
Multimodal Movement Activity
Recognition Using a Robot’s

Proprioceptive Sensors

Robin Schmucker1(B), Chenghui Zhou2, and Manuela Veloso2

1 Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
robin.schmucker@online.de

2 Carnegie Mellon University, Pittsburgh, PA 15213, USA
{chenghuz,mmv}@cs.cmu.edu

Abstract. By recognizing patterns in streams of sensor readings, a
robot can gain insight into the activities that are performed by its phys-
ical body. Research in Human Activity Recognition (HAR) has been
thriving in recent years mainly because of the widespread use of wearable
sensors such as smartphones and activity trackers. By introducing HAR
approaches to the robotics domain, this work aims at creating agents
that are capable of detecting their own body’s activities. An activity
recognition pipeline is proposed that allows a robot to classify its actions
by analyzing heterogeneous, asynchronous data streams provided by its
inbuilt sensors. The approach is evaluated in two experiments featuring
the service robot Pepper. In the first experiment, a set of base movements
is recognized by analyzing data from various proprioceptive sensors. The
findings indicate that a multimodal activity recognition approach can
achieve more accurate classifications than single-sensor approaches. In
the second experiment, a person interferes with the forward movement
of the robot by pulling its base backward. This happens in a way that
is not detected by Pepper’s inbuilt systems. The approach can detect
the unexpected behavior and could be used to extend Pepper’s inbuilt
capabilities. Through its generality, this work can be used to recognize
activities of other robots with comparable sensing capabilities.

Keywords: Learning from sensory data · Activity recognition ·
Behavior verification

1 Introduction

While the planning layer captures a robot’s intended activity execution, it makes
no statement about its actual state and activity. Assume a robot wants to move a
certain distance forward. During its movement, it might collide with an obstacle
and fall over. A robot that recognizes the unexpected behavior can try to recover
or call a human operator for help. In another scenario, a robot might be pushed
by a human. If the robot recognizes what is happening to its body, it can respond
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with a warning when it is being moved in a way that is overly demanding on
its mechanics. In case of remote control, the robot might even reject a user
command to prevent damage.

Sensor-based Human Activity Recognition (HAR) uses wearable sensors such
as accelerometers and gyroscopes to capture human activity and finds applica-
tion in areas including mobile computing [17], ambient-assisted living [5] and
health care [2]. HAR can detect activities of the human activities such as walk-
ing, running, riding escalator, eating, opening door, and lifting object [11] by
detecting patterns in streams of sensor data. While sensor-based HAR needs to
attach and calibrate sensors for each individual user, robots feature a variety of
inbuilt sensors that give insight into their physical states.

By combining HAR approaches with a robot’s rich sensor data, this work
aims at creating an agent that recognizes its own body’s activity. A recognition
pipeline is proposed that enables the robot to detect its own activities by ana-
lyzing asynchronous, heterogeneous streams of sensor data. A Long Short Term
Memory (LSTM) [8] based neural network is used for activity recognition. The
approach is evaluated in two experiments featuring the service robot Pepper.
In the first experiment, a set of 7 movement activities is recognized. Here, the
robot detects if it moves forward, backward, left or right, rotates clockwise or
counterclockwise or stands still (see Fig. 3). The pipeline combines information
from heterogeneous, propriocepetive sensors to achieve accurate classifications.
The multimodal sensor data comprises joint states, electrical current, orienta-
tion, angular velocity and acceleration data. In the second experiment a human
interferes with the forward movement of the robot by pulling its base backward
in a way that is not detected by Pepper’s inbuilt capabilities. Through its gen-
erality, the in this work presented approach can be used to recognize activities
of other robots with comparable sensing capabilities.

2 Related Work

This work uses a robot’s inbuilt sensors to allow it to detect the actions performed
by its own body. This is achieved by recognizing activity patterns in streams of
sensor data. In robotics, related work can be found in Collision Detection (CD)
and Execution Monitoring (EM).

The area of CD uses a robot’s sensors to handle intentional or accidental con-
tact of its body with its physical environment [7]. One of the central motivations
is to enable robots to share a common work space with humans by preventing
injuries caused by forceful impacts as well as preventing damage to the robot’s
body.

