
Integrating the Latest Artificial
Intelligence Algorithms into the RoboCup

Rescue Simulation Framework

Arnoud Visser1(B) , Luis G. Nardin2 , and Sebastian Castro3

1 Universiteit van Amsterdam, Amsterdam, The Netherlands
A.Visser@uva.nl

2 Brandenburg University of Technology, Cottbus, Germany
nardin@b-tu.de

3 MathWorks, Natick, MA, USA
Sebastian.Castro@mathworks.com

Abstract. The challenge of the Rescue Simulation League is for a
team of robots or agents to learn an optimal response to mitigate
the effects of natural disasters. To operate optimally, several prob-
lems have to be jointly solved like task allocation, path planning, and
coalition formation. Solve these difficult problems can be quite over-
whelming for newcomer teams. We created a tutorial that demon-
strates how these problems can be tackled using artificial intelligence
and machine learning algorithms available in the matlab® and the
Statistics and Machine Learning Toolbox™. Here we show (1) how to
analyze and model disaster scenario data for developing rescue decision-
making algorithms, and (2) how to incorporate state-of-the-art machine
learning algorithms into Rescue Agent Simulation competition code using
the matlab® Engine API for Java.

Keywords: Machine learning · matlab® · Rescue Agent Simulation

1 Introduction

Urban Search and Rescue (USAR) scenarios offer a great potential to inspire and
drive research in multi-agent and multi-robot systems. Since the circumstances
during real USAR missions are extraordinarily challenging [8], benchmarks based
on them, such as the RoboCup Rescue competitions, are ideal for assessing the
capabilities of these systems. Thus, one goal of the RoboCup Rescue competi-
tions is to compare the performance of algorithms that coordinate and control
teams of either robots or agents performing disaster mitigation tasks.

In particular, the Rescue Agent Simulation competition aims to simulate
large scale natural disasters, such as earthquakes, enabling the exploration of
new forms of autonomous coordination of heterogeneous rescue teams under
adverse conditions. This competition was first demonstrated in the RoboCup

c© Springer Nature Switzerland AG 2019
D. Holz et al. (Eds.): RoboCup 2018, LNAI 11374, pp. 476–487, 2019.
https://doi.org/10.1007/978-3-030-27544-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27544-0_39&domain=pdf
http://orcid.org/0000-0002-7525-7017
http://orcid.org/0000-0002-4506-2745
http://orcid.org/0000-0001-5754-9959
https://doi.org/10.1007/978-3-030-27544-0_39

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 477

Fig. 1. View of disaster scenario in the Kobe map after an earthquake.

2000 [12] and officially launched in the RoboCup 2001. Participating teams have
their background mainly from artificial intelligence and robotics.

The competition is based on a simulation platform and a set of complex
scenarios representing the conditions of cities after an earthquake (see Fig. 1).
In each scenario, fire brigade, police force and ambulance team agents extin-
guish fires, unblock roads, and rescue civilians trapped inside collapsed buildings,
respectively. The final score in the scenario is calculated based on the number
of rescued civilians and the number of remaining buildings taking into account
the damage caused by the fire. Scenarios typically contain up to 5000 buildings
and up to 1000 civilians, as well as agent teams of fire brigades, police forces
and ambulance teams composed of up to 50 agents each.

The complexity of these scenarios imposes several challenges to the develop-
ment of different aspects of multi-agent systems like task allocation with uncer-
tainty, coalition formation, cooperation, distributed control, and communica-
tion [1]. Artificial intelligence (AI), in particular machine learning (ML) algo-
rithms are very well suited to cope with some of these challenges. For instance,
fire brigades and ambulance teams can optimize their task allocation decisions
by estimating, respectively, the danger of fire ignition in different buildings (dis-
crete state—classification) and the chance of rescuing trapped civilians alive
(continues state—regression).

