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Abstract. At RoboCup 2017, the HULKs reached the Standard Plat-
form League’s quarter finals and won the mixed team competition
together with our fellow team B-Human. This paper describes the design
of a convolutional neural network used for the detection of the black and
white ball - one of the key contributions that led to the team’s success. We
present a genetic design approach that optimizes network hyperparam-
eters for a cost effective inference on the NAO, with limited amount of
training data. Experimental results demonstrate that the genetic algo-
rithm is able to optimize the hyperparameters of convolutional neural
networks. We show that the resulting network is able to run in real-time
on the robot with a very precise classification in generalization test.

1 Introduction

In 2016, a black and white patched ball was introduced into the Standard Plat-
form League (SPL). While in previous years color based approaches [2,5] were
sufficient to achieve a acceptable detection and classification performance, the
new ball requires more sophisticated techniques. Requirements for a detection
algorithm comprise a robust detection and classification in dynamically changing
environments, as well as a cost-effective real-time computation on the NAO.

Approaches based on convolutional neural networks (CNN) for object detec-
tion led to promising results in RoboCup SPL [7,8]. However, hyperparameters
for the structural setup of such networks need to be chosen carefully. Genetic
approaches as described in [4] and [9] can be used to determine an optimized
network topology. Stanley and Miikkulainen described the evolution of fully con-
nected network topologies [10]. The idea can easily be applied to other model
components, e.g. convolutional layers. A similar genetic approach was used by
Sun, Xue, and Zhang to automatically discover good architectures of CNNs [11].

This paper presents a genetic framework to design CNNs for real-time appli-
cations on computationally weak hardware by simultaneously optimizing the
classification performance and inference complexity. Our approach considers a
bounded capability to collect large amounts of training data and allows the user
to prioritize true negative rate and true positive rate suitable for a specific task.
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The detection of a black and white ball on the NAO robot is used to demonstrate
the performance of the framework.

Section 2 outlines the general idea of a genetic algorithm as well as the com-
ponents used to assemble a CNN. Section 3 describes the resulting search space
and the fitness function used for the genetic optimization. Section 4 presents the
process of data acquisition. Herein the techniques used to generate and setup
training data are described. Finally, in Sect. 5 the conducted experiments are
presented and the evaluation results are discussed.

2 Prerequisites

2.1 Genetic Algorithm

The method used in this work follows a genetic algorithm pattern [4]. The basic
elements are chromosomes or individuals c ∈ S, a possible solution in given k-
dimensional search space S. The algorithm works in an iterative manner with a
fixed number of generations N . A set of n chromosomes used during iteration j
is called population Pj = {c1, ..., cn} ⊂ S. The initial population P0 is generated
randomly. In each generation j ∈ [1, N ] the population of the previous iteration is
evaluated using a fitness function f(c) : Ck �→ R. Given the individuals fitnesses
of the previous population a set Sj is selected from Pj−1 as parents. In the next
step a mutation function will be applied to every element in Sj . Finally, mutated
parent elements are recombined yielding the next generation Pj .

2.1.1 Selection
The selection is done using the following steps. According to a given clipping
parameter c ∈ [0, 1] individuals in the lower cth percentile is dropped. The
minimal fitness within the population is given by mink∈[1,n](f(ck)). Given the
other m individuals the probability of survival is calculated by Eq. (1).

p(ci) =
f(ci) − minscore

∑m
j=1 (f(cj) − minscore)

(1)

Hence, the individual with the lowest fitness value is assigned to the survival
probability zero. According to this distribution, n elements are sampled for muta-
tion and reproduction.

2.1.2 Mutation
For every value within chromosome c a new value will be sampled based on a
given mutation probability pm. If a gene is to be replaced a new random value
is chosen.

2.1.3 Reproduction
In the reproduction phase the selected and mutated chromosomes are pairwise
randomly sampled. Each pair yields two new children. For every value within
the chromosome of a child, the corresponding parent value is chosen randomly.
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2.2 Convolutional Neural Networks

In our recent work [7] convolutional neural networks showed promising results in
the field of object detection. The following briefly describes the basic components
used for our CNN structure.

