot to
ball, xtop and ytop are the closest point on the top edge of the field to the robot,
xbottom and ybottom are the closest point on the bottom edge of the field to the
robot, xright and yright are the closest point on the right edge of the field to the
robot, and xleft and yleft are the closest point on the left edge of the field to
the robot.

The action space of this skill is robot’s linear velocity, and angular velocity,
which are: (vR

x , vR
y , ωR).

The terminal condition for training go-to-ball skill is that if the robot has
the ball on its dribbler, the episode ends and is marked as a success. If the robot
fails to get the ball on its dribbler in 10 s, the episode ends and is considered a
failure.

Aim and Shoot Skill. aim-to-shoot is a skill where the robot learns to aim
towards goal and take a shot. In this skill, we assume that the robot already has
a ball on its dribbler.

The state input is as follow:

s = (PB
x , PB

y , V B
x , V B

y , ωR, dr−g, sin(θl), cos(θl), sin(θr), cos(θr))

88 D. Schwab et al.

where V B
x and V B

y are the x and y translational velocity of the ball, dr−g is
the distance from the robot to the goal, sin(θl) and cos(θl) are the sine and
cosine of the angle of the left goal post with respect to the robot’s orientation,
sin(θr) and cos(θr) are the sine and cosine of the angle of the left goal post with
respect to the robot’s orientation, and the remaining state components match
the go-to-ball skill. We use the sine and cosine of the angle, so that there is
not a discontinuity in the input state when the angle wraps around from −π to
π.

The action space of aim-to-shoot skill contains robot’s angular velocity,
dribbling strength and kick strength: (ωR, dribble, kick).

The terminal condition for training aim-to-shoot skill is that if the robot
has kicked and scored, the episode ends and is considered as a success. Otherwise,
the episode ends with the following failure conditions: the ball is kicked but does
not go into the goal, ball is not kicked yet but the ball has rolled away from the
dribbler, or the episode reaches the maximum episode length of 1.6 s.

Reward Functions. We use reward shaping to help speed up the learning. In
the go-to-ball , our reward function is:

rtotal = rcontact + rdistance + rorientation

where,

rcontact =

{
100 ball on the dribbler
0 ball not on the dribbler

rdistance =
5√
2π

exp(
−d2r−b

2
) − 2

rorientation =
1√
2π

exp
(

−2
θr−b

π2

)

where θr−b is minimum angle between the robot’s dribbler and the ball.
For the aim-to-shoot skill, the agent gets positive reward when it kicks

towards the goal and negative when it kicks away from the goal. We also want
the robot to shoot as fast as possible on the goal, so we scale the reward by
the ball velocity. Kicking fast towards the goal gives higher reward. The reward
function for aim-to-shoot skill is as follows:

r =

{
0.05(α − β)|V B | α > β

(α − β)|V B | α < β

where, α is the angle between left goal post and right goal post, β is the larger
angle of one of the goal posts relative to robot’s orientation.

Learning Skills for Small Size League RoboCup 89

4.4 Go to Ball and Shoot Tactic

We combined the go-to-ball skill and the aim-to-shoot skill into a tactic that
can go to the ball, get the ball on the dribbler, turn towards the goal and shoot.
Figure 2 shows a flow-chart for the tactic state machine. The robot starts out
using the trained go-to-ball skill. Once the ball is near the dribbler (defined
by dd−b ≤ 35mm, where dd−b is the distance from the dribbler to the ball),
the robot transitions to a fixed “drive forward” skill. The drive forward skill
just turns on the dribbler and moves the robot forward for 1 s. After the skill
completes, if the ball is no longer near the dribbler (i.e. dd−b > 35mm), then the
robot starts the go-to-ball skill again. Otherwise, the robot starts the learned
aim-to-shoot skill. If the ball is lost during the aim-to-shoot , then the robot
transitions back to go to ball and tries again.

Go-to-
Ball

Drive
Foward
for 1s

Aim
and
Shoot

Start
Ball near dribbler

Ball not near dribbler

Ball near dribbler

Ball near dribbler

Ball near dribbler

Ball not near dribbler

Fig. 2. Flowchart of Go to ball and shoot tactic.

