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Abstract. The approach of using neural networks in the RoboCup
humanoid league for ball detection is investigated in a case study at
the RoboCup 2017 competition. A patch-based classification approach is
used. Two different ConvNet architectures, the Inception v3 network by
Google and AlexNet are evaluated in the context of a ROS-based archi-
tecture on a robot with a Jetson GPU board. The aim is to allow for an
efficient re-training of neural networks in the context of the competition.
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1 Introduction

Based on the intention of RoboCup Humanoid league, that in 2050 “a team of
autonomous humanoid robots shall play soccer against the human world cham-
pion” [5], the complexity of the tasks of RoboCup are increasing. Examples of
this increasing complexity are the use of a standard FIFA ball, increasing field
sizes and the use of artificial grass. These challenges lead to increasing require-
ments concerning object detection.

The WF Wolves team previously used the Haar cascade algorithm [21]. This
algorithm is integrated in frameworks as OpenCV and allows for a very time-
efficient ball recognition when the ball is in medium range. It is not able to cope
with far away balls or partial occlusion. In such situations, which will occur more
often because of the growing field size and an increasing number of players, the
prior approach is unable to reliably detect balls in larger distances (Fig. 1).

A promising approach is the use of neural networks, which were recently
investigated in the context of the humanoid league [18]. However, in the past,
neural networks, particularly fully-connected ones, were too computationally
intensive for usage in image classification. Due to improved architectures (i.e.
convolutional neural networks - CNN) and adapted hardware, this has changed
in the last decade. However, the usage of deep neural networks for end-to-end
learning in the context of the humanoid league was not feasible until the recent
introduction of fast embedded GPUs, for (small) mobile robot platforms.
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Fig. 1. Far balls detected by CNN (pink circles), false positive by Haar Cascade classi-
fier (violet circle). Red line: approximated field outline. Blue squares: patches analysed
by CNN. Blue rectangles: goal post hypotheses (Color figure online)

Our approach is based on pre-trained convolutional neural network models,
which are fine-tuned1 to the RoboCup ball classification scenario. Advantages
of this approach include vastly reduced training times, higher accuracy and less
overfitting, when compared to a model trained from scratch. To localize the
ball, not the whole image is classified by the CNN, but the image is divided into
patches, which are filtered based on color information.

In this paper the use of neural networks for ball detection, in particular far
away balls, is evaluated based on experiences of the RoboCup 2017 competition.
The aim of the proposed approach is a CNN based classifier, which is fast-
adaptable to on-site conditions. We present the adapted vision pipeline, the
machine learning approach and experimental results.

2 Related Work

Neural networks are a widespread used technology for object recognition. In
the RoboCup soccer league neural network based systems for object recognition
have mainly been used in the middle size league. Mayer et al. [12] proposed a
neural network for robot detection on the field. Their approach uses the classical
feature extraction/classification separation with hand-crafted features designed
by humans. Our approach rather uses the more recent, but also more compu-
tationally intensive approach of end-to-end learning (deep learning), which also
learns the feature extraction from the raw pixels. Furthermore neural networks
are sometimes used in combination with other approaches, such as Kalman filters
[11,20] to improve performance for objects in motion (i.e. predict their position).
1 https://cs231n.github.io/transfer-learning/.

https://cs231n.github.io/transfer-learning/
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At present, neural networks become computationally feasible also for the
humanoid league and standard platform league for ball and opponent recogni-
tion. In the humanoid league the team Hamburg Bit-Bots [18] proposed a CNN
approach for ball localization. They used a custom network architecture trained
from scratch by using a normal distribution as teaching signal for each coordinate
axis. The team AUTMan [6] presented the idea of a CNN model for recognizing
opponents. In the Standard Platform League the approach using neural networks
was also recently investigated by several teams [1,3,14,15].

