
A Robust and Flexible System
Architecture for Facing the RoboCup

Logistics League Challenge

Thomas Ulz1, Jakob Ludwiger2, and Gerald Steinbauer3(B)

1 Institute for Technical Informatics,
Graz University of Technology, Graz, Austria

2 Institute for Control and Automation,
Graz University of Technology, Graz, Austria

3 Institute for Software Technology,
Graz University of Technology, Graz, Austria

steinbauer@ist.tugraz.at

Abstract. In this paper we present the software architecture of the
GRIPS team for addressing the challenges of the RoboCup Logistics
League. The guiding principles for the development of the architecture
origin in the research focus of the involved institutes on dependable intel-
ligent systems. The architecture enables most flexible planning of the
tasks as well as a most reliable execution of the generated task list.

1 Introduction

Due to increasing demands on flexibility in terms of product configuration as
well as delivery time triggered by the trend in e-commerce (e.g. on-line con-
figurators, on-line shopping) production needs to become more flexible as well
as more digitized. This trend is well known under terms like flexible production
or Industry 4.0. Usually in order to facilitate reasonable prices for products as
well as to guarantee sustainable product quality and fast availability of goods
production is heavily automatized. Often, this automation is not very flexible,
and thus, in contradiction with the demands on flexibility in configuration (in
extreme cases lot size one) and availability. Fortunately, these demands on flex-
ibility and digitization in production require new concepts and open interesting
and challenging research questions ranging from Robotics over the Internet of
Things (IoT) and multi-agent systems to planning and scheduling. In order to
provide an interesting and appealing show case that allows research and teaching
in the area of flexible production within the RoboCup initiative [16] a competi-
tion called the RoboCup Logistics League (RCLL) was founded. It resembles the
setting of a flexible production plant. The RCLL competition posts a number of
challenges ranging from Robotics over IoT to Artificial Intelligence and can be
used to develop and evaluate new concepts in production.

In this paper we like to introduce the system architecture of the team Graz
Intelligent Robust Production System (GRIPS) which allowed GRIPS to win
c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 488–499, 2019.
https://doi.org/10.1007/978-3-030-27544-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_40&domain=pdf
https://doi.org/10.1007/978-3-030-27544-0_40

A Robust and Flexible System Architecture 489

the international RCLL competition in 2018. The team comprises of students
and researchers of 3 different institutes of the Graz University of Technology
that share a common interest in safe and dependable intelligent systems [2,6,8].
The dynamic setting of the RCLL involving numerous items such as robot and
production machines interacting in a real world environment is a perfect testbed
for techniques to realize robust complex systems. Thus, in this paper we focus on
the aspects of the developed system architecture related to robustness, reactivity,
and liveness. We will describe how these properties are achieved on the different
system layers ranging from an abstract planning and scheduling module over a
robust executive layer to reactive behaviors.

2 Logistics League

The RCLL [1,10] is part of the RoboCup initiative and focuses on the stimulation
of the development of approaches in Robotics and Artificial Intelligence using
robotics competitions. In this league the goal is that a team of autonomous
robots in cooperation with a set of production machines produces individualized
products on demand. Two teams share a common factory floor of the size of
14 m × 8 m. Each team comprises of up to 3 autonomous robots and owns 7
machines. Machines are represented by Modular Production Systems (MPS)
provided by Festo. See Fig. 1 for an example setup.

Fig. 1. Physical setup of the
RoboCup Logistics League.

Fig. 2. Simulation setup of the
RoboCup Logistics League.

There are different types of machines that resemble different production steps
like fetching raw material, assembling parts, or delivering final products. The
task of the teams is to develop methods that coordinate the robots (which are
mobile) and machines (which are static) that allow producing and delivering
requested goods in time. All involved entities are allowed to communicate via
WiFi. Robots are cooperative in the sense that they need to interact physically
with the machines, e.g. fetching raw material from a dispenser machine or pro-
vide an intermediate product to a machine that refines it. Usually teams use
some coordination server that collects information from robots, machines, and

490 T. Ulz et al.

a central production management system that coordinates the necessary tasks.
The products are mimicked by stacks of bases, rings, and caps of different colors.
The configuration of the components is flexible and determines the complexity of
a product. In general, several refining steps of intermediate products by different
machines are required to produce a final product.

