
Fast Multi-scale fHOG Feature Extraction
Using Histogram Downsampling

Mihai Polceanu(B), Fabrice Harrouet, and Cédric Buche

LAB-STICC, ENIB, Brest, France
{polceanu,harrouet,buche}@enib.fr

Abstract. Object detection is crucial for autonomous robotic systems
to interact with the world around them but, in robots with low com-
putational resources, deep learning is difficult to take advantage of. We
develop incremental improvements to related work on feature approx-
imation and describe an adaptive fHOG feature pyramid construction
scheme based on histogram downsampling, together with a SVM clas-
sifier. Varying the pyramid level to which the scheme is applied gives
control over the trade-off between precision or speed. We evaluate the
proposed scheme on a modern computer and on a NAO humanoid robot
in the context of the RoboCup competition, i.e., robot and soccer ball
detection, in which we obtain significant increase (1.57x and 1.68x on
PC and robot respectively) in pyramid construction speed relative to our
baseline (the dlib library) without any loss in detection performance. The
scheme can be adapted to increase speed while trading off precision until
it reaches the conditions of a state-of-the-art power law feature scaling
method.

Keywords: Vision for robotics · Object detection ·
Feature approximation · Histogram of Oriented Gradients

1 Introduction

Object detection has seen tremendous progress in the past years, which stemmed
both from hand-crafted features and the relatively recent convolutional neural
networks (CNN). As CPUs improved and with the advent of cheaper GPU pro-
cessing, some subfields witnessed super-human image recognition accuracy.

Our focus is however on conditions where the system is required to function
with low computational resources. Such conditions can be found in the Standard
Platform League (SPL) of the RoboCup soccer competition. Here, teams must
use the commercially available SoftBank NAO humanoid robot without hardware
modifications. The resources available in this setup are an Intel Atom 1.6 GHz
processor with one thread and 1GB of RAM. Although sufficient for vision, these
resources must be shared by several processes to perform locomotion, localization
and strategic behavior necessary for the soccer match, hence in reality, object

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 57–69, 2019.
https://doi.org/10.1007/978-3-030-27544-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_5


58 M. Polceanu et al.

detection can only account for a small amount of resources (roughly 5% CPU in
the implementation we used for this work) when the robot is in motion.

The main tasks for computer vision in this competition are the detection
of lines, goal posts, the ball and other robots (teammates and opponents). For
humanoid detection we turn to the subfield of pedestrian detection, where His-
tograms of Oriented Gradients (HOG) continue to play an important role since
their invention in 2005 [5]. HOG consists in dividing an image into cells, com-
puting the gradient of each cell, binning gradients into a histogram of main
orientations and finally normalizing over blocks of cells to produce features
(originally 36-dimensional) that are used for training a Support Vector Machine
(SVM) classifier over a sliding window. Later, [8] introduced a refined version
of HOG features (commonly referred to as Felzenszwalb HOG or fHOG) which
proved more robust for pedestrian but also generic object detection. Despite
its high popularity, HOG-like (HOG, fHOG, or other variants) feature extrac-
tion is known to be slow, although more energy efficient than more accurate
CNNs [19].

While many other flavors of object detectors have been proposed, most com-
bine HOG-like features with other types to obtain better results under different
conditions. Our main focus is to accelerate fHOG feature extraction in order for
it to run on a robotic platform with low computational resources, while maxi-
mizing detection precision.

We first discuss existing work on feature approximation and how our work
differs from the state-of-the-art method [6]. We then present a series of eval-
uations on a modern computer (Intel Core i7, 2.60 GHz) to observe how our
choices have an impact on detection quality and execution speed. All results
are obtained using a single execution thread and averaged over multiple runs to
ensure validity. From these evaluations we make several observations that lead
to an adaptive scheme that gives control over the trade-off between average pre-
cision and execution speed. Finally we validate the results on the chosen robotic
platform, where we obtain higher execution time compared with the modern
computer as expected, due to the lower quality processor, but still observe sig-
nificant improvement relative to the baseline.