EM (also known as Fault Detection and Diagnosis) observes sensor readings
to detect and classify faults and their causes [1,9,15]. Examples are the detection
of mechanical jams and the loss of hydraulic fluid. Conventional EM approaches
analyze a robot’s activities and determine a set of features that indicates cor-
rect execution. These features are then monitored to detect anomalies by either
comparing them with the expected system behavior or by subjecting them to
pattern recognition methods.
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While the areas of CD and EM are interested in fault avoidance and fault
detection/recovery respectively, this work aims at allowing a robot to recognize
the activities executed by its own body. This goal and the used methods in this
work are closely related to the field of HAR which uses wearable sensors to gain
insight into human activities.

As part of Human Computer Interaction, HAR creates devices that can rec-
ognize their user’s physical activities. Wearable sensors are used to capture data
about a user’s body activity which is then subjected to pattern recognition meth-
ods. One example is fall detection in ambient-assisted living. Here, a person is
equipped with a wearable device that detects falls and calls help if required [19].
Multimodal HAR approaches use data from multiple sensors to capture activ-
ities in greater detail. The use of data from a variety of sensors can achieve a
higher classification accuracy than unimodal approaches [12–14,16]. Lara [11]
and Cornacchia [6] provide comprehensive surveys about HAR with wearable
sensors. Conventional sensor-based HAR approaches use sliding window based
techniques combined with manual feature engineering. While these approaches
achieve satisfying results on simple activities such as lying, standing and walking,
it is difficult to recognize more complex activities. This limitation mainly lies in
the manually engineered features that are restricted by human domain knowl-
edge [4]. Recent advances in HAR utilize deep learning techniques because of
their automatic feature generation and selection. Deep learning approaches such
as LSTMs and Convolutional Neural Networks can come up with task specific
non-linear features and provide more accurate classification [18].

3 Robot Activity Recognition

Inspired by similar approaches in the field of HAR [18], this section formulates
the task of activity recognition in the context of robotics. Sensors act as a connec-
tion between the physical world and the computer and allow to observe a robot’s
physical state. During task execution, data streams generated by a robot’s sen-
sors can be analyzed to gain insight into the performed activities. Assume a
robot is executing a sequence of activities belonging to a predefined set A:

A = {ap}np=1 (1)

where n marks the number of activity types. The robot’s sensor readings are
observed over time. The observed sequence s contains m consecutive readings
ri, i ∈ {1, . . . , m}, that capture the state of the robot during a period of time at
equal intervals. The size of m depends on the sampling rate and the observation
duration. For example, the recorded sequences used in Sect. 5.2 each capture
10 readings per second over roughly 5 min. The number of readings that are
actually used for a prediction at a given time is dependent on the used model
and activity types. Each of the m readings features l attributes.

s = (r1, . . . , rm), ri ∈ R
l (2)
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The goal is to learn a model M that generates a sequence of predictions Â about
the performed activity at the time of each given reading ri

M(s) = Â = (âr1 , . . . , ârm), âri ∈ A (3)

where the actual performed activity sequence A∗ is:

A∗ = (a∗
r1 , . . . , a

∗
rm), a∗

ri ∈ A (4)

A suitable model M minimizes the discrepancy between predicted sequence Â
and ground truth sequence A∗. Here, A∗ can, for example, be determined by a
human observer or, as in our later experiments, by logging the commands given
by the robot’s controller. While this formulation assumes that the readings are
sampled synchronously at the same rate, a real robot’s sensors usually generate
readings asynchronously and at different, sometimes even varying, rates. The
following section responds to this by introducing a recognition pipeline that can
generate a steady data stream by combining and synchronizing readings from
multiple, asynchronous sensors.

S1 Data

S1 Preprocessing

Scaling

Recognition

Sk Data

Sk Preprocessing

Synchronisation

…

…

Activity Label

Fig. 1. The proposed activity recognition pipeline. It classifies the current activity
performed by the robot by analyzing data streams from multiple sensors.

4 Activity Recognition Pipeline

A general approach for robot activity recognition is proposed. The architecture
features a 4-step pipeline (shown in Fig. 1) that recognizes a robot’s activity by
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analyzing heterogeneous, asynchronous streams of sensor data during runtime.
The readings from the individual sensors (Sect. 4.1) are preprocessed separately
(Sect. 4.2) and then fused to a combined synchronous data stream (Sect. 4.3).
Afterwards, the combined readings are scaled (Sect. 4.4) and subsequently passed
to a recognition module (Sect. 4.5) which classifies the activity that is currently
performed by the robot. The used scaler and model are intended to be trained
offline with data from annotated activity sequences. In the following, the indi-
vidual pipeline steps are discussed in detail.