This setup for products was selected to have a physical interaction among
the robots, the machines, and the products. A central agent named referee box
randomly generates product orders with varying configurations and delivery time
windows. These orders are communicated to the teams that need to derive a
production schedule and distribute the tasks among the robots and machines.
Based on the complexity of the product and if the delivery windows was met
points are awarded to the teams. For the most complex products usually up to
10 different steps like fetching and delivering material to machines are needed.
The actual number depends on the planning representation. Some of them might
be parallelized or rescheduled in order to optimize the awarded points. In order
to simulate a real world production environment, machines go out of service on
a random basis which asks for flexibility in the production planning. The team
that collects the most points during 17 min of production time wins the game.

The referee box is able to run games and scoring automatically. Together
with a full-fledged simulation [19] (see Fig. 2 for an example setup), it forms an
advanced benchmarking system for flexible production approaches [10,11].

The interesting aspect of the RCLL setting is its resemblance to flexible
on-demand production sites while abstracting it to not involve any physically
changes of the product. Given that, this the RCLL posts challenges in the full
range from Robotics (e.g. navigation, precise manipulation) over communication
and multi-agent systems (e.g. reliable communication, reliable task execution) to
planning and scheduling (e.g. generate production plans, execution monitoring
and re-planning).

3 Software Architecture

The main aspects for realizing a multi-robot system as required in the RCLL are
(1) planning and scheduling, (2) plan refinement and execution, (3) behavior and
control, and (4) low-level functionality. In the following sections we are going to
present selected topics for all aspects, except low-level functionality such as nav-
igation. A general overview of the software architecture we apply in our system
can be seen in Fig. 3. As depicted there, the software architecture spans over
multiple physical systems. The planning and scheduling instance is deployed on
a so-called teamserver which has global knowledge of the current game compris-
ing information from the RCLL referee box such as requested orders and from
all active robots such as the status of task execution. The teamserver controls
all robots and interacts as a gateway between them and the referee box. The
modules running on the robots comprises an executive, a behavior and control
module, and low-level functionality.

A Robust and Flexible System Architecture 491

Fig. 3. Overview of distributed software architecture in our approach.

3.1 Planning and Scheduling

Planning and scheduling in our approach is based on splitting any order that is
received from the RCLL referee box into subtasks that cannot be split further.
The representation of the task on this level is rather abstract because we like
to limit the complexity in planning and there exists a task refinement in the
executive layer. This idea is inspired by the concept of hierarchical task network
planning [5]. In our system, we distinguish between two subtask categories where
we assume that one robot is only able to carry a single item:

BS RS 1 CS 1 DS

Fig. 4. Example production chain for an order of complexity C1, adapted from RCLL
rulebook [3]. This order requires 2 additional workpieces at the ringstation RS1 and a
cap loaded at capstation CS1.

1. GET: A GET task implies that the robot needs to navigate to a given MPS,
where a workpiece is fetched by the robot, usually after sending some instruc-
tion to the MPS to initiate for instance a material dispense.

2. DELIVER: A DELIVER task involves the robot navigating to a given MPS,
where the carried workpiece is then deposed. This is usually followed by the
robot sending some instruction to the MPS like mounting a ring.

492 T. Ulz et al.

GET
BS

DELIVER
RS 1

GET
BS

DELIVER
RS 1

GET
BS

DELIVER
RS 1

GET
RS 1

GET
CS 1 Shelf

DELIVER
CS 1

GET
CS 1

DELIVER
RS 1

DELIVER
CS 1

GET
CS 1

DELIVER
DS

Cri cal
Task

Resource
Task

Uncri cal
Task

Fig. 5. Dependency graph for tasks required to build and deliver a product for the
C1 order that is shown in Fig. 4. Failure of critical tasks lead to complete cancellation
of the respective product, while resource tasks can be reassigned. Failure of uncritical
tasks have no influence on the overall goal of delivering a complete C1.

Since getting and delivering a workpiece reasonably needs to be done by the
same robot, this specific choice of subtask types might seem counterintuitive.
However, by separating the pickup and deliver process, MPSs can be freed from
a workpiece that would otherwise block the MPS for other robots. The successful
execution of these subtasks is then arranged and monitored by the system that
will be discussed in Sect. 3.2. For simplicity, we assume here, that this system is
capable of providing information of successful or unsuccessful task execution.