2 Related Work

The Histogram of Oriented Gradients is a widely used feature descriptor, first
proposed for human detection by [5]. The intuition behind this approach is that
the shape and appearance can be characterized by the distribution of local edge
directions (intensity gradients). The main steps in obtaining a HOG-based detec-
tor, as originally described by [5], are to compute gradients that are binned in
histogram of 9 dominant directions (bins), which are then normalized over blocks
of 4 cells and finally concatenated to obtain the HOG features (9×4 = 36 dimen-
sional). These features are then fed as input to a SVM classifier that is trained
with the corresponding labels such as pedestrians. Afterwards, [8] improved upon
the result with insights gained from applying Principal Component Analysis



Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 59

(PCA) to reduce the dimension of the initial features while retaining the same
performance and used additional contrast sensitive components to improve over-
all performance.

Our work falls in the concept of feature approximation, notably used by [7]
to significantly increase the speed of the feature pyramid construction for non
scale invariant features like HOG. The feature pyramid is constructed by down-
sampling the image by a factor, i.e., a smaller image is obtained by downscaling
the original by a chosen fraction. For example, downsampling a 640× 480 image
by a 4/5 factor means that the obtained image is 640∗4/5 = 512 pixels wide and
480∗4/5 = 384 pixels high. The main intuition is that instead of downscaling the
image and extracting features at each level of the pyramid, intermediary levels
could be approximated using nearby feature maps. Approximating intermediary
pyramid levels is complementary to other works focusing on optimized variants
of HOG, such as faster cell-based scanning [18], heavy use of parallelism [12] and
different approaches to computing gradients [4].

Successive image down-sampling and calculating features at each pyramid
level are computationally expensive. Taking advantage of the generally fractal
structure of natural images, it is possible to obtain similar performance by only
downsampling and computing the features for each halved image; i.e., at each
octave [6]. In-between, the features are approximated (upsampled and downsam-
pled) from the ones directly calculated at each octave, which directly leads to
higher execution speed that is crucial for embedded systems [11].

Regarding the context of application, object detection in the RoboCup Soccer
competition (standard platform league) has been achieved with (generally man-
ually tuned) detectors based on color segmentation [13,16] or color histograms
[17], statistical modeling [2], line detection, rough shapes [3], or simply as non-
green patches which differentiate themselves from the green football field [10].
We note that some approaches [16] make use of smaller image sizes and regions
of interest (instead of sliding windows) to limit the search space in the image to
improve performance; this technique is complementary to our work on analyzing
the effects of feature approximation on performance.

In our experiments, we use the object detector provided by Dlib [14] which
uses the well known 31-dimensional feature extraction method described by
[8] (fHOG) together with Max-Margin Object Detection (MMOD) [15] which
improves training efficiency. While other implementations exist (such as OpenCV
and others), our focus is on studying the impact of feature approximation,
regardless of particular implementation. Final detections are obtained by apply-
ing non-maximum suppression on the ensemble of overlapping detection boxes.
Dlib represents one of the most efficient implementations of state-of-the-art clas-
sical object detection and is used by both academia and industry. Throughout
this work, our contribution is compared to the current implementation of fHOG-
based SVM classifier in Dlib as primary baseline.



60 M. Polceanu et al.

3 Image and Histogram Downsampling

The first important observation is that the main bottleneck in computing fHOG
features resides in calculating the gradient histogram which happens before com-
puting the final feature map. Most modern processors provide Single Instruc-
tion, Multiple Data (SIMD) instructions, which have the same execution time
and electricity consumption as their scalar counterparts, but handle 16 bytes of
data simultaneously which, for our purposes, enables 4 floating point operations
instead of one. This is also the case for the Intel Atom 1.6 GHz processor of
the NAO robot used in our research. However, computing histograms involves
the decision of which bin is associated with each data point, and therefore can-
not be fully vectorized. This observation led us to consider avoiding succes-
sive histogram computations, similar to how other authors avoid direct feature
extraction.

Another important aspect to consider is that the bulk of computational
expense rests in the first few levels of the pyramid that use large scale images. For
example, for a 10-level pyramid that uses 4/5 downscaling factor on a 640× 480
image, computing features for each level costs 36.70%, 23.23%, 14.81%, 9.54%,
6.02%, 3.91%, 2.53%, 1.52%, 1.07% and 0.67% of the total time, respectively.