CITBrains from Japan are the only team stating the use of CNNs for ball,
goal post and opponent recognition for the RoboCup competition in their team
description paper for the RoboCup 2017 [16]. Hence until now mainly preliminary
lab results about the use of CNNs in the humanoid league are described. Besides
the RoboCup, CNNs implemented on a Jetson TX1 board is currently a gladly
used approach in a low-power environment [2,13]. The CNN AlexNet is retrained
for car plate and person recognition with satisfying results [4,10]. In the following
we present our results and experiences from using CNNs during the RoboCup
2017.

3 Vision Pipeline

In general, we use a patch-based classification approach, to decide whether a
particular region of interest (ROI) in the image contains a (partial) ball or not.
To increase computational efficiency, classification is only applied to patches,
which potentially contain a ball. Therefore the image is preprocessed and filtered
(Fig. 2).

Fig. 2. Vision pipeline (Color figure online)
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First we generate binary images (masks) by classifying the color of each pixel
in the source image. For ball detection the masks for soccer field green and for
ball white are relevant.

To keep rectangular sum calculations in the mask efficient, we transform the
masks into integral images. Based on the detection of field outlines, regions
outside of the field, without touching it, are not considered as a possible
ball region. The image is then divided into a grid of n × n patches with a
default patch size n of 50 pixels (Fig. 5). This hyper-parameter was chosen as a
performance/accuracy-trade-off.

For each patch, we determine the number of pixels belonging to the ball
white color class using the integral image. Patches where this number exceeds a
predefined threshold (default: 30), are considered as a region of interest (ROI)
for classification.

Each of those ROIs is then fed into the classifier, a deep convolutional neural
network, which calculates probabilities for the two classes ball/partialball and
noball. The classifier itself is running as a separate ROS2 node.

4 Machine Learning

We evaluated two different ConvNet architectures, the modern Inception v3
network by Google [19] and AlexNet [9], one of the first well-performing deep
convolutional neural networks. As we use TensorFlow for our model, all opera-
tions in the training refer to the corresponding functions and implementations
in TensorFlow (Fig. 3).

Fig. 3. Machine learning pipeline

For both evaluated networks, we did not perform a full training of the net-
work, as the goal during the competition was to be able to relatively fast adjust
2 Robot Operating System (http://www.ros.org).

http://www.ros.org
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the network to on-site conditions. Hence we fine-tune models of each network,
which were pre-trained for ImageNet. Also these models should be able to gen-
eralize better, as they already learned common features for object recognition
and overfitting is less likely to occur, as we only retrain the last layer(s). For
fine-tuning Inception v3, there is already a script and tutorial provided by Ten-
sorFlow3. Also for AlexNet there exists a project for fine-tuning4, where the
pretrained model is converted from the Caffe [7] model of BVLC AlexNet5.

For collecting training images, we use a regular tripod in the height of our
robot with the camera of our robot. We capture single images instead of the whole
data stream to include common situations, which might also occur during a real
game, while avoiding too many pictures of a single perspective, which would
introduce an unwanted bias to our dataset, and look for difficult situations like
other white objects on/near the field.

After capturing, the images are labeled using the ImageTagger6 by the Ham-
burg Bit-Bots team, which allows to build up a shared image database for
humanoid soccer competitions. In the tagger application, we annotate balls in
the image using bounding boxes.

The images are then divided into small patches (see Fig. 5). To generate
training data, no patches are filtered out in this step, as this has proven to
result in a better, more flexible model. In an automated labeling patches are
labeled as ball if the overlap of any ball bounding box with the region is larger
than a certain threshold.

As this automated sorting is still error-prone, after this step a human has
to validate the resulting patches and potentially to move images to the correct
folder. Files where even the human is unsure about classification are removed
from the dataset.

In general we do not perform additional preprocessing of the train-
ing/validation images (i.e. translation/noise addition/etc.) to reduce the time
needed for on-site training. Due to the high amount of patches, we expect to
have enough translation variety already present in the dataset.

As the training data is highly unbalanced between the classes, i.e. we have a
lot of negative samples, but comparably only a very small percentage of positive
(ball) samples, the training process has to be adjusted. Otherwise the classi-
fier might prefer the overrepresented class over the other. This effect is called
accuracy paradox.