4.1 Sensor Data

Sensors can capture the state of a robot’s body over time. Heterogeneous sensors,
such as accelerometers and gyroscopes, provide data streams that can be used
to recognize the performed activities. Common variables include acceleration,
torque, electrical current, voltage, orientation, joint states and temperature. The
individual variables vary in significance based on the class of activity that is to
be predicted. For example, acceleration and torque capture information about
the forces that act on a robot’s body at a given time and are suitable for the
detection of motion activity. Meanwhile, temperature can be seen as an indicator
for long term engine activity by being dependent on the amount of heat that is
generated over time.

The pipeline assumes that a robot features k sensors Sj , j ∈ {1, . . . , k}. Each
sensor Sj samples signal pj with sampling rate fj over time. A reading of sensor
Sj at given time t provides a dj dimensional vector:

Sj(t) = (v1, . . . , vdj
) ∈ R

dj (5)

4.2 Preprocessing

The recognition pipeline receives one stream of sensor data from each of the k
sensors. It can be favorable to perform sensor specific transformations before
learning a model. This can reduce the number of required training samples by
adding expert knowledge to the model. Each sensor Sj is associated with a
preprocessing function Φj that is implemented in a separate module. Thereby,
the sensor readings are transformed to d′

j dimensional feature vectors.

Φj(Sj(t)) = (v′
1, . . . , v

′
d′
j
) ∈ R

d′
j (6)

For the evaluation, joint angles and electric current are scaled to unit space based
on the respective sensor specifications. A filter is applied to the raw acceleration
data generated by the inertial measurement unit (IMU) to separate low frequency
gravitational acceleration from high frequency activity acceleration [3].

4.3 Synchronization

In the general case, a robot samples its individual sensors at different rates and
provides asynchronous data streams. The recognition module assumes all sensors
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Fig. 2. Synchronization module.

to be sampled synchronously at a predefined rate f , which makes it necessary
to synchronize the individual streams of preprocessed sensor data.

The synchronization module fuses the separate streams to one combined data
stream. First, an initial start time t0 is being determined. Subsequently, for each
ti = t0+i∗T (T = 1/f , i ∈ N), one combined measurement is being interpolated.
The module observes all data streams in parallel. For each sensor Sj , one reading
rjm (the m-th reading of Sj) is kept in a buffer together with the timestamp of
its creation tjm . When a new reading rjm+1 arrives at time tjm+1 , the condition
tjm ≤ ti < tjm+1 is checked. If the condition is not met, the synchronization
module updates its buffer with rjm+1 and continues listening to the stream until
another reading matches the condition. If the condition is met, the buffer is
updated likewise and a linear interpolation between rjm and rjm+1 is performed
to determine

rji =
rjm ∗ (tjm+1 − ti) + rjm+1 ∗ (ti − tjm)

tjm+1 − tjm
(7)

where rji is the representative feature vector for sensor Sj at time ti which will
be used in the recognition process. Subsequently, the module buffers rji in a
queue and continues to determine rj(i+1) . After one vector rji for each Sensor
Sj has been determined for time ti, the synchronization module dequeues the
vectors, concatenates them and passes the combined reading to the next pipeline
step.

A scheme of the synchronization module is shown in Fig. 2. For each sensor
Sj , j ∈ {1, . . . , k}, a worker process Wj analyzes the stream of data published
by preprocessing node Pj . For time ti, worker Wj interpolates a representative
feature vector as described above and puts it into queue Qj . Subsequently it
continues to interpolate an entry for ti+1. After one feature vector for each
sensor has been determined, synchronizer S dequeues the individual vectors and
fuses them to one combined reading ri. This reading is then given to the scaling
module for further processing.

4.4 Scaling

The scaling module subtracts the mean from the individual features contained
in the synchronized readings and scales them to zero mean unit variance. This
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pipeline step reduces the numerical difficulties in the training process and pre-
vents the features in a greater numerical range to have a negative impact on
the model. In the experiments, the StandardScaler implementation of the scikit-
learn library was used and trained with data from multiple prerecorded activity
sequences.