2.2.1 Convolutional Layer
In this work multiple two-dimensional convolutions are used, i.e. an input image
with q channels is mapped to an output image with k channels. Equation (2)
shows the computation of a convolutional layer.

yi,j,k =
∑

di,dj,q xi+di,j+dj,q · mdi,dj,q,k

x ∈ R
i×j×q,m ∈ R

di×dj×q×k
(2)

2.2.2 Pooling Layer
Pooling layers reduce every dimension of each image channel by applying a func-
tion to neighboring pixels using a 2×2 mask. In this paper max(a, b, c, d) (maxi-
mum value of arguments) and avg(a, b, c, d) (arithmetic mean of arguments) are
used.

2.2.3 Normalization Layer
Batch normalization layers are used to increase the learning rates and to reduce
the sensitivity to the initialization of the weights [6]. During training normal-
ization is calculated batch-wise. For input vectors [1,m] ∈ N it is calculated by
Eq. (3).

BNγ,β(xi) = γ · xi − μB√
σB + ε

+ β (3)

The scale γ and offset β are trainable parameters which get optimized due
to the training problem. The batch mean is element-wise computed by μB =
1
m

∑m
j=1 xj . The batch variance is also element-wise computed by σB =

1
m

∑m
j=1(xj − μB).

For the inference mean and variance are approximated by a moving average
approach during training [6, pp. 4]. Mean μn and variance σn after nth batch
can be computed recursively using a moving average.

3 Genetic Design of Convolutional Neural Networks

To find an optimal topology of the CNN the genetic algorithm mentioned in
Sect. 2.1 is used. Each topology set corresponds to a single individual within the
search space. CNN structure and search space are specified in this chapter.
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3.1 Network Structure

The uniform structure used for all evaluated individuals is given in Fig. 1. The
input is a YCbCr candidate image of arbitrary quadratic size. It is resized to a
fixed quadratic size using nearest neighbor interpolation. Then, multiple convo-
lutional layers are applied. The next step is a batch normalization layer. Finally,
multiple fully connected layers are applied. The output is a vector representing
the class scores.

Each individual specifies the remaining hyperparameters within this struc-
ture. These are the input size, number of convolutional and fully connected layers
as well as their internal configuration. Each convolutional layer is parameterized
with a mask size, pooling type and activation function. Likewise, the parameters
of a fully connected layer consists of the size and activation function.

Fig. 1. General structure of a CNN. Each convolutional layer consists of a two dimen-
sional convolution mask (2DCL) followed by a pooling layer (Pool) and an activation
function (Act). The convolved and normalized image is fed into multiple fully connected
layers yielding the final output vector.

3.2 Search Space

The search space for the genetic algorithm consists of parameters described
in Sect. 3.1 with the value ranges described in the following. The size of the
quadratic input image is sampled within the range [8, 16] ∈ N. The amount of
convolutional layers is limited to two. For each convolutional layer the number
of kernels is chosen from [1, 5] ∈ N. The kernel size is equal within each convo-
lutional layer and is either two or three in both dimensions. Either no pooling,
max-pooling or avg-pooling is used in the pooling layer. The activation function
for the CNN and the fully connected layer is either tanh or rectified linear unit
(ReLU). There are four fully connected layers at maximum each with a number
of neurons within [2, 20] ∈ N.

3.3 Fitness Function

We optimize classification performance and inference complexity at the same
time. In the fitness function classification performance is represented by the true
negative and true positive rate. Inference complexity is approximated asymptot-
ically.
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3.3.1 Classification Performance
For each network a k-fold cross validation was performed which yielded k values
for true negative rate TNRnk and true positive rate TPRnk. In order to approx-
imate a lower bound of these performance metrics the difference of mean and
variance were used in the fitness function. The TPRn and TNRn for a network
n was computed by:

TPRn = Avg(TPRn1, ...,TPRnk) − Var(TPRn1, ...,TPRnk) (4)
TNRn = Avg(TNRn1, ...,TNRnk) − Var(TNRn1, ...,TNRnk) (5)

where Avg is the arithmetic mean and Var is the variance.

3.3.2 Inference Complexity
The complexity of a network was asymptotically approximated and linearly
scaled. The complexity cc of a convolutional layer i is approximated by Eq. (6).

cci =
Ix · Iy · Ic · mx · my · mc

Îx · Îy · Ic · m̂x · m̂y · m̂c

=
Ix · Iy · mx · my · mc

Îx · Îy · m̂x · m̂y · m̂c

(6)

Symbols Ix, Iy, Ic correspond to layer input size and depth, mx,my,mc to
amount and size of the convolution masks in this layer. While Îx, Îy, m̂x, m̂y, m̂c

represent maximum values as defined by the Sect. 3.2.
The complexity cf of the fully connected part is approximated by Eq. (7).

cf =
∑k

i=1 si · si−1
∑k

i=1 ŝi · ŝi−1

(7)

The number of hidden layers is denoted by k and the size of layer i by si. The
input vector size is s0.