There are multiple ways of handling imbalanced classes, including oversam-
pling, undersampling, class weights or balanced batches. To cope with the highly
imbalanced training data, instead of using oversampling on the ball class under-
sampling on the noball class was investigated. This led to an increased false pos-
itive rate due to less negative (noball) samples. Using alternatively class weights

3 https://www.tensorflow.org/tutorials/image retraining.
4 https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow.html.
5 https://github.com/BVLC/caffe/tree/master/models/bvlc alexnet.
6 https://github.com/bit-bots/imagetagger.

https://www.tensorflow.org/tutorials/image_retraining
https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow.html
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/bit-bots/imagetagger
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led to a more robust model with a reduced false positive rate. Also balanced
batches yielded good results for the Inception network.

For fine-tuning AlexNet, we re-train the last two fully-connected layers (fc7
and fc8). Softmax cross entropy is used as loss function. Batches of 128 randomly
chosen patches are fed into the network for training. Adam [8] is used as opti-
mization procedure and TensorBoard for monitoring the training and validation
accuracy, as well as the cross-entropy loss over time.

5 Experimental Results

The presented approach is evaluated in the following based on the experience
of the RoboCup 2017. A description of the dataset used for training is provided
and the performance of the inference process is investigated based on the built-in
Jetson board of the robot.

The proposed CNN-based method (pink circles) is able to detect partially
covered balls and far away balls, as shown in Fig. 1, with less false-negatives
compared to the Haar cascade approach (violet circles) (Fig. 4).

Fig. 4. Close ball detected by Haar
Cascade classifier and CNN (Color
figure online)

Fig. 5. Examples of patches (non-filtered)

5.1 Dataset

The images used as the basis for our dataset were recorded at 3 different loca-
tions: our lab test field, German Open 2017 and RoboCup 2017 Japan. The
original ∼1800 images had a resolution of 640×480 respectively 640×360 pixels
and were all taken with our robot’s camera.

The dataset consists of ∼158k patches, where ∼3k were labelled as ball or
partial ball, and the rest ∼155k patches were labelled as no ball. The images
contain different kinds of white balls, with difficult situations, such as partial
occlusion by robots, sun light from open doors and various shaped and sized
objects of white color. We particularly included problematic situations on the
RoboCup, where we experienced a lot of false positives.



Jetson, Where Is the Ball? 187

For evaluation of the different models, we captured an additional dataset
consisting of ∼1000 images. This dataset, in this paper referenced as ‘evaluation
dataset’, is used for performance testing on whole-frame pictures, as well as for
the confusion matrix.

5.2 Validation

We evaluated several models varying training epochs/steps7, validation split
and class imbalance handling (Table 1). The true positive rate is defined as the
number of correctly detected balls divided by the number of ground truth balls.
The false discovery rate is defined as the number of false positive balls divided
by the sum of false positive and true positive balls.

Table 1. Evaluated models with true positive rate (TPR), false discovery rate (FDR),
validation accuracy and training duration (inception has constant bottleneck creation
time = only required once for all models). (AlexNet 20 epochs (10% validation data,
class weights); Inception v3 500 steps (10% validation data, balanced batches); Incep-
tion 4000 steps (10% validation data, balanced batches); Inception 20000 steps (10%
validation data, class weights); AlexNet 38 epochs (20% validation data, class weights);
AlexNet 64 epochs (10% validation data, undersampling); AlexNet 9 epochs (10% val-
idation data, class weights))

Model Haar AlexNet 20

epochs

Inception

500 steps

Inception

4000 steps

Inception

20000

steps

AlexNet 38

epochs

AlexNet 64

epochs

AlexNet 9

epochs RC2017

TPR 24.135% 74.382% 96.34% 96.736% 98.811% 72.908% 88.131% 68.546%

FDR 7.925% 10.9% 10.724% 14.06% 80.697% 18.568% 39.346% 12.278%

Val.

acc.

