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Abstract. Recent advances in robotics have made it necessary for robots
to be able to predict actions like humans. This problem is well presented
in international RoboCup competition leagues, especially for humanoid
robots in challenges such as Goal-Kick from Moving Ball. In this paper, we
proposed double exponential smoothing (DES), autoregressive (AR) and
quadratic prediction (QP) as online methods and self-perturbing recur-
sive least squares (SPRLS) as an offline method for prediction of the ball
trajectory on ground. These prediction methods are compared in two
scenarios by applying LuGre friction model. We simulated our proposed
methods by Simmechanics library of MATLAB’s Simulink. By comparing
results using root-mean-square error and normalized root-mean-square
error, we could deduce that methods that were based on predefined mod-
els such as QP performed poorly when the friction deviated from the pre-
sumed model. Whereas numerical methods such as AR could adapt them-
selves to variation much better, depending on the friction force variation
with time. Also offline methods such as SPRLS are good replacements for
online ones when pre-training is possible.

Keywords: Humanoid robots · Ball trajectory prediction ·
LuGre model · Goal-Kick from Moving Ball · Autoregressive ·
Exponential smoothing

1 Introduction

The RoboCup competitions goal for 2050 was started in 1997: a team with fully
autonomous humanoid soccer player robots shall win against the winner of the
world cup [1]. In order to reach this objective, RoboCup competitions are held
every year with incremental steps toward this goal [2,3]. One of the technical
challenges in RoboCup competitions is Goal-Kick from Moving Ball. Figure 1
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Fig. 1. Steps of the RoboCup Goal-Kick from Moving Ball challenge [4].

shows the steps of this challenge; a ball is thrown and the robot should place
itself in the appropriate position and kick the ball.

In order to reach this ability, the robot should be able to predict the ball
trajectory. Prediction is one of the primary abilities of the human. A psychology
study in 1998 showed that a 6-month-old human infant has the ability to predict
the trajectory of the objects [5]. This shows the necessity of the prediction in
humanoid robots in order to act and think like humans.

A research by Seekircher et al. [6] presented an accurate ball tracking using
Extended Kalman Filters in order to implement high level behavior in the
RoboCup 3D soccer simulation scenario. There is considerable number of works
carried out on tracking problem. However, it is different from trajectory predic-
tion. Wang et al. proposed an online intention inference algorithm to predict the
intention of the human before hitting the ball in a ping-pong match between
human and robot [7]. But no algorithm for prediction of ball trajectory is pre-
sented in this work. In [8], a method was presented for catching a thrown ball.
They focused on the trajectory of the robot to catch the ball by using a least
squares method for prediction of the ball trajectory.

Birbach et al. [9] presented a method for estimating position and velocity
of multiple flying balls for the purpose of robotic ball catching. To this end, a
multi-target recursive Bayes filter, the Gaussian Mixture Probability Hypoth-
esis Density filter (GMPHD), fed by a circle detector was used. Finally, they
focused on detections that are likely to lead to a catchable trajectory which
increases robustness. However, their work was an estimation of the ball position.
A predictor based on nearest neighbor regression was presented by Mironov and
Pongratz in [10], which does not require an exact physical model of the motion.
The challenge of such application consists of a high volume of calculations that
are needed to compare the current trajectory with examples from the database.

A research by Baum et al. [11] presented a visual tracking and Extended
Kalman Filter based prediction method for catching a flying ball with a Hand-
Arm-System. In [12], a method was proposed based on probability hypothesis
density (PHD) filtering for predicting the ball trajectory.

These studies were estimating the ball position, either predicting the ball
trajectory with methods that have a huge amount of calculation or not focus-
ing on rolling ball on ground with variant values of the friction. In this paper,
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we focused on predicting the soccer ball trajectory rolling on the ground with
different values of the friction compared with the constant value of the friction.
Also, we presented different possible scenarios for friction force and demonstrate
which method is the best solution for each scenario. We will apply all methods to
friction scenarios and demonstrate the best method by using root-mean-square
error (RMSE) and normalized root-mean-square error (NRMSE) as comparison
factors. The main aim of our work is to predict the trajectory of the rolling ball
in order to be kicked towards the goal; however, passing the ball to another robot
and using it for a goalkeeper can be other possible applications.