Hence, the final complexity of a network topology with j convolutional layers
is

cn = 1 −
∑j

i=1 cci + cf

j + 1
. (8)

3.3.3 Resulting Fitness Function
Given the approximation of classification performance and inference complexity
the resulting fitness function is chosen as follows:

fn = 0.7 · TNR2
n + 0.25 · TPR2

n + 0.05 · cn. (9)

In our case for the desired behavior of the ball detection, the TNR is much more
important than the TPR. Hence, this component is assigned the largest weight.
The search space is already limited to topologies which are feasible for inference
on the target system. Therefore, the inference complexity is weighted with a
very low weight in the fitness function. If networks have similar classification
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performance the smaller network is preferred. These weights were chosen based
on empirical considerations.

For networks with a good classification performance it is disproportionally
difficult to further increase the TNR and TPR. Thus, the TNR and TPR are
squared in the fitness function.

4 Data Acquisition

4.1 Data Setup

The data used for training and evaluation of the classifier were collected during
various events (RoboCup 2017, Iran Open 2017, German Open 2017, weekly
test games). It consists of 16880 positive examples (candidate images containing
a ball) and 23876 negative examples (candidate images not containing a ball).
During training negative examples are subsampled randomly to ensure that in
every cross-validation set the same amount of positive and negative examples
are present.

4.2 Candidate Generation

The training data is collected directly on the robot to ensure equally sampled
data during training and inference. This allows an iterative process consisting of
the following steps.

1. Training a network with the collected data.
2. Running the newly trained model in a test environment while collecting data

not yet seen by the network.
3. Labeling newly collected data and evaluating classification performance based

on the test set.

4.2.1 Generating Seeds
In the first step of the candidate generation the algorithm determines seeds
for possible candidates. The image is segmented using vertical scan lines on
every second column of the image. The two dimensional gradient is computed
along the scan lines. Whenever this gradient exceeds a preconfigured threshold
a new segment along this scan line is created. The median of five pixels equally
distributed over the segment determines the color of the segment. A seed is the
central pixel of a segment which passes a series of checks.

1. The luminance of the corresponding region must be lower than 100 which
naturally corresponds to the black patches of the ball.

2. The corresponding ball radius in pixels rp at the seed’s position is determined
by projecting the assumed ball onto the image. If the ratio rs = ls

rp
of the

segment’s length ls to the pixel radius is not within the range [0.1, 0.7] the
seed is dropped.
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3. Neighboring areas of the black patch are checked. Therefore the luminance
in eight directions around the seed with a distance of rp

2.5 are sampled. All of
those sampled values must be slightly higher than the luminance of the seed.
Also, five of those values must have a significant difference in luminance.

If all conditions match, the seed is used for the candidate generation.

4.2.2 Merging Seeds To Candidates
Seeds are merged into a single candidate if they are close to each other. First, an
empty set of candidates is initialized. For every seed in the image it is checked if
there is a nearby candidate with a maximum distance of a ball diameter in pixels.
If a candidate is found the current seed will be merged into that candidate by
taking the mean of the position and radius. Otherwise a new one with position
and radius of the current seed is added. Afterwards candidates are filtered such
that only candidates based on at least two seeds remain.

4.2.3 Reprojection of Found Balls
Our existing software framework features a filter to estimate the ball state. The
physical model of the ball is used to predict the ball position in the current
image which yields another candidate.

Fig. 2. Visualization of ball candidates [3, pp. 17–18]. (a) Seed is corresponding to
the center of the black patches on the ball. (b) Merged seeds and projection of the
corresponding ball radius. (c) Reprojected ball from result of the ball filter (green
circle bounded black rectangle). (Color figure online)

5 Experiments and Evaluation

The computational power of the NAO is severely limited. Therefore, designing
the CNN using the genetic algorithm is done offline on a more powerful machine.
The resulting network is transferred to the robot and is evaluated in a final
generalization test. The classification performance is measured based on labeled
data collected by the candidate generation.
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5.1 Setup

In every experiment 15 generations with 50 networks in each generation were
evaluated. The worst 10% in each generation were excluded from reproduction.
The mutation probability was set to 1

16 according to the maximum number of
degrees of freedom of the given search space.