- 99.25%

(N=15776)

98%

(N=100)

88%

(N=100)

93%

(N=100)

99.48%

(N=15776)

96.97%

(N=1076)

99.14%

(N=15776)

Train.

Dur.

- ∼8, 5 h 2, 5 h

+1m

2, 5 h

+7m

2,

5 h+36m

∼16 h ∼45m ∼4 h

From the Table 1 it can be seen, that the Haar Cascade algorithm has a
low TPR, therefore not detecting a large percentage of balls. AlexNet performs
better, but with an increased FDR. We suspect that the rather high FDR for
AlexNet 64 epochs, is due to less amount of training data caused by under-
sampling. Inception with 20000 epochs is probably overfitted. We have selected
Inception 500 steps and AlexNet 20 epochs, as they have the best trade-off
between true positives and false positives8. As can be seen in Fig. 6, the Haar
cascade algorithm is unable to detect balls at distances larger than 3.50 m, in
contrast to both CNN algorithms.

We achieved ∼99% validation accuracy during the RoboCup competition
(AlexNet 9 epochs). During the RoboCup, the time available for training is very

7 Number of batches (batch size 100) used for training.
8 Additional results are left out because of page limitations, but can be downloaded

from our website (https://www.wf-wolves.de/jetson-rc2017/).

https://www.wf-wolves.de/jetson-rc2017/
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constrained, therefore we only trained for 9 epochs, which already took about 4 h.
The TensorFlow retrain.py script used for fine-tuning Inception, uses a technique
to first generate bottleneck files, which are the results of processing each training
image through the first layers (which are not changed). This leads to a constant
start-up cost, and greatly reduces training time in total. The concept may be
applied to AlexNet as well, which might decrease training time by a large portion.
However, the false positive rate slightly increases for the CNNs.

Haar

AlexNe
t 20 epochs

Incepti
on 500 steps Haar

AlexNe
t 20 epochs

Incepti
on 500 steps Haar

AlexNe
t 20 epochs

Incepti
on 500 steps

0

200

400

600

800

1000
False Positive (FP)
False Negative (FN)
True Positive (TP)

All 0m-3.50m 3.50m-6.50m

Fig. 6. Comparison of three different classifier models: Haar Cascade; AlexNet trained
for 20 epochs with class weights; inception v3 trained for 500 steps with class weights

5.3 Performance of Inferencing

For the evaluation we investigated Inception v3 and AlexNet as described in
Sect. 4. The Inception v3 model might in principle lead to better classification
accuracy results, but was too slow for this use case. Figures 7 and 8 show the
processing time required for the whole image pipeline (time between publishing
of a camera image to the receiving of the debug image).
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Fig. 7. Pipeline performance AlexNet
vs Inception v3 (outliers excluded)
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Fig. 8. Pipeline performance AlexNet vs
Haar Cascade (outliers excluded)

Running the Inception network on a CPU, took about 1 s per inference
run/patch. Running it on a Desktop GPU, increased the performance to about
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0.2 s per patch, which is still slow, when having to handle a large number of
patches. Therefore we switched to AlexNet, a more lightweight model, which
still promised sufficient classification accuracies, while achieving better real-time
performance. With AlexNet, we achieved approximately 0.1 s for the inference
time per patch on a CPU. For larger amounts of patches this was still too slow.
Using the Jetson TX2 GPU board the duration could be further reduced.

To further optimize the performance, we compared the sequential execution
of the network with a parallelized version taking a variable batch of patches as
input. The results for this can be seen in Figs. 9 and 10. While the processing
time in the sequential version grows linearly, the parallel version has a relatively
high amount of outliers. Based on mean execution times, the parallel version
offers a huge advantage compared to the sequential method.
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Fig. 9. Execution time of sequential
AlexNet on the Jetson GPU
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Fig. 10. Execution time of parallel AlexNet
on the Jetson GPU

We used the Max-P ARM performance mode of the Jetson TX2, which was
the most stable, but at the same time well-performing setting. We also inves-
tigated the Max-N mode, with which we had stability issues, which may have
been caused by current limitations of the power supply. Table 2 gives an overview
about the investigated performance modes.