5 Empirical Results

In this section we evaluate the learning performance and the final policy perfor-
mance of our skills. We also evaluate the performance of our tactic composed of
the two learned skills and one hard-coded skill.

5.1 Skill Learning

Tables 1 and 2 shows the hyperparameters used while training both skills. We
used an Ornstein-Uhlenbeck noise process [10]. The table also shows the layer
sizes for the actor and critic networks. Each layer is a fully connected layer.
The hidden layers use ReLU activations, the final layer of the actor uses a tanh
activation. The final layer of the critic uses a linear activation. Layer-norm layers
were inserted after each hidden layer [2]. When training each skill we initialize
the replay memory with examples of successful trajectories. This has been shown
in the past to improve the convergence speed of DDPG [24].

During the training of go-to-ball skill, we start by collecting 50,000 steps of
demonstrations of a good policy as part of the replay memory “burn-in”. These
samples initialize the replay memory before collecting samples according to the

90 D. Schwab et al.

current actor and noise policy. To get these good demonstrations, we spawn the
robot at an arbitrary position on the field so that is facing the ball. We then
drive the robot forward until it touches the ball. During the actual training, the
robot must learn to reach the ball from arbitrary positions and orientations.

For the training of aim-to-shoot skill, we initialize the replay memory with
10,000 samples from a good policy. To get these initial samples we spawn the
robot near the goal, facing the goal, and then kick the ball at full strength.
During the actual training, the robot must learn to orient itself and the ball
towards the goal and then kick.

Figure 3a shows the learning curve from training the go-to-ball skill. The
initial part of the curve shows the initial policy demonstrations used to seed
the replay. While there is variance in the final policy performance, we see that
the agent takes about 500,000 training samples before it has converged to an
acceptable policy. Figure 3b shows the average episode length while training.
There is a large difference in the maximum number of steps taken to successfully
complete an episode between the initial policy and the final policy.

We tested the learned go-to-ball skill against the existing go-to-ball skill. The
existing skill moves the robot in a straight line while turning to face the ball. We
spawn the ball in a random location of the field. Then the robot is also spawned
at a random position and orientation. We then run the skill until either 10 s has
elapsed or the ball has been touched on the dribbler.

Figure 4 shows a histogram of the times taken for the go-to-ball skill to get
to the ball from 1000 different runs. We can see that while the learned skill has
more variance in the times, the max time is still within approximately 2 s of the
max time taken by the baseline skill. While the learned skill may take slightly
longer, it does reach the ball as intended. The discrepancy in time is likely due
to an inability of the DDPG algorithm to perfectly optimize the policy given the
training samples. Table 3 shows the success rate of both policies. We see that the
baseline is always successful, and the trained policy only failed to get the ball in
a single run.

Qualitatively, the path the learned skill takes is very different from the base-
line. The baseline is very consistent, moving in a straight line and slowly turning
to face the ball. The learned policy’s path curves slightly as it adjusts it’s orien-
tation to face the ball. Sometimes there are also overshoots in the learned policy.
Figure 7 shows an example of a sequence of frames which includes part of the
learned go-to-ball skill.

Figure 6 shows the training curve for the aim-to-shoot skill. This skill’s
learning curve is more unstable than the go-to-ball skill. However, we were
still able to utilize the learned policy to aim and score on the goal.

Figure 5a shows the time taken to shoot by the baseline and Fig. 5b shows
the time taken to score by the learned policy. Both the baseline and the learned
policy were tested on 1000 different runs with different initial conditions. Each
run, the robot is spawned at some position, with some orientation, with the ball
on the dribbler. We then run the policy and measure the time taken to score.
From the figures, we see that again, learned policy takes about 2 s longer to

Learning Skills for Small Size League RoboCup 91

Table 1. Hyperparameters used
for go-to-ball skill

Name Value

Critic learning rate 1 × 10−3

Actor learning rate 1 × 10−4

Critic size 300, 400

Actor sizes 300, 400

Replay mem size 1,000,000

Noise parameters θ = 0.15, μ = 0,

σ = 0.3

Table 2. Hyperparameters used for
aim-to-shoot skill

Name Value

Critic learning rate 1 × 10−4

Actor learning rate 1 × 10−4

Critic size 200, 300, 300, 300

Actor sizes 200—300, 300, 300

Replay mem size 600,000

Noise parameters θ = 0.15, μ = 0,

σ = 0.3

Table 3. Success rate for
go-to-ball skill

Name Value

Baseline 1.0

Trained policy 0.999

Table 4. Success rate for
aim-to-shoot skill

Name Value

Baseline 0.71

Trained policy 0.772

score the goal on average. We believe the learned policy takes longer because the
reward function prioritizes accuracy over time, whereas the hand-coded policy
was designed to shoot at the first available opportunity.