The implementation of state-of-the-art AI and ML algorithms, their training,
and their integration into the Rescue Agent Simulation competition code can
be quite overwhelming for newcomer teams. Hence we propose that competition
teams take advantage of existing and well-established AI and ML tools to develop
their competition code. Here, we demonstrate1

1. how to use matlab® and add-on packages, such as
the Statistics and Machine Learning Toolbox™, to analyze and model disas-

1 All data as well as Java and matlab® code used to generate the results presented in
this work are available at https://github.com/IntelligentRoboticsLab/Joint-Rescue-
Forces repository.

https://github.com/IntelligentRoboticsLab/Joint-Rescue-Forces
https://github.com/IntelligentRoboticsLab/Joint-Rescue-Forces

478 A. Visser et al.

ter scenario data using both interactive design tools (GUIs) and programming
code. The analysis and modeling provide support to the development of more
elaborate data-driven rescue decision-making algorithms (see Sect. 2).

2. how state-of-the-art ML algorithms can be directly incorporated into the
Agent Development Framework (ADF) [13] using the matlab® Engine API
for Java (see Sect. 3).

2 Interactive Approach

matlab® and the Statistics and Machine Learning Toolbox™ can be used in an
interactive mode to analyze disaster scenario data and create models that agents
can use to base their decisions during the unfolding of these disaster scenarios.

2.1 Unsupervised Methods

Unsupervised machine learning methods can be used to analyze and model dis-
aster scenario data. In the Rescue Agent Simulation competition, clustering
algorithms are interesting for agents to partition maps into sectors and evenly
distribute the search and rescue workload among them [9,10]. matlab® imple-
ments several clustering algorithms, such as k-means [6], k-medoids [4], hierar-
chical clustering [5], Gaussian mixture models [7], and hidden Markov models [2].

We can, for instance, use the matlab® interactive mode to assess which of
these clustering algorithms provides a more evenly distributed number of build-
ings per sector for a specific city map. This assessment first requires that all (x, y)
coordinates of buildings in the city map to be exported into a text file, which
can be accomplished including some Java code into precompute phase of the
agents code (see AbstractSimpleAgent.java lines 79–106). Next, these coor-
dinates are imported into a matrix in matlab® using the textscan command
and subsequently partitioned using one of the clustering algorithms available.

Fig. 2. Partitioning of the buildings in the Paris map using matlab® k-means clus-
tering algorithm. (Color figure online)

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 479

Figure 2 shows the buildings from the Paris map partitioned using the k-
means clustering algorithm. The different shapes and colors represent the asso-
ciation of each building to a specific sector. This partitioning were created with
the [indices,centroids] = kmeans([x,y], 5) command, and the plot gener-
ated with the gscatter(x,y,indices) command (see importBuildingsData.m
and building cluster.m scripts).

2.2 Supervised Methods

Supervised machine learning methods can be used to learn associations between
variables (part of a causal model of the world). Estimates of variables’ value of a
world model can be done with discrete states (classification) or continuous states
(regression). In the Rescue Agent Simulation, competition teams can use these
methods to assess their strategy and the most relevant predictors, for instance,
for ambulance teams to estimate the chance that trapped civilians have to survive
to a rescue operation by predicting their remaining health points (HP) at the
end of a scenario simulation.

To demonstrate the use of matlab® to evaluate the strategy of a simple
agent team, we collected several metrics from multiple runs in multiple scenarios
of this agent team and assessed them using available classification and regres-
sion supervised learning algorithms in matlab®. The metrics colleted were (see
matlab.generator.simple.agent.ambulance.SimpleAmbulanceTeam.java li-
nes 389–420): start and end time of the rescue operation (sTime and eTime),
initial and final Euclidean distance to the nearest refuge (sDist and eDist),
initial and final HP (sHP and eHP), initial and final damage level (sDamage and
eDamage), and initial buriedness (sBuriedness).

In Statistics and Machine Learning Toolbox™, data can be preprocessed with
dimensionality reduction methods like principal component analysis and singular
value decomposition followed by linear or non-linear regression methods. The
results can be visualized with ensembles like random forests, boosted and bagged
regression trees. To learn those ensembles several optimization algorithms like
AdaBoost and TotalBoost are available. We evaluated the accuracy of different
combinations of predictor metrics and concluded that only the metrics with
values of the beginning of the rescue operation were relevant to the prediction
accuracy (i.e., sTime, sDist, sHP, and sDamage).