We can identify three aspects of the fHOG feature extraction algorithm that
can be accelerated: (a) The level to which the scheme is applied, (b) Image down-
sampling strategy and (c) Histogram downsampling strategy. Here we describe
each of these aspects, and then put them to the test in the following section, in
comparison with related state-of-the-art schemes.

All tests are performed on a dataset that contains images from the publicly
available SPQR dataset [1] and also includes new frames coming from robots
during test matches in different lighting conditions and of lower resolution. Lower
resolution images were upscaled to 640 × 480 which is the chosen resolution of
our evaluation, as this is the real image size that is usable from the NAO robot
camera; in fact, the output of the camera is 960p/30fps (1280 × 960) and is
provided in YUYV format (also known as Y’UV422), but processing the full sized
image exhausts much of the resources available on the robot [9]. For training and
testing, we only consider the Y value which can very efficiently be read directly
from the raw camera output. The images in the enhanced dataset have been
randomized and divided into 100 training images (50 with horizontal flip added)
and 98 test images, amounting to 190 and 185 positive examples respectively.
The training set was kept small to avoid excess robot pose variation which makes
training a HOG detector inefficient (i.e. the resulting vignette becomes blurred);
this proves to obtain acceptable accuracy without the need to train multiple
detectors for several poses which drastically increase the amount of resources
required, while in practice it also allows training for a different object with few
on-site images.



Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 61

3.1 Approximating Levels

As seen previously, it is most important to approximate lower levels of the pyra-
mid (i.e. larger image sizes), as they have the highest cost in terms of computa-
tion time. Throughout this work, we evaluate different downsampling strategies
by applying them up to a certain level of the pyramid. Applying each scheme
up to a level means that some or all intermediary levels are approximated from
histograms from a lower level (source level depends on each scheme). After doing
a hyperparameter (pyramid downscaling factor; C and risk gap of SVM; and box
matching threshold) search (grid followed by random search) on the Dlib fHOG
object detector [14] which we use as a baseline, we chose to use a 4/5 downscale
factor which in our implementation leads to a pyramid with 10 levels (0–9). In
the following, we report the precision and execution time of each approach by
applying the scheme (approximating histograms) up to a given level exclusively,
while higher levels are computed in the same way as the baseline; this way,
results at level 1 are equivalent for all schemes and baseline since the scheme is
not applied to any level. Starting from level 2 and up to 9, the charts illustrate
the effect of the chosen scheme on performance and speed. We also include level
10, which means that the entire pyramid (levels 0–9) is approximated, using the
chosen scheme.

3.2 Image Downsampling

Constructing smaller scale images is originally performed in the Dlib baseline at
each pyramid level using bilinear interpolation, while histograms and features
are also extracted at each level. The power law based feature approximation
approach [6] proposes to only subsample images at each octave (ratio of 1/2)
while approximating the intermediary final features (as opposed to histograms
in our work). To test how approximation influences performance, regardless of
octaves, we approximate histograms up to a given level while downsampling
images for the higher levels in two ways: in the first scheme (dubbed slow method
in the following) we continue to downsample images from each previous level,
even if these intermediary images are not used for feature extraction, and in the
second scheme (dubbed fast method) we do not keep intermediary images, but
downsample from the original image directly to the level up to which the scheme
is applied (see Fig. 1 for clarification). While significantly faster, one may argue
that this method can lead to important information loss for higher levels (smaller
image scales), due to the fact that entire pixels are ignored in the downsampled
image.

We put this intuition to the test, and evaluate quality when skipping several
levels when downsampling image. We note that using the fast approach, we
obtain “pixelated” parts of the image, where gradient information is lost, but
this only becomes clear when the gap between downsampled images increases,
in our case, further than 4 or 5 levels. We therefore expect that having at least
some intermediary images, such as in the case of the power law approach [6]
which subsamples images at each octave, should improve results.



62 M. Polceanu et al.

Fig. 1. Image downsampling approaches of Dlib baseline (left), slow (center) and fast
(right) schemes applied up to level N .

