
Spatial Analysis in Geomatics 3
Andreas Redecker, Jaroslav Burian, Nicolai Moos,
and Karel Macků

Abstract

For processing geodata there are many different
approaches of which all of them require their
own specific input data and parameters to gen-
erate an outcome that suits the respective case
of application. This chapter introduces the most
common analyses that are conducted using a
GIS. From basic tools like buffering certain
vector geometries or merging operations of
two different datasets to interpolating area
wide raster datasets out of point data there is a
huge variety of different toolsets that can be
applied when using geodata. To understand
why and how these toolsets are utilised, how
they are parametrized and which other things
are important to make proper use of all the
different possibilities these toolsets are
providing, this chapter sums up the analyses
in reasoned groups and illustrates the many
different approaches of spatial analyses through
proper examples and depictions.
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3.1 Simple Spatial Analysis
(by Andreas Redecker)

This sub-chapter gives an overview of fundamen-
tal GIS methods for performing basic spatial anal-
ysis with feature data. Nevertheless, depending
on the data involved and the workflow
incorporating these methods, they can deliver
highly valuable output. The process of
manipulating geodata is called geoprocessing.
To automate workflows all operators that are
involved in an analysis can be combined with a
geoprocessing model.

3.1.1 Selections

In many cases, not all features of a feature class
are supposed to take part in an analysis. The
selection of the desired objects can be performed
based on the attributes of the features or
incorporating their spatial characteristics.
Depending on the GIS used, these two different
methods can be applied successively or in one
process.

3.1.1.1 Select by Attribute
This method is like selecting datasets in a data-
base using a so-called WHERE-clause of the very
common Structured Query Language (SQL).
“The WHERE clause is used to extract only
those records that fulfill a specified condition”
(w3schools.com 2018) according to the feature’s
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properties stored in the attribute table of a feature
class (Fig. 3.1).

3.1.1.2 Linking Tabular Data
If the necessary properties for an attribute-based
selection are not held in the attribute table of the
feature class itself, they can be linked to it from
external tabular data. For this, both tables need to
contain a field (column) with matching entries.
These must uniquely identify a feature in the
attribute table as well as its corresponding data
in the table to be linked.

3.1.1.3 Select by Location
The spatial approach for selecting features needs
a second feature class whose features locations or
extents determine which features of the original
feature class will be selected. For this, the desired
spatial relationship (e.g. intersect, contain, within
a distance, etc.) and distance (optional) need to be
specified (Fig. 3.2).

3.1.2 Single Feature Class Operations

To prepare features for further analysis or to bet-
ter visualise results, two major operations are
available to change the structure of single feature
classes.

3.1.2.1 Buffer
A Buffer is a proximity function, describing an
equidistant line around a feature. Therefore, the
resulting geometry type of a buffer operation
always is a polygon – no matter if the input was
a point, line or polygon-type feature class. The
distance value for the construction of buffers
around the features in a feature class is either
defined by a single value or derived from an
individual property in the attribute table for
every single feature (Fig. 3.3).

3.1.2.2 Dissolve
The Dissolve operation consolidates the features
in a feature class. Based on similar values in a
specified attribute field it merges the geometries

(if no attribute is specified, all features will be
merged). With some dissolve operators at the
same time, other attributes of the features merged
get aggregated by previously specified statistical
functions (mean, sum, min, max, count, etc.)
(Fig. 3.4).

Fig. 3.1 Example of an attribute-based selection.
(Source: Authors)

Fig. 3.2 Location-based selection methods. (Source:
Authors)
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3.1.3 Overlay Operations

These operations combine two or more feature
classes to gain new geo-datasets incorporating
the extent of the features involved.

3.1.3.1 Clip
The clip-function creates a subset of features by
cutting the features of one feature class by the
polygon-features in another feature class. Only
those parts of the features in the input layer that
overlap with the polygons of the clipping layer
will end up in the resulting feature class. It is often
used to reduce the extent of a geo-dataset to that
of the study area (area of interest, AOI)
represented by a polygon feature. The attributes
of the remaining features will not be changed
(Fig. 3.5).

3.1.3.2 Difference
The difference-function also cuts the features of
one feature class by the polygon features in
another feature class. Only those parts of the
features in the input layer that do not overlap
with the polygons of the cut feature will end up

in the resulting feature class. The attributes of the
remaining features will not be changed (Fig. 3.6).

3.1.3.3 Union
This operator combines the polygon features of
two or more feature classes. It does not create

Fig. 3.3 Buffers with point-, line- and polygon-features.
(Source: Authors)

Fig. 3.4 Schematic example of a simple dissolve opera-
tion. (Source: Authors)

Fig. 3.5 Schematic example of a clip operation. (Source:
Authors)
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overlapping features. Instead, it splits overlapping
parts of features to subarea features and assigns
the attributes of all involved objects to the new
feature.