To use classification, we discretized the eHP according to the ranges: 0 Dead,
1–3000 Critical, 3001–7000 Injured, and 7001–10000 Stable. Then we trained
different classification algorithms in matlab® using this data and the most
accurate classification was obtained using the Weighted K-nearest neighbors
(KNN).

Figure 3 shows the Weighted KNN classification used to predict if a civilian
would be dead, in a critical state, injured or in a stable state at the end of a
scenario simulation. This classification predicts correctly 78.9% of the civilians’
state. Notice, however, that most of the wrong detections (i.e., sum of the num-
bers in the red cells) are above the diagonal green cells in the right panel of Fig. 3
meaning that this trained classifier predicts a civilian in a less severe state than

480 A. Visser et al.

Fig. 3. Classification Learner matlab® app showing predictions of the injury class
of the civilians at the end of the scenario using Weighted K-Nearest Neighbors. Left
panel shows different assessed classifying algorithms and their respective accuracy.
Middle panel shows a scatter plot showing the relationship between the initial dis-
tance to refuge (sDist) and the time the rescue initiated (sTime) with the model pre-
dictions and their correctness. Right panel shows the number of predicted versus true
(or correct) classification of rescue civilians. The diagonal (green) shows the number of
correct classifications, while all other cells represent the number of misclassifications,
how they were classified versus the correct classification. (Color figure online)

the civilian really will be. For instance, there are 9 cases in which the civilian
will die and the classifier predicted it as injured.

We applied regression methods to the same data without discretazing the
eHP and trained different regression algorithms in matlab®. Figure 4 shows an
ensemble fit into a bagged tree model with the estimate of the remaining health
points (HP) at the end of the simulation scenario with a root mean square
error (RMSE) between the predicted and true HP values equals 1167.5 (and
normalized RMSE equals 0.1228).

Fig. 4. Regression Learner matlab® app showing predictions of the chance to survive
(remaining HP) of trapped civilians. Left panel shows different assessed regression
algorithms and their respective root mean square error. Right panel shows the pre-
diction versus true HP value of the trapped civilians at the end of a simulation.

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 481

2.3 Path Planning

If an agent wants to move to a specific location to perform a task, a path plan to
that location has to be defined. Two possible approaches to tackle this problem
are (1) to use path planning algorithms from the matlab® graph and network
algorithms2 or (2) to use graph-routines from Peter Corke’s Robotics Toolbox [3].

Fig. 5. The small Test map of the RoboCup Rescue Agent Simulation competition in
matlab® as topological (left) and metrical graph (right).

First, however, all the roads of a city map need to be converted to a graph
in matlab® format. The nodes of the graph are identified by the roads ID and
they also store the actual (x, y) location of the road to facilitate the visualization
of the results (see Fig. 5). The Java code to generate such a matlab® graph is
called during the precompute phase of the Rescue Agent Simulation simulation,
and its pseudo-code is:
For (Entity next : this . wor ldIn fo . g e tEn t i t i e s ()) {

l o c = this . wor ldIn fo . getLocat ion (next . getID ()) ;

matlab . eva l (”G=addnode (G, tab l e (next . getID () , l o c . f i r s t () , l o c . second ()) ; ”) ;

}
For (Entity next : this . wor ldIn fo . g e tEn t i t i e s ())

Co l l e c t i on areaNeighbours = next . getNeighbours () ;

for (ent i tyID neighbour : areaNeigbours) {
matlab . eva l (”G=addedge (G, f i nd (next . getID ()) , f i nd (neighbour . getID ()) ; ”) ;

}
}
matlab . eva l (” save (' graph .mat ' ,G) ; ”) ;

Once created, the graph in matlab® can be queried, for instance to get
the shortest path between two nodes. This can be done by calling a matlab®

script which contains the function short path = getPath(from,targets), that
loads the graph G, calls the matlab® method [TR,D]=shortestpathtree and
sorts the resulting paths TR based on the distance D. It is possible to specify in
matlab® the algorithm to use (Breadth-first or Dijkstra). It is also possible to
use A*, which is available in Peter Corke’s robotics toolbox [3]. The matlab®

2 https://www.mathworks.com/help/matlab/graph-and-network-algorithms.html.

https://www.mathworks.com/help/matlab/graph-and-network-algorithms.html

482 A. Visser et al.

code of this algorithm is open source and well documented making it possible
to modify the A* algorithm to Dijkstra’s algorithm (by removing the heuristics)
or breadth-first (by not sorting the frontier on distance so far). The only thing
needed is a script to translate from matlab® native graph-format to Peter
Corke’s Pgraph-format. For smaller competition maps like Kobe this can be done
in 13 s (measurement with a computer with a Intel Core i7-8550U processor),
for larger maps like Paris 22 s are needed for this conversion (see Fig. 6). Both
are fast enough for the precompute phase of the competition.