Task Generation. Any order that is received from the RCLL referee box spec-
ifies the color required for each workpiece that is used in the production pro-
cess. Therefore, any order implicitly defines which MPSs need to be used during
the production process. An example production chain for an order of easy-to-
medium complexity C1 (meaning that one ring needs to be mounted before the
cap) is shown in Fig. 4. Based on this production chain, our scheduler creates the
required subtasks and the corresponding dependency graph for this tasks using
the ideas of HTN refinement. The resulting dependency graph for the production
chain shown in Fig. 4 is then depicted in Fig. 5. As can be seen there, subtasks
belong to one of the following three categories:

1. Critical Tasks represent the actual production flow where the requested
product is assembled by the MPSs using the workpieces already loaded into
the respective MPSs. If such a critical task fails, the product that currently
is assembled cannot be reasonably recovered, and thus, production of this
product is canceled. Depending on the current game’s context, assembly of
the same product might be started again.

2. Resource Tasks load the MPSs with workpieces that are required for the
assembly of products. If resource tasks fail, the actual assembly of the prod-
uct is not harmed and thus, these tasks can be reassigned until successfully
completed. However, assembly of a product might be severely delayed due to
resource tasks failing.

A Robust and Flexible System Architecture 493

3. Uncritical Tasks neither influence the successful completion of the currently
assembled product, nor do they (directly) influence assembly time of that
product. However, if successfully completed, these tasks might have a positive
effect by speeding up future assembly processes.

Task Scheduling. The assignment of tasks to respective robots in our system
is done based on a request-response approach. This means, robots that currently
do not own tasks request new tasks from the central planning and scheduling
instance. For task scheduling, three scenarios might occur that we are going to
discuss in the following paragraphs. To do so, we define the following symbols:

– τ : a given task.
– pred(τ): set of all predecessor tasks of τ based on the task dependency graph.
– τ.type: the task’s type which is one of {GET,DELIV ER}.
– τ.state: the task’s state which is one of {SUCCESS, FAIL,UNASSIG −

NED}.
– τ.robot: the robot to which the task τ was assigned.
– τ.machine: the machine which which the robot interacts in this task. The

machine is one of {BS,CS1, CS2, RS1, RS2, SS,DS}.
– ξ: a given product.
– ξ.τ : all tasks that are required to assembly product ξ.
– ξ.machines: all machines the robots need to interact with during assembly

of this product.
– T : the set containing all currently active tasks.
– ρ: the current robot that is requesting a task.

1. Task in active assembly. In the simpler of the two cases, a task in an
already active production process for a given product can be found for the robot
requesting a new task. That is, the set of tasks Φ that could be assigned to the
robot according to (1) is not empty. In our system, this is the preferred case, and
thus, scheduling of tasks is always greedy in a sense that the scheduler aims at
finishing products as quickly as possible. Any robot requesting a task is assigned
a randomly selected one τ ⊆ Φ.

Φ =

{
Ψ, if Ψ �= ∅
Θ, if Ψ = ∅

(1)

Where Ψ and Θ are defined as follows.

Ψ = {τ :τ.type = DELIV ER

∧ ∃ pred(τ).robot = ρ ∧ ∀ pred(τ).state = SUCCESS}
(2)

That is, the set Ψ contains all tasks of type DELIVER for which a successfully
finished predecessor task was already assigned to the same robot. In general, the
set will only contain one task.

Θ = {τ : ∀ pred(τ).state = SUCCESS} ∪ {τ : pred(τ) = ∅} (3)

494 T. Ulz et al.

That is, the set Θ contains all tasks for which all predecessor tasks have been
finished successfully. Of course, Ψ ⊆ Θ holds.

2. Start new assembly. If no task in the current assembly process needs to
be done, the planning and scheduling instance determines whether the assembly
of an additional product can be started. To do so, it is determined if a parallel
production chain can be found where no machine (besides BS and DS) overlap,
such that no deadlock can occur. This mechanism is formalized in (4).

Ω = {ξ : ξ.machines ∩ T .machines = ∅} (4)

If the set Ω contains an additional product for which assembly can be started.
Tasks are then selected according to the previous section for the newly to be
assembled product. However, considering that any production chain includes
mounting a cap to finish the currently assembled product, in our current archi-
tecture a maximum of two parallel production chains can be processed. Note
that each team has 1 base station, 2 ring stations, 2 cap stations, and 1 delivery
station in their MPS set. We did not use the 7th machine - the storage station -
in this implementation.

3. “Dummy” task. If no production relevant task can be found for a robot
requesting a new task, that is, if Φ = ∅ ∧ Ω = ∅, the robot is assigned so-called
dummy tasks such that it is not blocking any relevant MPS while having no task.
In our system, a dummy task consists of sending the robot to a random zone,
such that it is constantly moving while having no production relevant task.