This spatial operation compares to the logical
disjunction (OR) (Fig. 3.7).

3.1.3.4 Intersect
This operator combines the polygon features
of two or more feature classes. Only those
parts that are covered by a feature in every
contributing feature class will be written to the
result. The function does not create overlapping
features. Instead, it clips the overlapping areas
and assigns the attributes of all involved objects
to the new feature. This spatial operation
compares to the logical conjunction (AND)
(Fig. 3.8).

3.1.3.5 Symmetrical Difference
The result of this function only contains those
areas of the input features, that do not overlap.
Hence it gives the same result as a union opera-
tion minus the result of an intersect.

This spatial operation compares to the logical
exclusive disjunction (XOR) (Fig. 3.9).

3.2 Raster Analysis (by Jaroslav
Burian)

Raster analysis (as part of spatial analysis) refers
to the analytical operations with raster data. Map
algebra (mathematical operations with rasters) is

Fig. 3.6 Schematic example of a difference operation.
(Source: Authors)

Fig. 3.7 Schematic example of a union operation.
(Source: Authors)

Fig. 3.8 Schematic example of an intersect operation.
(Source: Authors)
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used to processing this data. There exist many
raster analysis options in GIS like hydrologic
analysis, multi-criteria analysis, terrain analysis,
surface modelling, surface interpolation, suitabil-
ity modelling, statistical analysis, and image clas-
sification (processing of remote sensing data).
Most of the application fields cover environmen-
tal issues (e.g. climatic change, weather
forecasting, flood modelling) but there are
also some focused on economic aspects
(e.g. modelling of renewable energy potential,
land suitability modelling, cost-distance analysis
and many others).

3.2.1 Raster Data

As mentioned in Chap. 1, vector and raster data
models are two main ways for geographic data
representation. In a raster representation space is
divided into an array of rectangular (usually
square) cells (pixels). All geographic variation is
then expressed by assigning properties or
attributes to these pixels (Longley et al. 1999).
The most significant characteristics of the raster is
its spatial resolution that can be expressed as the
length of a cell side as measured on the ground.
As shown in Fig. 3.10, cell size can vary from

centimetres (some aerial images) to kilometres
(satellite images). The spatial resolution is a key
characteristic that influences the quality and detail
of any raster analysis. Higher spatial resolution
leads to higher detail but also increases needed
storage capacity and computational time.

3.2.2 Map Algebra

Mathematical operations that can be performed
with rasters are referred to as raster or map alge-
bra. Map algebra (also known as cartographic
modelling) was defined by Dana Tomlin (Tomlin
and Berry 1979; Tomlin 1994) as the informal
computational language, that is the basis for raster
data processing. Simply said, map algebra is the
math applied to raster data. To formalise that,
Tomlin defined raster operators and raster
functions. Map algebra can be represented by
arithmetic or simple analytical operations that
are performed with one or more input raster layers
(grids). In most software packages, the set of
these features is referred to as a map or raster
calculator (sometimes grid analysis) (Fig. 3.11).

3.2.3 Raster Operators

As part of the map algebra, operators and
functions of mathematical language are used for
data processing. Operators perform mathematical
calculations with one or more raster layers. The
basic type of operators are arithmetic operators
(+, �, �, /). It is possible to add, subtract, multi-
ply, divide, or perform the same single layer
operations. In addition to arithmetic operators,
there are Boolean operators (true, false), rela-
tional (greater than, smaller than or equal to),
statistical (minimum, maximum, average and
median), trigonometric (sine, cosine, tangent, arc-
sine), exponential and logarithmic.

3.2.4 Raster Functions

Tomlin (1994) classifies all GIS transformations
of rasters into four basic classes, and it is used in
several raster-centric GISs as the basis for their

Fig. 3.9 Schematic example of a symmetrical difference
operation. (Source: Authors)

3 Spatial Analysis in Geomatics 69

https://doi.org/10.1007/978-3-030-26626-4_1


analysis languages. Depending on whether the
functions work with only one raster cell or
more, they are divided into local, focal, zonal,
and global. Map algebra functions follow some
rules (spatial resolution, the same coordinate sys-
tem, mathematical operators) to combine all of its
components.

3.2.4.1 Local
Local functions are always performed with one
specific raster cell but in the entire grid. Using
these functions, a new raster cell value is calcu-
lated from the values in one or more information
layers. An example of a local function may be a
simple combination of two raster layers (e.g. the
combination of flood risk and earthquake risk) or
multiplication of one raster layer by a specific
value (e.g. prediction of the average temperature)
(Fig. 3.12).