Table 4 shows the success rate of the baseline aim-to-shoot skill vs the suc-
cess rate of the learned aim-to-shoot skill. While the baseline takes shots on
goal faster, we see that the learned policy is actually more accurate by approxi-
mately 6%. This makes sense, as our reward function gives negative rewards for
failures, so the agent will be incentivized to prioritize good aim over time taken
to score.

(a) Total reward vs Number of Samples
while training go-to-ball skill. Higher
is better. Initial part of the curve shows
replay memory burn-in.

(b) Number of time-steps vs Number
of samples while training go-to-ball

skill. Each time-step is equal to 0.16ms.
Lower is better. Initial part of the curve
shows replay memory burn-in.

Fig. 3. Training curves for go-to-ball skill.

92 D. Schwab et al.

(a) Time taken by existing go-to-ball

skill.
(b) Time taken by neural network
go-to-ball skill.

Fig. 4. Comparison of existing go-to-ball skill vs learned go-to-ball skill.

(a) Time taken by existing
aim-to-shoot skill.

(b) Time taken by neural network
aim-to-shoot skill.

Fig. 5. Comparison of existing aim-to-shoot skill vs learned aim-to-shoot skill.

Fig. 6. Total reward vs number of samples while training aim-to-shoot skill. Higher
is better.

5.2 Tactics Evaluation

In order to be useful in an STP hierarchy, the learned skills must be easily com-
posable by human coders. The tactic state machine from Fig. 2 was implemented
using the learned go-to-ball and aim-to-shoot skills. To evaluate the perfor-
mance, we executed the state machine across 500 different runs. Each run, the
robot was spawned at a random location on the field with a random orientation.

Learning Skills for Small Size League RoboCup 93

Fig. 7. Sequence of key-frames from execution of go to ball and shoot tactic using
learned skills. The blue circle shows the robot. The blue line shows the history of the
robot’s trajectory. The orange circle is the ball and the orange line shows the trajectory
of the ball. The following link contains videos of the simulated policy: https://goo.gl/
xB7VAE (Color figure online)

The ball was also spawned at a random location on the field. We then run the
tactic until either (1) a goal is scored or (2) the maximum time of 15 s elapses.
The tactic was able to succeed 75.5% of the time. On average the tactic took
7.49 s with a standard deviation of 3.87 s.

6 Conclusion

In this work we have shown that Deep RL can be used to learn skills that plug
into an existing STP architecture using a physically realistic simulator. We have
demonstrated learning on two different skills: navigating to a ball and aiming
and shooting. We showed that these learned skills, while not perfect, are close
in performance to the hand-coded baseline skills. These skills can be used by
humans to create new tactics, much like how hand-coded skills are used. We
show that using a simple state machine, the two skills can be combined to create
a tactic that navigates to the ball, aims, and shoots on a goal. Given these
results, we believe that reinforcement learning will become an important part
in future competitions. Future work will address how well the learned policies
transfer from the simulation to the real robots.

https://goo.gl/xB7VAE
https://goo.gl/xB7VAE

94 D. Schwab et al.

References

1. Andre, D., Teller, A.: Evolving team Darwin united. In: Asada, M., Kitano, H.
(eds.) RoboCup 1998. LNCS, vol. 1604, pp. 346–351. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48422-1 28

2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

3. Browning, B., Bruce, J., Bowling, M., Veloso, M.: STP: skills, tactics and plays for
multi-robot control in adversarial environments. J. Syst. Control Eng. 219, 33–52
(2005). The 2005 Professional Engineering Publishing Award