3.2 Executive

The bridging between the abstract planning and scheduling and the practical
behavior layer is established by an executive layer that runs separately on each
robot. The two main functions of the executive are the refinement of the abstract
tasks to executable behaviors and the supervision of the entire task execution.
The separation of the two functions contributes to the robustness of the overall
architecture as the former allows the system to use a flexible abstracted planning
approach while the latter allows to reactive to uncertainties and unexpected
situations in the interaction between the physical robot and its environment.

We realized the executive layer following the well-known concept of belief-
desire-intention (BDI) [4] using the open-source implementation OpenPRS [7].
In order to allow robust and reactive control of robots the approach follows the
idea of practical reasoning where the tasks to be fulfilled are represented by
goals and goals are pursuit using scripted recipes called procedure. Procedures
are represented as directed graph with further sub-goals on the edges. Possi-
ble sub-goals are non-primitive goals (further goals), queries (simple queries
to a knowledge base), information updates (asserting and retracting facts to
the knowledge base), and primitive actions (representing executable behaviors).
Goals may also be combined using special modifiers such as maintain where one
goal is permanently active until another goal is achieved. The robustness and

A Robust and Flexible System Architecture 495

reactivity of a BDI system results from the execution semantics where the inter-
preter tries all applicable procedures and valid execution traces within recipes
to achieve a given goal and the fact that instead of expensive reasoning (e.g.
resolution) a simpler matching process between goals and procedures is used.
The response to a posted goal or sub-goal is either success (all sub-goals were
achieved) or fail (the interpreter were not able to achieve all sub-goals).

The interaction with the other parts of the architecture works as follows.
Any time the robot becomes idle it requests a new task from the planning and
scheduling component. The tasks assigned to a robot by this component are
mapped to configurable goals. Currently we have corresponding goals for the
get, delivery, and dummy task with corresponding hand-crafted procedures. The
executable basic behaviors like navigating to a given position, alignment at a
machine, or grasping an item are represented by primitive goals that lead directly
to a behavior execution. The physical execution is realized using the action-
server concept of the Robot Operating System (ROS) [14]. But each primitive
goal is wrapped by a safe version of the original goal to achieve dependable
execution. These goals comprise additional hand-crafted monitoring and fault-
recovery recipes. These safe goals are reused when structuring the recipes for
the top-level goals.

The communication between the planning and execution layer is based on
abstract positions like C-BS-Input representing the position for the conveyor
input of the cyan base station. In order to ground such positions or make con-
clusions such as that robot is close we use the transformation framework of ROS
(there is a proper transformation for each abstract position maintained by the
behavior layer) and the concept of evaluable predicates and functions provided
by OpenPRS (oracles for the evaluation of predicates and functions are imple-
mented in the behavior layer).

We like to point out the difference in planning and execution to previous
attempts reported in [12]. In contrast we use OpenPRS only as an executive to
execute tasks while task scheduling is done in the team server. Moreover, in con-
trast to the Clips-based approach we follow a clear separation of the abstract task
scheduling and the task execution rather than performing the overall reasoning
in an reactive manner using a rule-based system.

3.3 Behavior and Control

Several software components are implemented in the behavior and control layer
of the software architecture. These components comprise navigation, alignment
to machines, identification and localization of machines, and identifying and
manipulation of products. In this paper the control strategy which enables the
precise alignment of the robot in front of the machine during production will
be explained in detail. This behavior is the base for reliable manipulation of
products. In order to grasp or place products during production, the robot needs
the ability to align itself at very short distances and with very high precision in
front of machines. Achieving these criteria with the usual navigation approaches
[9] already implemented in ROS is not possible. However, this is a typical task for

496 T. Ulz et al.

classical feedback control. The two parts necessary for feedback control are the
error computation and the controller design. These two parts will be described
in detail in the following two subsections.

Error Computation. To perform closed loop control, the current positioning
error has to be computed. The robots are equipped with a laser scanner at
the front, which can be used to compute the position of the machine relative
to the robot. Given the fact that all machines in the logistics league have the
same rectangular base shape and assuming that the robot is roughly facing the
machine (this is achieved using the navigation methods mentioned above), the
relative position of the machine can be estimated using a very basic clustering
algorithm. As the robot faces the machine, the central laser scan measurement
is the root of the cluster. Starting from this root, every measurement value with
Euclidean distance to the cluster smaller than a predefined threshold is added
to the cluster. Applying classical least squares line fitting (see [13]) gives the
angular error and using the edge points of the cluster results in the positioning
error. Figure 6 shows a typical laser scan reading in gray rays with red tips
where the robot faces a machine. The clustered data is depicted in blue and the
estimated position of the machine as a green square. Based on the estimate of
the machine pose, the three errors for position ex and ey as well as the angular
error eϕ are computed and fed into the controller.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x