The rest of the paper consists of 4 sections: Sect. 2 presents our proposed
prediction methods and formulations of them in details. Section 3 contains infor-
mation about the friction model that is used in our research and formulation of
it. Assumptions and parameters of the simulation along with simulation results
are presented in Sect. 4. Finally, in Sect. 5, a summary of our work, conclusions
and directions for future works are presented.

2 Prediction Methods

Ball trajectory prediction could be carried out in two different schemes: online
and offline. We use three methods for online scheme and one method for offline
scheme, although other methods are also available in the literature, for instance
recurrent neural networks [13]. The presented methods are valid while the ball
is moving on the ground, in any direction; however, without loss of generality,
we denote the position by x assuming the ball is moving in X-direction.

2.1 Online Methods

In the online scheme, the trajectory is predicted while the ball is moving, without
any a priori knowledge about the environment, i.e. the physical condition of the
ground is unknown to the robot.

Double Exponential Smoothing Method (DES). In [14], Exponential
Smoothing methods are divided into 15 classes based on trend and seasonal-
ity. Ball position, in our case, has clearly no seasonality, but it does have an
increasing trend. Therefore, we adopt DES as our prediction method here. In
this method, we assume that x is the position of the ball at time t. The predicted
positions based on DES is obtained according to the following relations:

Si = αxi + (1 − α)(Si−1 + bi−1) (1)

bi = γ(Si − Si−1) + (1 − γ)bi−1 (2)

where 0 < α, γ ≤ 1, and x̂ represents predicted position. Also, i = 1, 2, ...,n. Si

and bi are calculated in n steps and are used to derive predicted position, as
follows:

x̂n+m = Sn + mbn (3)
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Where, m = 1, 2, . . . is the number of steps ahead. When 0 ≤ t < T , Eqs. (1)
and (2) are used and the prediction for future positions is during t ≥ T using
Eq. (3), where T is determined based on the desired conditions.

There are different ways of calculating the coefficients α and γ, for instance
in [15] an adaptive approach is described. We used constant values for coeffi-
cients in this work, because the defined problem is rather simplified and thus
constant coefficients suffice. Nevertheless, adaptive prediction which takes pre-
diction updates into account will be one of the important future works we are
pursuing.

Autoregressive Method (AR). An autoregressive process of order p, or
AR(p), is one which estimates the future value of a parameter based on a linear
combination of p previous values of that parameter. An AR(p) process can be
represented according to the following relation,

x̂i+1 = φ1xi + φ2xi−1 + . . . + φpxi−p+1 (4)

where φj , j = 1, 2, . . . ,p, are the process coefficients and x̂i+1 represents the
one-step-ahead predicted position.

Some procedures exist in order to determine the appropriate order p; how-
ever, it has been shown that second derivative of position, i.e. acceleration, can
be represented by a first-order AR model [16]. Therefore, in terms of acceleration,
we can write:

âi+1 = ψai (5)

where a and â represent the actual and predicted accelerations, respectively.
Also, the relation between a and x in discrete space can be represented as:

ai =
xi − 2xi−1 + xi−2

(δt)2
(6)

where δt is the corresponding sample time. Combining (5) and (6), a third-order
AR model is obtained for position.

x̂i+1 = (2 + ψ)xi + (−1 − 2ψ)xi−1 + ψxi−2 (7)

Coefficients of an AR(p) model can be obtained through different methods. A
well-known and efficient method is the Yule-Walker equations [17]. Considering
the notation defined in (4), the Yule-Walker equations can be shown in matrix
form as follows ((8b) is the equivalent form of (8a)).

⎡
⎢⎢⎢⎣

r1
r2
...
rp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

r0
r1

r1
r0

r2
r1

· · · rp−2 rp−1

rp−3 rp−2

...
. . .