4. Fernandez, F., Garcia, J., Veloso, M.: Probabilistic policy reuse for inter-task trans-
fer learning. Robot. Auton. Syst. 58, 866–871 (2009). Special Issue on Advances
in Autonomous Robots for Service and Entertainment

5. Hausknecht, M., Chen, Y., Stone, P.: Deep imitation learning for parameterized
action spaces. In: AAMAS Adaptive Learning Agents (ALA) Workshop, May 2016

6. Hausknecht, M., Stone, P.: Deep reinforcement learning in parameterized action
space. In: Proceedings of the International Conference on Learning Representations
(ICLR), May 2016

7. Heess, N., et al.: Emergence of locomotion behaviours in rich environments. CoRR
(2017). http://arxiv.org/abs/1707.02286v2

8. Hsu, W.H., Gustafson, S.M.: Genetic programming and multi-agent layered learn-
ing by reinforcements. In: GECCO, pp. 764–771 (2002)

9. LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Robot.
Res. 20(5), 378–400 (2001)

10. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In:
Internal Conference on Learning Representations (2016). http://arxiv.org/abs/
1509.02971v5

11. Luke, S., Hohn, C., Farris, J., Jackson, G., Hendler, J.: Co-evolving soccer softbot
team coordination with genetic programming. In: Kitano, H. (ed.) RoboCup 1997.
LNCS, vol. 1395, pp. 398–411. Springer, Heidelberg (1998). https://doi.org/10.
1007/3-540-64473-3 76

12. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning (2016).
http://arxiv.org/abs/1602.01783v2

13. Mnih, V., et al.: Playing atari with deep reinforcement learning (2013). http://
arxiv.org/abs/1312.5602v1

14. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

15. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy
optimization. CoRR, abs/1502.05477 (2015)

16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

17. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

18. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354 (2017)

19. Stolle, M., Precup, D.: Learning options in reinforcement learning. In: Koenig, S.,
Holte, R.C. (eds.) SARA 2002. LNCS, vol. 2371, pp. 212–223. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45622-8 16

https://doi.org/10.1007/3-540-48422-1_28
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1707.02286v2
http://arxiv.org/abs/1509.02971v5
http://arxiv.org/abs/1509.02971v5
https://doi.org/10.1007/3-540-64473-3_76
https://doi.org/10.1007/3-540-64473-3_76
http://arxiv.org/abs/1602.01783v2
http://arxiv.org/abs/1312.5602v1
http://arxiv.org/abs/1312.5602v1
http://arxiv.org/abs/1707.06347
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/3-540-45622-8_16

Learning Skills for Small Size League RoboCup 95

20. Stone, P., Kuhlmann, G., Taylor, M.E., Liu, Y.: Keepaway soccer: from machine
learning testbed to benchmark. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi,
Y. (eds.) RoboCup 2005. LNCS, vol. 4020, pp. 93–105. Springer, Heidelberg (2006).
https://doi.org/10.1007/11780519 9

21. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup
soccer keepaway. Adapt. Behav. 13(3), 165–188 (2005). https://doi.org/10.1177/
105971230501300301

22. The RoboCup Federation: RoboCup (2017). http://www.robocup.org/
23. Uchibe, E.: Cooperative behavior acquisition by learning and evolution in a multi-

agent environment for mobile robots. Ph.D. thesis. Osaka University (1999)
24. Vecerik, M., et al.: Leveraging demonstrations for deep reinforcement learning on

robotics problems with sparse rewards. CoRR (2017). http://arxiv.org/abs/1707.
08817

https://doi.org/10.1007/11780519_9
https://doi.org/10.1177/105971230501300301
https://doi.org/10.1177/105971230501300301
http://www.robocup.org/
http://arxiv.org/abs/1707.08817
http://arxiv.org/abs/1707.08817

	Learning Skills for Small Size League RoboCup
	1 Introduction
	2 Small Size League (SSL) RoboCup
	3 Related Work
	4 Approach
	4.1 Algorithm
	4.2 Simulation
	4.3 Skills
	4.4 Go to Ball and Shoot Tactic

	5 Empirical Results
	5.1 Skill Learning
	5.2 Tactics Evaluation

	6 Conclusion
	References