0

0.5

1

1.5

2

2.5

3

y

 Machine

Fig. 6. Machine position estimation (Color figure online)

Control Algorithm. For each of the three component of the error (position ex,
ey and angular eϕ) a sliding mode controller is designed (see [18]). Sliding mode
control was chosen, because it is a very simple to implement, easy to tune but
also represents a robust control strategy. The basic concept of first order sliding
mode control will be explained by means of an example. Consider a continuous
integrator

dx

dt
= u + f (5)

A Robust and Flexible System Architecture 497

with state x ∈ R, input u ∈ R and the bounded perturbation sup |f | = f̄ .
Applying a first order sliding mode control law

u = −ρ sign (x) (6)

with parameter ρ > f̄ yields the closed loop system

dx

dt
= −ρ sign (x) + f. (7)

As the parameter ρ > f̄ , the controller always dominates the perturbation f .
The reader interested in the theoretical property of sliding mode control exactly
compensating perturbations is referred to [15,17,18] and getting familiar with
differential inclusions as well as with Filipov’s theory. The part −ρ sign (x) also
dominates the perturbation f which results in a movement towards the origin
from any initial condition. Typical trajectories for the unperturbed case (f =
0) using first order sliding mode control is shown in Fig. 7 for the two initial
conditions x

(1)
0 = 1.125 and x

(2)
0 = −2.125. One can see the typical finite time

convergence which is also a very good property of sliding mode control. However,
the main drawback of this control strategy is also visible in this figure because
the state converges to a vicinity around zero and performs a zig-zag motion
called chattering. This chattering appears in real world applications due to finite
switching frequencies.

0 1 2 3 4 5 6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 7. Typical trajectories resulting with
first order sliding mode control for two ini-
tial conditions and perturbation.

-10 -8 -6 -4 -2 0 2 4 6 8 10

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

=0.10
=4.00
=8.00

Fig. 8. Influence of parameter Φ
on sign function approximation.

In order to reduce this chattering phenomenon, several approximations of the
sign function are proposed (see [15]). In the remainder of this paper the sign (·)
function is approximated by the saturation function

sat (γ) =
{

γ −1 ≤ γ ≤ 1
sign (γ) else (8)

which results in the control law

u = −ρ sat
(x

Φ

)
(9)

498 T. Ulz et al.

with parameter Φ ∈ R
+ specifying the slope of the approximation as depicted

in Fig. 8.

Remark 1. The parameter Φ offers a possibility to find a tradeoff between accu-
racy and chattering alleviation. Please note that sat

(
x
Φ

)
= sign (x) for Φ → 0.

As the used holonomic robot takes velocity commands, the dynamics of the three
errors ex, ey and eϕ can be formulated as integrators (5). In the application the
control law (9) is then independently applied to these three systems.

4 Conclusions and Future Work

Following the common interest of the institutes involved in the GRIPS RoboCup
Logistics League team in a holistic approach to develop methods for dependable
intelligent systems we developed a software architecture that allows flexible and
robust execution of the demanded production tasks. The basic idea is to separate
different concerns such as abstract planning and scheduling, refinement of task
execution, and behavioral control and equip each layer with proper motioning
and fault-recovery capabilities. The flexible planning and task assignment paired
with robust task execution allowed us to realize more complex products reliably
and constantly than in the past competitions.

In future work we will aim for an optimization based selection of suitable
products to be build (using more context information such as travel time) as well
as a better parallelization (using an improved resource management). Moreover,
we like to better team up monitoring and recovery between different layers.
Often one layer lacks of sufficient knowledge about the actual situation to make
a consistent final conclusion about errors and recovery. Sharing and combining
information of different layers may help to address this issue.

Acknowledgement. The team members in 2018 are Sarah Haas, Vanessa Egger,
Stefan Krickl, Leo Fürbaß, Ivan Martin, Thomas Ulz, Jakob Ludwiger, and Gerald
Steinbauer.

We gratefully acknowledge the financial support of Graz University of Technology,
Knapp AG, IncubedIT GmbH, AccuPower GmbH, and pia automation. In particu-
lar, the team is grateful to Knapp AG for the mechanical and electrical design and
integration of the GRIPS robot platforms.