...
rp−1 rp−2 rp−3 · · · r1 r0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

φ1

φ2

...
φp

⎤
⎥⎥⎥⎦ (8a)

r = RΦ (8b)
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In (8a), rk, k = 0, 1, . . . ,p, are the autocorrelation functions which are defined
according to:

rk :=
ck

c0
(9)

where ck are the autocovariance functions which are defined as follows:

ck := E[xixi−k] (10)

where E[.] denotes mathematical expectation. Theoretically, E[xixi−k] should
be computed with infinite number of observations. However, since this is not
possible during an online prediction, the mathematical expectation could be
approximated by proper number of observations (based on the parameter T
explained in the previous section). Also note that for autocovariance function,
we have c−k = ck.

Using (9) and (10), the corresponding matrices r and R in (8a and 8b) can
be obtained and, thus, the matrix of coefficients φ is achieved.

Φ = R−1r (11)

For the acceleration model represented by (5), the single coefficient ψ can be
obtained by using Eqs. (8a and 8b) to (11). Then, substituting the resulted ψ
into (7), the third order model for one-step-ahead position is attained. To predict
position m steps ahead, one should repeat the Eq. (7) m times. For instance, for
xi+m we can write:

x̂i+m = (2 + ψ)x̂i+m−1 + (−1 − 2ψ)x̂i+m−2 + ψx̂i+m−3 (12)

where x̂i+m−1 is the predicted position for m-1 steps ahead, and x̂i+m−2 and
x̂i+m−3 are also defined in a similar manner.

Quadratic Prediction Method (QP). If we consider that the friction is the
only force acting on the ball and it follows Coulomb’s law, a simplified kinetic
model is attained utilizing Newton’s second law.

a =
∑

F

mb
=

−μmbg

mb
= −μg (13)

where a and mb are the acceleration and mass of the ball, respectively, μ is the
coefficient of kinetic friction, which is considered constant,

∑
F represents the

sum of the forces acting on the ball, and g is the gravitational acceleration.
The kinematic equation representing this motion is:

x =
1
2
at2 + v0t + x0 (14)

where v0 and x0 denote the initial velocity and position of the ball, respectively,
and t represents the time.
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According to (13), the acceleration of the ball is constant and, thus, the
position of the ball, defined by (14), represents a quadratic model in terms of
time. Therefore, we can generally write:

x = A1t
2 + A2t + A3 (15)

where A1, A2 and A3 are constants. If we can record three different positions
at three different times at the beginning T seconds of the motion, coefficients
A1, A2 and A3 can be readily used in order to form the equation of motion of
the ball according to (15). Having the equation of motion, we can predict the
position of the ball at each time during the motion for t ≥ T .

2.2 Offline Methods

In offline scheme the ball movement is repeated several times and the robot
records the data received from the movements before the desired movement
begins and learns how to predict the ball trajectory next time that the ball
moves.

Self-Perturbing Recursive Least Squares (SPRLS). RLS is a recursive
algorithm for determining the parameters of the system. Because of high error
of RLS in low variance, we choose SPRLS [18] for predicting the ball position.

Li =
Pi−1Φi

1 + ΦT
i Pi−1Φi

(16)

Pi = Pi−1(I − LiΦ
T
i ) + βNINT (λe2i−1)I (17)

θ̂i = θ̂i−1 + Li(yi − ΦT
i θ̂i−1) (18)

where e := y − ŷ is the estimation error with y := θT Φ and ŷ := θ̂T Φ denoting
real and estimated outputs, respectively. Also Φ is vector of input parameters, θ
is vector of estimated parameters, I is identity matrix, β is design coefficient, λ
is sensitivity coefficient, and NINT(.) function is defined as:

NINT (x) :=
{

x x ≥ 0.5
0 0 ≤ x < 0.5

(19)

If we consider that the acceleration is constant, by combination of (13) and
(14) we have:

x = −1
2
μgt2 + v0t + x0 (20)

Hence, we can write

− 2(x − v0t − x0) = μgt2 (21)

Comparison between (21) and y := θT Φ results in:

y = −2(x − v0t − x0) (22)

θT = μg (23)

φ = t2 (24)
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Fig. 2. First scenario friction force-
time diagram.

Fig. 3. Second scenario friction force-
time diagram.