To study the impact of the two image downsampling strategies, we measure
speed and performance at each level in the pyramid. To visualize the progres-
sion in function of level, we plot the average execution time (Fig. 2 left) obtained
by a single image pyramid, measured for 10 configurations. Each configuration i
consists in an fHOG detector that performs feature downscaling using the respec-
tive image downsampling strategy (slow/fast) until level i − 1 and then, from
level i onwards it performs the default feature extraction (which corresponds to
downsampling the image and extracting features at each step).

Fig. 2. Average execution time (in seconds) on modern computer (left) and average
precision (right) of slow vs. fast image downsampling when applying each scheme up to
each level of the pyramid (yielding multiple configurations of each scheme). Dotted lines
show the performance of the detector in each case using the same hyperparameters
initially found for the baseline. Because features differ when approximation is used, we
retrained each configuration on the same dataset to obtain the true average precision
for each level (indicated as “optimal” in figure), being equivalent to having a different
model per configuration.

As expected, the fast approach is more desirable in terms of execution time.
However, we find that the performance of extracted fHOG features depends on
the quality of the image at higher levels, but remain robust to drastic downsam-
pling at lower levels. Figure 2 (right) shows that, with hyperparameter tuning
for each configuration, slow downsampling outperforms the fast method overall.
However, this also implies a significant loss in execution speed. Nevertheless, we
note that for the first few levels, the performance difference is not as pronounced.

Therefore, if the approximated gap between downsampled images is small
enough, the fast downsampling strategy should retain enough information to
minimize performance loss while offering good execution speed gains.



Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 63

3.3 Histogram Downsampling

In this work, we refer to “histogram” as the frequency of gradients binned into
each of the 18 orientations described by [8] that is computed before calculating
the final 31-dimensional fHOG features, while [6] describe feature downsampling
on final features. Downsampling final features would seem much faster, because
recomputing and normalizing them is directly avoided, however it turns out that
the time lost on this process is regained in our approach because the downsam-
pling is done on 18 dimensions instead of 31. This leads to very similar runtime
for both approaches, but we observe higher performance loss in scaling final
features. This loss could be alleviated by smoothing the feature maps as [6] pro-
pose, but this would inevitably lead to slower runtime only to reach detection
performance similar to our approach. In all experiments we use downsampling on
18-dimensional histograms and then compute and normalize the 31-dimensional
fHOG features.

As with images, histograms can be downscaled using bilinear interpolation
of bins between adjacent cells, either by always starting from the first level and
obtaining the rest (which we dub direct method), or by successively obtaining
level i+ 1 from level i (progressive method), see Fig. 3 for clarification. Because
the algorithm requires histograms for all levels, the progressive method yields
faster overall computation time as the source histogram is smaller, but leads to
additional blur that, contrary to the case of images, decreases detection accuracy.

Fig. 3. Dlib baseline (left) and histogram downsampling schemes – slow (center) and
fast (right) – applied up to level N .

In the following we evaluate execution speed and performance of each
method, by successively applying it up to a given level ranging from 2 to 10,
where 10 is actually a completely approximated pyramid, the entire pyramid
has 10 levels (0–9) as in the previous results. From Fig. 4 we observe that the
speed of both progressive and direct schemes are very similar, with little loss at
higher levels for the direct histogram downsampling.

As for the slow and fast schemes, we compute the average precision of the
detector using progressive and direct histogram downsampling with hyperpa-
rameters of the baseline and with best scores after a parameter search for each
level. Results in Fig. 4 show that direct downsampling outperforms progressive
by a small but real margin. We must note however that this advantage only
appears after a few levels, where the blur introduced by the progressive method
accumulates.



64 M. Polceanu et al.

Fig. 4. Average execution time (in seconds) on modern computer (left) and average
precision (right) of progressive vs. direct histogram downsampling. Dotted lines show
the performance of the detector in each case using the same hyperparameters initially
found for the baseline.

4 Adaptive Feature Pyramid Construction

It is clear that a trade-off exists between detection performance and the frame-
rate at which the algorithm can run. While it is ideal to obtain accurate detec-
tions, in real setups such as the RoboCup competition the robot must also spend
computational resources on other tasks, such as maintaining balance while walk-
ing. In fact, resource consumption varies throughout the game, depending on the
situation. Therefore, it is desirable to have an adaptive control of the trade-off
between accuracy and speed, while maximizing detection precision (i.e., mini-
mizing false positives).