References

1. RoboCup Logistics League. http://www.robocup-logistics.org/
2. Boano, C., Römer, K., Bloem, R., Witrisal, K., Baunach, M., Horn, M.: Depend-

ability for the internet of things - from dependable networking in harsh environ-
ments to a holistic view on dependability. e & i Elektrotechnik & Information-
stechnik 133, 304–309 (2016)

3. Coelen, V., Deppe, C., Hoffmann, T., Karras, U., Niemueller, T., Rohr, A.: Rules
and Regulations - RoboCup Logistics League. http://www.robocup-logistics.org/
rules. Accessed 19 Dec 2018

http://www.robocup-logistics.org/
http://www.robocup-logistics.org/rules
http://www.robocup-logistics.org/rules

A Robust and Flexible System Architecture 499

4. Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-
intention model of agency. In: Müller, J.P., Rao, A.S., Singh, M.P. (eds.) ATAL
1998. LNCS, vol. 1555, pp. 1–10. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-49057-4 1

5. Ghallab, M., Lau, D., Traverso, P.: Automated Planning - Theory and Practice.
Morgan Kaufmann (2004)

6. Gspandl, S., Pill, I., Reip, M., Steinbauer, G., Ferrein, A.: Belief management for
high-level robot programs. In: Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence, IJCAI 2011, Barcelona, Spain, pp. 900–905 (2011)

7. Ingrand, F.F., Chatila, R., Alami, R., Robert, F.: PRS: a high level supervision and
control language for autonomous mobile robots. In: Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, vol. 1, pp. 43–49 (1996)

8. Ludwiger, J., Steinberger, M., Horn, M., Kubin, G., Ferrara, A.: Discrete time
sliding mode control strategies for buffered networked systems. In: 2018 IEEE
57th Annual Conference on Decision and Control (CDC). IEEE (2018)

9. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office
marathon: robust navigation in an indoor office environment. In: International
Conference on Robotics and Automation (2010)

10. Niemueller, T., Karpas, E., Vaquero, T., Timmons, E.: Planning competition for
logistics robots in simulation. In: WS on Planning and Robotics (PlanRob) at
International Conference on Automated Planning and Scheduling (ICAPS), Lon-
don, UK (2016)

11. Niemueller, T., Zug, S., Schneider, S., Karras, U.: Knowledge-based instrumenta-
tion and control for competitive industry-inspired robotic domains. KI - Künstliche
Intelligenz 30(3–4), 289–299 (2016)

12. Niemueller, T., et al.: Cyber-physical system intelligence – knowledge-based mobile
robot autonomy in an industrial scenario. In: Jeschke, S., Brecher, C., Song, H.,
Rawat, D.B. (eds.) Industrial Internet of Things: Cybermanufacturing Systems.
SSWT, pp. 447–472. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
42559-7 17

13. Penrose, R.: On best approximate solutions of linear matrix equations. Math. Proc.
Camb. Philos. Soc. 52(1), 17–19 (1956)

14. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software (2009)

15. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and
Observation. Springer, New York (2013). https://doi.org/10.1007/978-0-8176-
4893-0

16. Steinbauer, G., Ferrein, A.: 20 years of RoboCup. Künstliche Intelligenz 30(3–4),
221–224 (2016)

17. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electro-Mechanical Sys-
tems. CRC Press, Boca Raton (2009)

18. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Heidelberg
(1992). https://doi.org/10.1007/978-3-642-84379-2

19. Zwilling, F., Niemueller, T., Lakemeyer, G.: Simulation for the RoboCup logistics
league with real-world environment agency and multi-level abstraction. In: Bianchi,
R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS
(LNAI), vol. 8992, pp. 220–232. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18615-3 18

https://doi.org/10.1007/3-540-49057-4_1
https://doi.org/10.1007/3-540-49057-4_1
https://doi.org/10.1007/978-3-319-42559-7_17
https://doi.org/10.1007/978-3-319-42559-7_17
https://doi.org/10.1007/978-0-8176-4893-0
https://doi.org/10.1007/978-0-8176-4893-0
https://doi.org/10.1007/978-3-642-84379-2
https://doi.org/10.1007/978-3-319-18615-3_18
https://doi.org/10.1007/978-3-319-18615-3_18

	A Robust and Flexible System Architecture for Facing the RoboCup Logistics League Challenge
	1 Introduction
	2 Logistics League
	3 Software Architecture
	3.1 Planning and Scheduling
	3.2 Executive
	3.3 Behavior and Control

	4 Conclusions and Future Work
	References