Fig. 6. Maps of Kobe (left) and Paris (right) in Peter Corke’s Pgraph-format.

An advantage of this approach compared to the path-planning methods typ-
ically applied by the Rescue Agent Simulation competition teams is that each
agent can load this a priori map and modify the edges based on the blockades
observed and/or communicated. This information can even be updated when
police force agents clear part of the road.

2.4 ROS Interface

A challenge in the Virtual Robot competition is that whenever an agent reaches
a building, it has to enter that building [11]. The matlab® Robotics System
Toolbox allows to directly control robots and realistic simulation via the Robotics
Operating System (ROS) interface, as demonstrated in the Future of RoboCup
Rescue workshop [14] and the RoboCup@Home Education workshop3.

Another challenge in this competition is the detection of buried victims from
camera images. In the same workshops, victims detection has been demonstrated
using the matlab® deep learning capabilities, a combination of the Neural Net-
work Toolbox, Parallel Computing Toolbox, GPU Coder, and Computer Vision
System Toolbox. Notice that these toolboxes run models deployed to GPU faster
than TensorFlow or Caffe, which is a highly desirable for robotic applications4.

3 http://www.robocupathomeedu.org/learn.
4 https://blogs.mathworks.com/deep-learning/2017/10/06/deep-learning-with-

matlab-r2017b/.

http://www.robocupathomeedu.org/learn
https://blogs.mathworks.com/deep-learning/2017/10/06/deep-learning-with-matlab-r2017b/
https://blogs.mathworks.com/deep-learning/2017/10/06/deep-learning-with-matlab-r2017b/

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 483

3 ADF Integration

In addition to using the matlab® models and algorithms in interactive mode,
they can also be integrated into the Agent Development Framework (ADF) [13]
to run during the simulation execution. ADF is the mandatory agent architec-
ture for all competition teams participating in the Rescue Agent Simulation
competition. This agent architecture is composed of several, highly specialized
modules responsible for different data processing and decision-making tasks, such
as clustering, path planning and task allocation.

The integration of matlab® models into the ADF is based on the matlab®

Engine API for Java®5, which enables Java programs via MatlabEngine class
to interact with matlab® synchronously (startMatlab method) or asyn-
chronously (startMatlabAsync method). In addition to start matlab®, there
is also a possibility to connect synchronously (connectMatlab method) or asyn-
chronously (connectMatlabAsync method) to an existing shared instance. To
share a matlab® instance, enter the command matlab.engine.shareEngine
in the matlab® command window. Once connected, it is possible to evalu-
ate a matlab® function with arguments (feval and fevalAsync functions) or
evaluate a matlab® expression as a string (eval and evalAsync functions).
Additionally, it is possible to interact with the matlab® workspace by getting
(getVariable and getVariableAsync functions) or setting (setVariable and
setVariableAsync functions) variables. Once finished the interaction, discon-
nect from the current session using disconnect, quit, or close functions.

In Sect. 3.1 we show how to integrate the k-means clustering into rescue
agents, and in Sect. 3.2 how ambulance team agents can use a trained classifier to
decide which trapped civilian has a better chance of surviving a rescue operation.

3.1 Clustering Integration

Currently, competition teams need to implement their own version of standard
artificial intelligence algorithms from scratch to solve common tasks, such as k-
means clustering. However, matlab® provides more diverse and robust imple-
mentations of these standard algorithms that teams may benefit of to prioritize
the development of high-level strategies.