Table 2. Tested performance modes of the Jetson TX2

Mode ARM Denver GPU Power w/o GPU Power w/ GPU

Max-P 2.0 GHz Disabled 1.12 GHz 0.6 A 0.9 A

Max-N 2.0 GHz 2.0 GHz 1.30 GHz 1 A >2 A

6 Discussion

In general the presented approach was feasible during the competition and the
accuracy and model performance is promising. An advantage of the patch-based
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approach compared to approaches operating on the whole image is, that it is
easier to generate an adequate amount of training data, as one image contains
already many patches. Also training samples are usually better distributed, as
e.g. the ball is not always in the center or often only partly visible. This improves
especially the detection of partially covered balls. Still, there may be a bias from
other sources, such as illumination and exposure. When choosing a patch size of
50 × 50 pixels with a stride-size of 50 pixels, we had an accuracy-performance
trade-off in mind. Lowering the stride-size, will lead to more patches, which might
simplify the problem for the classifier, but decreases the runtime-performance.
Furthermore it might be worth to investigate adaptive patch sizes, for example
based on the distances from the robot’s view.

A potential disadvantage of the patch based approach are patches containing
small parts of a ball without further context in the image, where even humans
would not be sure. Whole-image models may need a longer training time, since
there are typically no pre-trained models available, and the object localization
problem is harder compared to a binary classification problem.

The general approach to fine-tune a pre-trained networks with a verified
architecture offers several advantages. The risk of overfitting is reduced and
training times are shorter, which is important for on-site training during compe-
titions. However, publicly available pre-trained networks are often designed for
a different, more generic use-case. In our case the pre-trained networks AlexNet
and Inception v3 were designed for fixed input dimensions. Inception v3 uses
299 × 299 × 3 and AlexNet 227 × 227 × 3 as input dimensions. This is consider-
ably larger than the patch size (50 × 50 × 3) chosen here. Therefore each patch
has to be scaled up to the network’s input dimension. This yields to a compu-
tational overhead, which would not be necessary in case of a custom designed
network. Furthermore the parallelization on the Jetson may suffer from this, as
there are more CUDA units necessary to compute the larger network.

To enhance the inference performance, it would be interesting to investigate
custom network architectures or available networks with smaller input dimen-
sions, which are pre-trained similarly on a general purpose challenge (e.g. Ima-
geNet Large scale Visual Recognition Challenge) and afterwards fine-tuned to
the specific requirements of the RoboCup environment.

Furthermore the performance could possibly be enhanced by adapting models
to the specific hardware capabilities. For example TensorRT9 optimizes trained
neural networks for execution on NVIDIA hardware by weight quantization (i.e.
quantize floating point weights to 8-bit integers), layer and tensor fusion and
other optimizations. However at the time of writing this framework is only avail-
able as a release candidate for the Jetson TX2 board currently missing some
APIs when compared to the x86 version.

To improve the validation process, the ability to explain the network’s deci-
sion may be useful. Selvaraju et al. developed Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) [17], which highlights regions, that are ‘impor-
tant’ for the prediction outcome. Further investigation into explanations of the

9 https://developer.nvidia.com/tensorrt.

https://developer.nvidia.com/tensorrt
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network’s decision may allow to decide whether a network has actually learned
the general concept of a soccer ball, or something else.

7 Conclusion

Ball detection by deep neural networks in the RoboCup humanoid league proved
promising. The accuracy is adequate for the intended application, leading to
less false negatives compared with previous approaches, as the Haar cascade
algorithm that was used before. It is possible to adjust the approach to changing
on-site conditions during a competition. By including a Jetson board in the
robot, the use of CNNs is computationally feasible in a ROS based architecture.

The approach fosters the cooperation between teams by the possibility to
build up common training sets and to share ROS nodes with pre-trained classi-
fiers with other teams.
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