4.5 Recognition

The recognition module receives a stream of synchronized and scaled sensor
readings from the previous pipeline step. The stream matches the requirements
for the activity recognition formulation described in Sect. 3. Each reading cap-
tures the physical state of the robot at a given point in time. Depending on
the activities that are intended to be recognized, a suitable model is selected
by the programmer. The chosen model analyzes the multimodal sensor data
and outputs an activity label that describes the activity the robot is currently
performing. The model is trained offline with annotated activity sequences.

In the evaluation, an LSTM based neural network receives a description
of the robot’s state as an input matrix containing multiple consecutive sensor
readings. This matrix is prepared by a small buffer that proceeds the network.
The network was trained on 5 readings containing 50 features each. This input
goes through two LSTM layers consisting of 32 neurons each. Afterwards, a
softmax layer associates each sequence with one of 7 classes (see Sect. 5.2). Each
LSTM layer is followed by a batch normalization layer and is regularized by
l1 and l2 regularizers each with coefficient 0.05. The categorical cross-entropy
function is used to calculate the loss and Adam [10] is the used optimizer. The
network is trained over 20 epochs with a batch size of 100.

5 Evaluation

An implementation of the activity recognition pipeline is evaluated in two exper-
iments featuring the service robot Pepper. In the first experiment, the pipeline
is used to recognize a set of 7 movement activities. The classification accuracy
achieved when using single and multimodal sensor data is analyzed. In the sec-
ond experiment, a human interferes with Pepper’s forward movement. It is shown
that the pipeline responds to the interference and could be used to verify activity
execution.

5.1 Pipeline Implementation

The pipeline was realized with the Robotic Operating System (ROS). The mod-
ules are implemented as individual ROS nodes which communicate over ROS
topics. The ROS community provides a NAOqi/ROS API to communicate with
Pepper’s NAOqi operating system. The API offers joint state (50 Hz) and IMU
(10 Hz) readings via designated topics. An additional wrapper node was imple-
mented which samples electrical current at 10 Hz and publishes the data to a
topic. Each reading is associated with the time of its creation.
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The recognition module uses an LSTM based neural network (Sect. 4.5). The
network is realized with Keras and trained with annotated activity sequence
data. TensorFlow serves as Keras backend. During the data collection process,
a training script lets Pepper perform an activity sequence and publishes anno-
tation information whenever it sends a command to the robot. The recognition
pipeline runs partially up to the synchronization module (Sect. 4.3) and pub-
lishes combined readings containing joint state (17 features), electrical current
(20 features) and IMU (13 features) data. Two logging nodes store annotation
information and synchronized sensor data in a SQLite database. For the training
of the model, the readings are annotated corresponding to their timestamps.

5.2 Recognizing Movement Activities

The activity recognition approach is evaluated on a set of 7 movement activities
executed by the Pepper robot. An activity sequence (shown in Fig. 3) is executed
by the robot. Sensor readings are captured, annotated and used to train and
evaluate scaling and recognition module. The pipeline uses joint state, electrical
current and IMU data for its classifications.

360°

360°

2m

2m

2m

2m

Fig. 3. The recorded activity sequence.

Recorded Data: A control script lets Pepper perform the movement sequence
shown in Fig. 3. The robot performs a full clockwise rotation, moves forward,
moves right, performs a full counterclockwise rotation, moves backward and
finally moves left to its initial position. Between the individual movements Pep-
per stands still for 2.5 s. The control allows the robot to perform 5 repetitions
of the activity sequence and sends corresponding commands and annotation
information. The synchronization module interpolates combined sensor readings
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at 10 Hz containing joint state, electrical current and IMU data. During the
experiments, 10 recordings containing combined sensor readings and annotation
information are collected, each capturing little above 5 min of Pepper’s move-
ment activity. For evaluation, a 10-fold cross-validation is performed. Each of
the 10 folds consists of 2450 annotated samples from one individual recording
(350 samples per class picked at random from the respective recording).

Fig. 4. The classification accuracy and standard deviations achieved on Pepper’s base
movements when using different sensor data for the recognition process.