In the previous section, we evaluated the drop in performance that comes with
“skipping” feature computations up to each level of the pyramid. Meanwhile,
the power law approach [6] provides a good trade-off: approximately 4% loss in
average precision (in our setup, on images of robots) for almost doubling the
speed of feature extraction. Here we evaluate a hybrid1 between the skipping
approach described previously and the power law based method.

We begin by skipping feature extraction up to level N exclusively, while
retaining it at levels that coincide with a 1/2 downscale of the image (octave).
This way, we obtain a method that is bounded in speed and average precision
by the original baseline (upper bound) and the power law based results (lower
bound). The setup presented herein uses 4/5 downscale from one level to the
next, therefore octaves correspond roughly to levels 3, 6 and 9. The proposed
scheme skips levels excepting those corresponding to octaves and applying the
scheme up to (but excluding) level N , thus we have equivalence between levels
3–4, 6–7 and 9–10 as the same conditions are met.

We note that the approximation of levels following an octave is done using
the result that was obtained from a downsampled image, therefore the quality
of the histogram is superior to the case where the approximation had continued
from the first level, as is the case in the previously described results.

In Fig. 5 we compare our approach with the original algorithm, power law
method and the previously described level skipping strategies. As with the opti-
mal versions of previous strategies, we performed a hyperparameter search and
1 Full code and dataset available at: https://github.com/polceanum/fast.fhog.

https://github.com/polceanum/fast.fhog


Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 65

Fig. 5. Average execution time in seconds (left) and average precision (right) of studied
feature approximation methods. Baseline and power law based approaches [6] shown
as a straight lines, due to no level parameter.

retrained each configuration on the same dataset (equivalent to having a different
model for each level to which the scheme is applied).

We observe the importance of retaining image downsampling at octave inter-
vals as described by [6]. Applying our scheme up to level 4 does not sacrifice
average precision, even though the most computationally expensive levels are
approximated. At higher levels, average precision gradually decreases until it
matches its lower bound, the power law baseline.

As the previous experiments have shown, gains in execution speed are signif-
icant especially for the first few levels of the pyramid. Figure 5 illustrates how
execution time drops with each level, on the modern computer. At level 4, which
had no average precision loss, the scheme offers 1.57x speed increase relative to
the original algorithm. Increasing the level up to which the scheme is applied to
7 gives a 1.87x speed increase with only ∼1% decrease in average precision.

We note that the slow image downsampling strategy could give slightly higher
average precision results, but the loss in execution speed would be much higher.

5 Results

The processor equipped on the NAO v4 robot platform is, according to our
estimates, approximately 25 times slower than the modern CPU on which we
ran the evaluation. This is due to several factors such as lower frequency, less
processor cache and other aspects which are outside the scope of this paper.
These differences impose a hard standard on what algorithms can be run on this
model of robots.

We evaluated the scheme on the NAO robot, obtaining gains in execution
speed similar to the PC version (see Table 1). In fact, the speed increase is 1.68x
without average precision loss relative to the dlib baseline, which is higher than
the PC version, due to optimizations that are not available on the robot. At level
7, we obtain 1.95x speed increase with only 1.14% loss in average precision, while
at level 10 (which is equivalent to the power law approach) the speed increase is
2.05x but the loss rises to 3.21%.



66 M. Polceanu et al.

Table 1. Summary of proposed scheme performance. Average precision (AP), feature
extraction execution time in milliseconds on modern computer (TMC) and on robot
(TR), false positives per image (FPPI) and miss rate (MR) are shown for each level
up to which the scheme is applied. For total detection time that includes SVM classifi-
cation, add ∼7 ms to TMC and ∼117 ms to TR. Small FPPI variations most probably
due to different SVM hyperparameter C values for each level.