The algorithm should be able to design a CNN as a solution to the ball
detection problem considering a limited amount of training data. To show that
this can be achieved three experiments were conducted, sampling 25%, 50% and
100% of the available training data.

5.2 Results

For the experiment with 25% of the data the best networks in the last generation
reached a TNR of 0.91 to 0.95 with a TPR of about 50% to 75%. The resulting
network has a very small sample size of 8 × 8, one convolutional layer of four
masks and only three hidden layers in the fully connected part.

With 50% of data the best networks in the last generation reached a TNR
of about 0.93 with a TPR above 0.85. Networks with one large convolutional
layer and mainly three hidden layers in the fully connected part dominated this
experiment.

With the full amount of data the best networks in the last generation reached
a TNR of about 0.95 with a TPR above 0.90. While the sample size and con-
volutional layers remained similar to those in the second experiment, the fully
connected part converged to four hidden layers instead of three.

5.3 Evaluation

In early generations of the first experiment networks with a very high TNR also
had a very low TPR as Fig. 3a illustrates. These individuals were eliminated
due to the weights of the fitness function. Networks of the last generation were
highly biased to reject input which yields a high TNR while having a poor TPR.
Classification performance in the second experiment was significantly higher.
Therefore, not only individuals with a bad TNR were eliminated but also the
TPR converged over time. Figure 3b shows that there were no outliers with a
TPR below 0.70 in later generations. Figure 3c shows that later generations of
the final experiment also formed a very dense cluster. Hence, the algorithm could
not really find a much better solution throughout generations but was able to
select better networks and remove outliers.

The network having the highest score in the last generation is considered to
be the resulting network. Table 1 shows a summary of those networks in each
experiment. Networks became more complex while increasing the amount of data
resulting in better classification performance.
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Fig. 3. Evolution of classification performance. Note that scaling differs between exper-
iments as the overall results got better. Results of the first generation are plotted with
white filled circles. Results of the following generations are plotted in increasingly
darker shades of gray.
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Table 1. Overview of the resulting networks of experiments. Column Exp lists the
number of the experiment. The second column Data corresponds to the amount of
data used. Columns TNR, TPR and Comp show the components of the fitness function.
Note that the TNR and TPR parts are the lower bound approximations described in
Eqs. (4) and (5). Column Score corresponds to the resulting score.

Exp Data TNR TPR Comp Score

1 25% 0.921 0.700 0.732 0.856

2 50% 0.932 0.853 0.663 0.899

3 100% 0.972 0.958 0.638 0.922

5.4 Generalization Test

The best network of the last generation that was trained with all of the training
data is subjected to a final generalization test. This final network is evaluated
with data collected in another environment which can be considered to be a
proper generalization test because no data from these testing conditions was
used during training. The classifier predicted 4989 of 5687 positives and 12680
of 12730 negatives correctly resulting in a TNR = 0.99 and a TPR = 0.87.

5.5 Runtime Analysis on the NAO Robot

The whole ball detection including the resulting network running on the NAO
was evaluated. For this test we fixed the number of generated candidates per
image to the average amount five to get stable measurement results. Figure 4
shows the result of those measurements. With an average runtime of about 8 ms
on the top and 4 ms on the bottom camera we reached our real-time criteria
which is 30 ms for a vision cycle.

Fig. 4. Runtime of the ball detection including the resulting network on the NAO. The
green line indicates the mean of the runtime. The interquartile range is shown by the
blue box. The upper black bar illustrates the 0.75-quantile, respectively the lower black
bar the 0.25-quantile. The circles correspond to outliers. (Color figure online)
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6 Conclusion

The goal of this paper was to optimize the topology of neural networks with
respect to classification performance and inference complexity simultaneously.
We presented a genetic framework that was successfully applied to the problem of
black and white ball detection using little computational power. Our experiments
showed that a genetic approach is able to identify a small yet efficient network
suitable for a specific classification task. The presented optimization strategy
obtains suitable hyperparameters even with limited amount of training data.
However, the optimization of the architecture needs a lot of computation time
as the algorithm has to train and evaluate plenty of CNNs, in our case 2250
networks. Thus, applying the presented optimization strategy to classification
problems that require significantly more complex networks may be infeasible.

In order to enhance convergence speed future work should focus on evaluat-
ing different variants of genetic algorithms such as elitism [1]. Additionally, we
would like to apply the approach to multiclass problems using a modified fitness
function.
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