Experimental Results: Multiple neural networks are trained to recognize Pep-
per’s movement activities by analyzing different sensor data. Three single-sensor
networks are trained with joint states, IMU and electrical current data respec-
tively. One multimodal model is trained to analyze combined readings. The mean
per-class and overall accuracies achieved by the different models and respective
standard deviations are visualized in Fig. 4. The combined model achieves an
mean overall accuracy of 97.47%, which outperforms the joint states (96.78%),
IMU (84.20%) and electrical current (96.05%) model. While the combined model
outperforms the others in terms of overall accuracy, there are differences in the
individual class accuracies. The IMU model achieves a lower overall accuracy
than the other models, but achieves the highest accuracy for the standing activ-
ity. Also, the IMU model achieves good results for the rotations while achieving
worse results on the directional movements. The joint and current model perform
similarly except when recognizing the rotating and right moving robot.



308 R. Schmucker et al.

5.3 Detecting Human Interference

In this experiment, a human interferes with Pepper’s forward movement by
pulling its base backward in a way that is not detected by the robot’s inbuilt
systems. The output of the recognition pipeline is analyzed. It is shown that
the approach can detect unexpected behavior that defers from the commands
given by the robot’s controller and could be used to extend Pepper’s inbuilt
capabilities.

Recorded Data: The Pepper robot is controlled by a simple script. It first
stands still for 5 s, then moves 3 m forward and concludes the sequence by
standing still for another 5 s. The control sends the corresponding commands
to the robot and publishes annotation information in parallel. The synchroniza-
tion module of the pipeline publishes combined sensor readings which contain
joint state, IMU and electrical current information at 10 Hz. Sensor and annota-
tion information are collected and stored in a database for later analysis. After
the robot has executed about half of its forward movement, the experimenter
grabs the base of the robot in a way that is not detected by its inbuilt systems
and pulls it backward.

Fig. 5. The robot’s activity over time as perceived by the robot’s controller and recog-
nition pipeline.

Experimental Results: For this experiment, pipeline scaler and model are
trained with the 10 recordings of the previous experiment (Sect. 5.2). Figure 5
compares the robot activity over time as perceived by control layer and recog-
nition pipeline. The pipeline recognizes the standing activity correctly. At the
transition between standing and forward movement, the model makes two wrong
predictions (200 ms) before recognizing the forward movement correctly. After
about 7 s, the experimenter starts pulling Pepper’s base backward. While the
control does not respond to the interference, the pipeline recognizes the change
in the robot’s movement and classifies it first as backward, then left and then
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backward again. Because the experimenter pulls the robot unevenly, the recog-
nized state then swings for a while between several states which are followed
by a long backward movement. After about 10 s, the control sends a standing
command and assumes Pepper came to a halt while in reality it is still being
pulled by the experimenter. After about 13 s, the interference stops.

To verify correct activity execution, the output of the recognition pipeline
can be compared to the robot’s commands. If control and pipeline do not agree
on the same activity for a certain amount of time (e.g. 0.5 s), an observation
system can detect the unexpected behavior of the robot. This can then be used
to allow the agent to communicate its problem to a remote supervisor.

6 Conclusion

This work introduced a activity recognition pipeline inspired by HAR methods
to the robotics domain. The approach analyzes multiple streams of asynchronous
sensor data to recognize the type of action a robot is performing and by doing
so allows it to detect its own activities in the physical world. The robot could
use this capability to verify its own activity execution or to narrate its actions
to a remote person.

The recognition pipeline was evaluated in two experiments. In the first exper-
iment, a set of 7 base movements executed by the service robot Pepper was rec-
ognized. It was shown how a model can achieve higher classification accuracy
by analyzing combined data from heterogeneous sensors. In the second exper-
iment, a person interfered with the forward movement of the robot by pulling
its base backward. While the robot’s inbuilt capabilities were not able to detect
the external interference, the pipeline successfully recognized the unexpected
state. This suggests that the approach could be used to extend Pepper’s inbuilt
capabilities with an additional verification system.

In future work, we want to recognize more complex activities that go beyond
simple base movements. In particular, the application of plan detection is of
interest to us. Here, we want to analyze how the recognized activities fit into
a meaningful context. This work used proprioceptive sensors because they are
more homogenous than external sensors and are closely relate to conventional
HAR methods. In further research, readings from external sensors such as rgb
cameras and depth sensors can be incorporated into the pipeline to enrich the
activity information. Another question is if a model that was trained on one
robot can provide accurate predictions when deployed on another robot of the
same type.
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