Level 1 2 3–4 5 6–7 8 9–10

AP 89.3% 89.4% 89.4% 87.7% 88.2% 87.0% 86.1%

TMC 11.9 9.0 7.5 6.8 6.3 6.2 6.1

TR 298.2 227.1 177.0 162.3 152.4 148.9 145.3

FPPI 5.4× 10−2 8.6× 10−2 3.7× 10−2 2.1× 10−2 3.2× 10−2 4.3× 10−2 3.7× 10−2

MR 11.3% 8.6% 10.2% 11.8% 11.3% 12.9% 13.5%

We note that the time needed to compute the feature pyramid on the robot
is still elevated, and thus more optimizations will be required. However, the
∼150 ms drop with minimal loss in average precision is an important improve-
ment in this case. To retain smooth motion and cognition, the algorithm can
be broken down into multiple steps, and tracking can be performed in between.
The important aspect is that the number of false positives per image is low,
while some such cases are actually correct hits which were not annotated in the
dataset (see Fig. 6).

Fig. 6. Robot (a–d) and ball (e–h) detection examples and extreme lighting conditions
(i). Note: true positives in (a, b); false negative in (c) (fallen robot was not annotated
in the dataset; false negatives in (d, h) due to excessive blur and similar background;
detection in cluttered image (e); near (f) and far (g) detections. Slight box mismatches
due to sliding window size; over time, detected bounding boxes vary slightly, especially
visible in the extreme lighting scenario.

Results on ball detection are also satisfactory with the ability to detect soccer
balls that are close and far away. We do note however that when the background
has very similar color and texture, detection does not perform well. The algo-
rithm is relatively robust to lighting conditions, as well as to a reasonable amount
of motion blur. We notice that a limitation is represented by situations in which
the objects “blend in” with the background. Outside the scope of the RoboCup



Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 67

competition, we expect that our approach will offer a better, adjustable trade-off
between average precision and execution speed. For more difficult object detec-
tion problems, if hardware resources are more readily available, finer sampled
image pyramids may improve results, and the gain from approximating interme-
diate levels becomes much more pronounced.

6 Conclusions and Future Work

In this work we provided a detailed evaluation of the trade-off between feature
extraction speed and detector average precision, at each level of the feature
pyramid. In our experiments, we used histogram downsampling instead of final
feature downsampling used in related work. Results showed that this trade-off is
not linear and that average precision is not lost by skipping the first few levels
of the pyramid, which in fact account for a major part of the total computation
time. We compared these results with the dlib library and with a state-of-the-
art method based on image downsampling power law as baselines. Based on this
analysis, we developed a hybrid method which is upper bounded by dlib and
lower bounded by the power law approach in both execution time and average
precision. We significantly improved the execution time compared to the dlib
library and obtained a better trade-off than proposed by [6]. In practice, the
proposed method can be adapted, by changing the level up to which it is applied,
to favor average precision or execution speed. This way, on a modern computer,
we obtain 1.57x increase in pyramid construction speed without any loss in
average precision, ∼1% average precision loss with 1.87x speed increase, and
finally the same results as power-law approach when reaching the lower bound.

Execution speed gains are retained on the robot implementation, where we
obtain 1.68x speed increase compared to the baseline with no loss and 1.95x
increase with ∼1% average precision loss, compared with 2.05x obtained with
the power law baseline that presents ∼3% average precision loss.

Following from the observation that the first few levels of the pyramid account
for the majority of execution time, and that in our approach we compute the
first level (level 0), extra time should be saved by upscaling level 0 from higher
levels. Future work will include performance evaluation of this idea, as well as
vectorizing histogram downsampling to the extent possible, including adopt-
ing complementary optimization techniques from related work. While this work
improved the execution speed of the algorithm, the resulting framerate is still
low on the NAO robot and requires further optimization (including vectoriza-
tion which is not fully taken advantage of in this work), however it is possible to
divide the feature pyramid extraction and object detection algorithm into steps
that can be executed over multiple cognition cycles and couple the detection
process with computationally cheaper tracking.

Acknowledgements. We thank the RoboCanes team of the University of Miami for
providing their RoboCup software platform for our research. We also thank François



68 M. Polceanu et al.

Lasson for help with hyperparameter search, and anonymous reviewers for their valu-
able feedback. The work in this paper was partially funded by the ANR project SOM-
BRERO (ANR-14-CE27-0014).