3 Friction Model

There are several models of friction to use in simulation. Here we have used
LuGre model [19] because of simplicity and also good accuracy in many cases.
The formulation of this model is:

Ff = σ0z + σ1ż + σ2v

ż = v − σ0|v|
s(v)

z

s(v) = Fc + (Fs − Fc)exp(−(
v

vs
)δvs)

(25)

where Ff is the friction force, σ1 and σ2 are damping coefficients that are related
to the presliding and kinetic friction states, respectively, v is the velocity, the
parameter vs determines how quickly s(v) approaches Fc, Fs = μsmbg and
Fc = μkmbg are static friction force and coulomb friction force, respectively, μs

and μk denote friction coefficients and δvs is the shape factor of Stribeck curve.
We assumed two scenarios with different friction forces in order to investigate

the effect of friction on prediction quality, although many other possible scenarios
exist. As shown in Fig. 2, the friction in first scenario is almost constant over
time. Whereas Fig. 3 shows that it is variant over time in the second scenario.
The common coefficients between two scenarios are (the value for δvs is derived
from [20], while the others are chosen arbitrarily in order to obtain reasonable
friction forces. Also, the mass of the ball is the standard RoboCup ball mass):
mb = 0.425 kg, vs = 0.1 m

s , δvs = 1.
Scenario 1 coefficients are: μs = 0.25, μk = 0.1, σ0 = 30 N

m , σ1 = 2 N s
m , σ2 =

0 Ns
m and scenario 2 coefficients are: μs = 0.15, μk = 0.06, σ0 = 100 N

m , σ1 =
0.5 Ns

m , σ2 = 0.14 N s
m .
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4 Simulation

4.1 Assumptions and Parameters

In our simulation, we assumed T = 0.5 s, initial velocity, v0 = 2 m
s and in order

to compare our prediction methods, we use RMSE and NRMSE which start from
t = T .

RMSE =

√√√√ 1
M

M∑
i=1

(xi − x̂i)2 (26)

NRMSE =
RMSE

xmax − xmin
(27)

x and x̂ are the actual and predicted positions, respectively, and M is the total
number of predicted steps. Also xmax = x(t = tend) where tend denotes the time
at which the ball stops, and xmin = x(t = 0) for offline method and xmin = x(t =
T ) for online methods.

We assumed DES method parameters as: α = 0.9, γ = 0.5
For QP method, in order to derive A1, A2, A3 we need three equations. After

T seconds, using positions at t1 = 0, t2 = T
2 and t3 = T and (15) we have three

equations to derive A1, A2, A3 then we have:

A1 =
(t3x0 − t3x1 − t2x0 + t2x2)

t3t2(t3 − t2)

A2 =
−(t23x0 − t23x1 − t22x0 + t22x2)

t3t2(t3 − t2)
A3 = x0

(28)

In SPRLS method, we assumed v0 = 2.5 m
s for training phase and v0 = 2 m

s
for prediction phase. Also, RMSE and NRMSE are calculated from t = 0. Initial
values for SPRLS method are: θ̂0 = 1.962, P0 = 1, e0 = 1 and the parameters
are: λ = 100, β = 30000.

4.2 Simulation Results

We simulated our methods by means of Simmechanics library (second genera-
tion) of MATLAB’s Simulink. Our vision system frequency is 20 Hz and in order
to achieve more real results, we chose this frequency for running the simulation
in MATLAB.

As can be seen in Figs. 4 and 5, the QP method has yielded by far the best
result for scenario 1, where the friction force is almost constant over time. This
fact can be further proved quantitatively by Tables 1 and 2, where the RMSE and
NRMSE are obtained to be 0.0036 m and 0.0034, respectively, for this method.
This is, however, not surprising since the predefined model in QP method is
in great accordance with the friction force which is applied to the ball during
the whole motion in this scenario. Apart from this, the offline SPRLS method
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has resulted in a good prediction with an acceptable NRMSE of 0.1913. The
other two online methods, namely AR and DES, showed poorer predictions with
NRMSE of 38.68% and 41.52%, respectively.

For scenario 2, Table 2 indicates that online QP and offline SPRLS still lead
to more accurate predictions. However, from another perspective, the 4239% rise
in the RMSE for QP method from scenario 1 to scenario 2 shows that when the
friction force does not comply with the predefined model in QP, the precision of
this method decreases drastically. Meanwhile, the 45.6% increase in the RMSE
of SPRLS method shows that such a remarkable change has not occurred for
this method. The interesting point in scenario 2 is, however, the 30% reduction
of the RMSE in AR method in comparison with scenario 1, which demonstrates
that this method has adapted itself better to scenario 2. But this is not the case
for DES since its performance has deteriorated in scenario 2.