Although diverse and robust, the time constraint imposed on rescue agents
demands a more elaborate assessment of the efficiency of the matlab® algo-
rithms integrated to the ADF. Here, we have assessed the performance of the
k-means clustering algorithm implemented in the Sample ADF using pure Java
and in matlab® measured in a computer with Intel Core i7 6700HQ 2.6 GHz
(8 cores) processor and 16 GB RAM using Arch Linux, Oracle Java JDK 8 and
matlab® R2017b.

Figure 7 shows the result of this assessment in which the matlab®

k-means clustering algorithm executes in less time than the Sample ADF Java

5 https://www.mathworks.com/help/matlab/matlab-engine-api-for-java.html.

https://www.mathworks.com/help/matlab/matlab-engine-api-for-java.html

484 A. Visser et al.

implementation for all 83 agents. There was significant difference on the exe-
cution average time for the matlab® (6, 095.87 ± 1, 178.51 ms) and the Java
(8, 783.36 ± 1, 188.22 ms) implementations; t(164) = 14.63, p< 0.05. Hence, we
can conclude that using matlab® k-means clustering reduces the effort and
maintenance, and increases the performance of the agent teams.

Fig. 7. Performance of the k-means implementation in Java and in matlab® per-
formed in sequence by 83 agents during the initialization stage of the execution phase
of the scenario simulation for the Kobe map.

The k-means clustering can be integrated into the ADF and executed in the
precompute phase or execution phase of the scenario simulation. Here, we show
how to integrate the k-means clustering algorithm in the agents’ initialization
stage of the execution phase. The Java code for such integration is

// Prepare data for Matlab k−means c l u s t e r i n g
double [] [] mlInput = new double [this . e n t i t i e s . s i z e ()] [2] ;
for (StandardEntity en t i t y : this . e n t i t i e s) {

Pair<Integer , Integer> l o c a t i o n = this . wor ldIn fo . getLocat ion (en t i t y) ;
mlInput [i] [0] = l o c a t i o n . f i r s t () ;
mlInput [i] [1] = l o c a t i o n . second () ;
i++;

}

// Run k−means c l u s t e r i n g
Object [] mlOutput = ml . f e v a l (2 , ”kmeans” , (Object) mlInput ,

this . c l u s t e r S i z e ,
DISTANCE, this . d i s tanceMetr i c ,
MAX ITER, this . maxIter) ;

double [] mlIndex = (double []) mlOutput [0] ;
double [] [] mlCenter = (double [] []) mlOutput [1] ;

This code connects the agents to matlab® and prepares entities data for
clustering (i.e., the x and y entity location). In the initialization, agents are
executed in sequence avoiding concurrent matlab® connections. Next, the
matlab® function kmeans is evaluated using the feval method with several
parameters: the dimension of the k-means output (set to 2), the number of
clusters (set to 10), the distance metric (set to cityblock), and the maximum
number of interaction (set to 100). Once executed, the feval method returns
an object array with the indices in the position 0 and the centers in the position
1 that are cast to their respective data types. Finally, the engine is closed, and

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 485

the indices and the centers can be used to assign agents to specific partitions of
the map.

The integration of the clustering algorithm requires only a single call per
agent to the matlab® engine as its results are stored and used in the remain-
der of the simulation run. Path planning algorithms, for example, are affected
by changes in the environment, and would require reprocessing to account for
changes. Because of this characteristic, the matlab® path planning algorithm
would need to be called every time the agent has to calculate a path in the
execution phase of the simulation run, even though the first execution can be
performed during the precompute phase. Please see Sect. 2.3 to further details
about the path planning.

3.2 Classifier Integration

Ambulance teams can also benefit of matlab® to optimize their rescue oper-
ations by predicting more accurately the chance of trapped civilians to survive
a rescue operation. First, however, it is necessary to train a classifier with data
collected from earlier runs. This training is performed using the Classification
Learner matlab® app as described in Sect. 2.2.