References

1. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A deep learning app-
roach for object recognition with NAO soccer robots. In: Behnke, S., Sheh, R.,
Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 392–403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6 33

2. Brandão, S., Veloso, M., Costeira, J.P.: Fast object detection by regression in robot
soccer. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011.
LNCS (LNAI), vol. 7416, pp. 550–561. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32060-6 47

3. Budden, D., Fenn, S., Walker, J., Mendes, A.: A novel approach to ball detection
for humanoid robot soccer. In: Thielscher, M., Zhang, D. (eds.) AI 2012. LNCS
(LNAI), vol. 7691, pp. 827–838. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-35101-3 70

4. Cao, T.P., Deng, G.: Real-time vision-based stop sign detection system on FPGA.
In: 2008 Digital Image Computing: Techniques and Applications, DICTA 2008, pp.
465–471. IEEE (2008)

5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 886–893. IEEE (2005)

6. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object
detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

7. Dollár, P., Belongie, S.J., Perona, P.: The fastest pedestrian detector in the west.
In: British Machine Vision Conference, vol. 2, p. 7 (2010)

8. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach.
Intell. 32(9), 1627–1645 (2010)

9. Genter, K., et al.: UT Austin Villa: project-driven research in AI and robotics.
IEEE Intell. Syst. 31(2), 94–101 (2016)

10. Gudi, A., de Kok, P., Methenitis, G.K., Steenbergen, N.: Feature detection and
localization for the RoboCup Soccer SPL. Project report, Universiteit van Ams-
terdam, February 2013

11. Hemmati, M., Niar, S., Biglari-Abhari, M., Berber, S.: Real-time multi-scale pedes-
trian detection for driver assistance systems. In: 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6. IEEE (2017)

12. Iandola, F.N., Moskewicz, M.W., Keutzer, K.: libHOG: energy-efficient histogram
of oriented gradient computation. In: International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 1248–1254. IEEE (2015)

13. Khandelwal, P., Hausknecht, M., Lee, J., Tian, A., Stone, P.: Vision calibration and
processing on a humanoid soccer robot. In: 2010 The Fifth Workshop on Humanoid
Soccer Robots at Humanoids (2010)

14. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10(Jul),
1755–1758 (2009)

15. King, D.E.: Max-margin object detection. arXiv preprint arXiv:1502.00046 (2015)

https://doi.org/10.1007/978-3-319-68792-6_33
https://doi.org/10.1007/978-3-642-32060-6_47
https://doi.org/10.1007/978-3-642-32060-6_47
https://doi.org/10.1007/978-3-642-35101-3_70
https://doi.org/10.1007/978-3-642-35101-3_70
http://arxiv.org/abs/1502.00046


Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling 69

16. Menashe, J., et al.: Fast and precise black and white ball detection for robocup
soccer. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup
2017. LNCS (LNAI), vol. 11175, pp. 45–58. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00308-1 4

17. Metzler, S., Nieuwenhuisen, M., Behnke, S.: Learning visual obstacle detection
using color histogram features. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U.
(eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 149–161. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32060-6 13

18. Mizuno, K., Terachi, Y., Takagi, K., Izumi, S., Kawaguchi, H., Yoshimoto, M.:
Architectural study of HOG feature extraction processor for real-time object detec-
tion. In: 2012 IEEE Workshop on Signal Processing Systems (SiPS), pp. 197–202.
IEEE (2012)

19. Sze, V., Chen, Y.H., Einer, J., Suleiman, A., Zhang, Z.: Hardware for machine
learning: challenges and opportunities. In: 2017 IEEE Custom Integrated Circuits
Conference (CICC), pp. 1–8. IEEE (2017)

https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-030-00308-1_4
https://doi.org/10.1007/978-3-642-32060-6_13

	Fast Multi-scale fHOG Feature Extraction Using Histogram Downsampling
	1 Introduction
	2 Related Work
	3 Image and Histogram Downsampling
	3.1 Approximating Levels
	3.2 Image Downsampling
	3.3 Histogram Downsampling

	4 Adaptive Feature Pyramid Construction
	5 Results
	6 Conclusions and Future Work
	References