Looking more closely at Figs. 5 and 7, one can obviously observe that both
AR and DES methods have predicted a linear trajectory for the ball, which
means that the ball will move infinitely and will never stop. The same con-
cept can be interpreted by investigating the relevant mathematical relations
presented in Sect. 2.1. This is, however, not compatible with the physical reality
of the problem. Therefore, it can be deduced that methods which merely rely
on numerical data for prediction often fail to take the physical concepts into
account, and are thus suitable for the situations where little data is available
about the actual circumstances beforehand. These methods can also be utilized
when the prediction is to be carried out not far into the future; linear predictions
can be a good approximation of the curved ball position graph (with respect to
time) dependent on the applied friction force. Of course, great care should be
taken in adopting numerical methods. As discussed in the previous paragraph,
AR method yielded a much better result in scenario 2 (the friction force of
which was depicted in Fig. 3) than DES method. However, for a different form
of friction, the same result is not guaranteed to be attained, which shows the
importance of the physical conditions governing the problem.

Ultimately, it can be concluded that when the physical conditions of the ball
and ground are known to a good extent beforehand, model-based methods such
as online QP are suitable choices for predicting the trajectory of the ball. If, on
the other hand, online predicting is not required and the opportunity for pre-
training exists, offline SPRLS method provides a good chance to estimate the
physical conditions governing the problem and thus to predict the trajectory by
an acceptable accuracy. Moreover, online model-free or numerical methods such
as AR or DES can also provide us with good predictions, but the precision of the
results greatly depend on the variation of the friction force with time (Fig. 6).
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Table 1. Calculated RMSE for all
methods

Scenario1 (m) Scenario2 (m)

DES 0.4405 0.5669

AR 0.4104 0.3154

QP 0.0036 0.1562

SPRLS 0.3650 0.5316

Table 2. Calculated NRMSE for
all methods

Scenario 1 Scenario 2

DES 0.4152 0.5032

AR 0.386 0.2800

QP 0.0034 0.1386

SPRLS 0.1913 0.2688

Fig. 4. Trajectory predicted using
offline method comparing with actual
trajectory in first scenario.

Fig. 5. Trajectory predicted using
online methods comparing with actual
trajectory in first scenario.

Fig. 6. Trajectory predicted using
offline method comparing with actual
trajectory in second scenario.

Fig. 7. Trajectory predicted using
online methods comparing with actual
trajectory in second scenario.

5 Conclusion and Future Works

In this paper, we aimed at predicting the trajectory of the ball for humanoid
robots, which can be used for different goals such as the Goal-Kick from Moving
Ball challenge in Robocup. We simulated two different friction forces and com-
pared three online and one offline methods for this aim. The simulated scenarios
were presented in one direction; however, the equations are all valid while the
motion is completely on the ground.
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The results of the simulations indicated that the accuracy of the predic-
tion methods is highly dependent on the frictional condition which governs the
motion. However, we concluded that if the physical conditions are known before
the start of the motion, online model-based methods such QP are good can-
didates, while model-free AR and DES methods could be utilized online when
either little information about motion is available or the time interval of the
prediction is rather small. Offline SPRLS method is also useful when the robot
has the opportunity to be pre-trained.

There are many directions regarding future works. First, these methods
should be implemented on real humanoid robots to predict the ball trajectory in
order to kick, pass or intercept the ball in real-life scenarios, since the explored
friction force scenarios in this paper were only two examples of various possible
ones. Predicting the three-dimensional trajectory of the ball is also of great inter-
est. As another future direction, more realistic and human-like factors can be
taken into account. For instance, the prediction could be updated and improved
as the ball moves nearer to the robot by considering proper adaption laws for
the presented methods. Also other factors which lead to deviation from ideal
circumstances should be considered, such as small obstacles along the path of
the ball, lack of perfect roundness of the ball and air drag.
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