We have trained a classifier using the data from rescued civilians collected
from several simulation executions of the Paris map using a simple rescue team.
The data collected was the time (sTime), the distance to the nearest refuge
(sDist), the civilian HP (sHP) and the damage (sDamage) at the start of the
rescue operation and the HP of the civilian (eHP) at the end of the rescue oper-
ation. We discretized the final HP (eHP) according to the ranges: 0 Dead, 1–3000
Critical, 3001–7000 Injured, and 7001–10000 Stable using the code

// TData i s the t r a i n i n g data

hp bins = [0 1 3000 7000 10000] ;

bin names = { ’Dead ’ , ’ C r i t i c a l ’ , ’ In jured ’ , ’ Stable ’ } ;

TData . hp c l a s s = d i s c r e t i z e (TData . eHP, hp bins , ’ c a t e g o r i c a l ’ , bin names) ;

The trained classifier model (targetSelectorModel) is exported using the
Export Model - Export Compact Model feature and validated against a vali-
dation dataset with the code

// VData i s the va l i d a t i o n data
p r ed i c t i o n s = targe tSe l e c to rMode l . pred ictFcn (VData) ;
numCorrect = nnz (p r ed i c t i o n s == VData . hp c l a s s) ;
va l idat ionAccuracy = numCorrect/ s i z e (VData , 1) ;
f p r i n t f (’ Va l idat ion accuracy : %.2 f%%\n ’ , va l idat ionAccuracy ∗ 100) ;

The training and validation steps comprise an iterative process whose cycle
should be repeated until the validation accuracy is satisfactory. Then, the
exported model can be saved as a file (targetSelectorModel.mat) and invoked
in the function
f unc t i on p r ed i c t i o n s = s e l e c tTa r g e t s (time , d i s t , hp , damage)

p e r s i s t e n t ta rge tSe l e c to rMode l
i f isempty (ta rge tSe l e c to rMode l)

load ta rge tSe l e c to rMode l ta rge tSe l e c to rMode l
end

486 A. Visser et al.

p r ed i c t o r s = tab l e (time , d i s t , hp , damage , . . .
’ VariableNames ’ ,{ ’ sTime ’ , ’ sDist ’ , ’ sHP ’ , ’ sDamage ’ }) ;

p r e d i c t i o n s = int32 (ta rge tSe l e c to rMode l . pred ictFcn (p r ed i c t o r s)) ;
end

The predictions function can then be called inside the calc method of the
HumanDetector class for the ambulance team agents in the ADF using the code

// rescueTarget i s an ob j ec t containing vict im ’ s information
i f (MatlabEngine . f indMatlab () . l ength > 0) {

MatlabEngine ml = MatlabEngine . connectMatlab () ;
int sTime = rescueTarget . sTime ;
int sDi s t = rescueTarget . sD i s t ;
int sHP = rescueTarget . sHP ;
int sDamage = rescueTarget . sDamage ;

int value = ml . f e v a l (” s e l e c tTa r g e t s ” , sTime , sDist , sHP , sDamage) ;

ml . c l o s e () ;
}

This code executes the matlab® function selectTargets using data about a
specific victim and returns a prediction about the state of the victim at the end of
the rescue operation coded as 0 Dead, 1 Critical, 2 Injured, and 3 Stable. The
ambulance team can then combine this prediction with several other information
about other victims to determine which victim is worth rescuing first. Possible
strategies to use this classification includes (1) classify all known victims, (2)
discard the predicted dead, and (3)

a. select one randomly among them
b. select the closest one
c. select the closest one that is predicted Critical

Notice that we use MatlabEngine.findMatlab() and connectMatlab()
methods instead of MatlabEngine.startMatlab(). This requires that
a matlab® session is running and shared to the code to work.
To share a matlab® session, open matlab®, enter the command
matlab.engine.shareEngine in its command window, and leave it open during
the execution of the simulation.

4 Conclusion

This paper describes the possible uses of existing artificial intelligence (AI) and
machine learning (ML) tools to analyze and model disaster scenario data as
well as the integration of these tools to the competition code. The examples
provided tackle common challenges of the Rescue Agent Simulation competition
in which AI and ML tools suit. The approach, however, is extensible to any other
algorithm available in matlab® or any other tool that provides an interface in
Java. For instance, this approach can be extended to integrate deep learning,
state machines, and graph node refining algorithms, which may increase the
scientific outcomes of the Rescue Simulation League as

Integrating Artificial Intelligence into the RoboCup Rescue Simulation 487

(1) teams may focus on high-level strategies to solve rescue challenges and
(2) matlab® will provide a performance benchmark against which teams can

show their improvements.

References

1. Akin, H.L., Ito, N., Jacoff, A., Kleiner, A., Pellenz, J., Visser, A.: RoboCup rescue
robot and simulation leagues. AI Mag. 34(1), 78–87 (2013). https://doi.org/10.
1609/aimag.v34i1.2458

2. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite
state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966). https://doi.org/
10.1214/aoms/1177699147

3. Corke, P.: Robotics, Vision and Control: Fundamental Algorithms In MATLAB®
Second, Completely Revised. Springer Tracts in Advanced Robotics, vol. 118.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-54413-7

4. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Dodge, Y.
(ed.) Statistical Data Analysis Based on the L1–Norm and Related Methods, pp.
405–416. North-Holland (1987)

5. Kaufman, L., Rousseeuw, P.J.: Divisive analysis (program DIANA). In: Find-
ing Groups in Data, pp. 253–279. Wiley (2008). https://doi.org/10.1002/
9780470316801.ch6

6. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28,
129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

7. Marin, J.M., Mengersen, K., Robert, C.P.: Bayesian modelling and inference on
mixtures of distributions. In: Dey, D., Rao, C. (eds.) Bayesian Thinking Modeling
and Computation, Handbook of Statistics, vol. 25, pp. 459–507. Elsevier (2005).
https://doi.org/10.1016/S0169-7161(05)25016-2

8. Murphy, R.R., Tadokoro, S., Kleiner, A.: Disaster robotics. In: Siciliano, B., Khatib,
O. (eds.) Springer Handbook of Robotics, pp. 1577–1604. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-32552-1 60

9. Parker, J., Nunes, E., Godoy, J., Gini, M.: Exploiting spatial locality and hetero-
geneity of agents for search and rescue teamwork. J. Field Robot. 33(7), 877–900
(2016). https://doi.org/10.1002/rob.21601

10. dos Santos, D.S., Bazzan, A.L.: Distributed clustering for group formation and
task allocation in multiagent systems: a swarm intelligence approach. Appl. Soft
Comput. 12(8), 2123–2131 (2012). https://doi.org/10.1016/j.asoc.2012.03.016

11. Sheh, R., Schwertfeger, S., Visser, A.: 16 years of robocup rescue. KI - Künstliche
Intelligenz 30(3), 267–277 (2016). https://doi.org/10.1007/s13218-016-0444-x

12. Tadokoro, S., et al.: The RoboCup-rescue project: a robotic approach to the disas-
ter mitigation problem. In: Proceedings of the IEEE International Conference on
Robotics and Automation (2000). https://doi.org/10.1109/ROBOT.2000.845369

13. Takami, S., Takayanagi, K., Jaishy, S., Ito, N., Iwata, K.: Design of agent develop-
ment framework for RoboCupRescue simulation. In: Lee, R. (ed.) CSII 2017. SCI,
vol. 726, pp. 185–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
63618-4 14

14. Visser, A., Amigoni, F., Shimizu, M.: The future of robot rescue simulation work-
shop - an initiative to increase the number of participants in the league. University
of Amsterdam, Politecnico di Milano & Chukyo University, January 2016

https://doi.org/10.1609/aimag.v34i1.2458
https://doi.org/10.1609/aimag.v34i1.2458
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.1007/978-3-319-54413-7
https://doi.org/10.1002/9780470316801.ch6
https://doi.org/10.1002/9780470316801.ch6
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/S0169-7161(05)25016-2
https://doi.org/10.1007/978-3-319-32552-1_60
https://doi.org/10.1002/rob.21601
https://doi.org/10.1016/j.asoc.2012.03.016
https://doi.org/10.1007/s13218-016-0444-x
https://doi.org/10.1109/ROBOT.2000.845369
https://doi.org/10.1007/978-3-319-63618-4_14
https://doi.org/10.1007/978-3-319-63618-4_14

	Integrating the Latest Artificial Intelligence Algorithms into the RoboCup Rescue Simulation Framework
	1 Introduction
	2 Interactive Approach
	2.1 Unsupervised Methods
	2.2 Supervised Methods
	2.3 Path Planning
	2.4 ROS Interface

	3 ADF Integration
	3.1 Clustering Integration
	3.2 Classifier Integration

	4 Conclusion
	References