3.2.4.2 Focal
For focal functions, as with local functions, a new
value is determined for each cell separately. How-
ever, it is calculated from the values in the defined
area (neighbouring cells). The most common is
the closest cell (3x3), but it can also be a larger
area (square, triangle, circle, 4x4 matrix, etc.). On
the principle of focal functions, the basic method
of slope calculation works. For each cell in the
defined area, the altitude difference is calculated
from which the resulting gradient slope is calcu-
lated. The similar procedure is also used for
aspect calculation and many hydrological
modelling. Another example from the economic
field is modelling of the city growth that uses
cellular automata based on focal functions
(Fig. 3.13).

Fig. 3.10 Different cell size (10, 50, 100, 250, 500, 1000 m). (Source: Authors)
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3.2.4.3 Zonal
Calculation of zonal function is similar to the
focal functions. The main difference is that the
neighbourhood is defined by another raster
(zonal) layer. The new value is calculated for
each cell from the values that belong to the zone
defined by another layer. The focal function is
often applied to the calculation of a certain statis-
tical indicator (average, median, etc.) for irregular
areas defined in another layer (e.g. average alti-
tude for individual forest areas or average high-
way accessibility for city districts) (Fig. 3.14).

3.2.4.4 Global
Global functions are performed from all grid
cells. The result of global functions is usually
several selected cells that meet the set conditions.
They are mostly focused on distance analysis in

the form of friction surfaces. An example of a
global function may be to find the optimal route
in a raster from A to B. For example, each cell in
the entire raster represents the value of the friction
(water, rock, forest – higher value, meadow, field
– smaller value). The entire raster is then analysed
to find the lowest cost path when moving from A
to B (Fig. 3.15).

3.2.5 Selected Raster Analysis

Raster operators and raster functions can be
applied to many different raster datasets to per-
form a wide range of raster analysis. For the
purpose of this book, only a few selected analysis
are described.

Fig. 3.11 Raster calculator in QGIS software. (Source: Authors)
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3.2.5.1 Resampling
To perform any raster analysis, input raster layers
must have the same spatial resolution and coordi-
nate system. Simply said, pixels (cell centres) have
to match each other. To manage that several
resampling methods are used. It means that one of
the input rasters is resampled to the same resolution
as another input layer. Original raster values are
recalculated to the new ones based on nearest

Fig. 3.12 Scheme of local function. (Source: Authors)

Fig. 3.13 Scheme of focal function. (Source: Authors)

Fig. 3.14 Scheme of zonal function. (Source: Authors)

Fig. 3.15 Scheme of global function. (Source: Authors)
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neighbourhood method (or other methods like
bilinear, cubic convolution or majority) (Fig. 3.16).

3.2.5.2 Reclassification
One of the most common simple analysis is the
reclassification. Reclassification is the process of
reassigning a value, a range of values, or a list of
values in a raster to new output values. In the case
of continuous data (e.g. elevation, temperatures)
reclassification creates a new raster with discrete
values (several elevation zones – lowland, high-
land, etc.; or temperature zones). In the case of
categorical data (e.g. 20 categories of land-use),
reclassification creates a new raster with new

discrete values (e.g. only 5 categories of land-
use). Reclassification is a key process when you
need to combine different data using a common
value scale (Fig. 3.17).

3.2.5.3 Surface Analysis
Many raster analysis deal with the surfaces.
Surfaces represent phenomena that have values
at every point across their extent. Surfaces are
derived from a limited set of sample values
(e.g. elevation points, meteorological stations).
A typical surface represents elevation, tempera-
ture, precipitation and many other continuous
phenomena’s. Surfaces can be represented by

Fig. 3.16 Example of resampling from 100 to 1000 m. (Source: Authors)

Fig. 3.17 Example of reclassification of elevation. (Source: Authors)
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contour lines, points or TINs (triangulated irregu-
lar networks); however most surface analysis in
GIS is done on raster data.

Spatial Interpolation
There exist several ways to create surfaces. Spa-
tial interpolation is the most common way to do
it. Interpolation creates a continuous surface from
discrete samples with measured values (point
layer mostly). There exist several interpolation
methods with a variety of parameters that influ-
ence the resulting surface. Each method is suit-
able for different data set (different phenomena
with different spatial distribution). The most com-
mon interpolation methods are kriging, natural
neighbours, spline and IDW (inverse distance
weighting). Figure 3.18 shows different surfaces
using the same input point elevation data.

The surface analysis involves several kinds of
processing, including extracting new surfaces
from existing surfaces, reclassifying surfaces,
and combining surfaces (ESRI 2018a). The most
common surface analysis (slope, aspect,
hillshade, viewshed and watershed) are applied
to the elevation data (terrain surfaces – digital
elevation models).

3.2.5.4 Slope
The slope represents the rate of maximum change
in z-value (elevation) from each cell. The slope
is calculated as the maximum rate of change
in values between each cell and its neighbours.
The neighbourhood can be defined by 4 or
9 neighbouring cells, and there exist several
methods for slope calculation. The most common
method uses 3� 3 cell neighbourhood. The slope

Fig. 3.18 Example of different interpolation methods. (Source: Authors)
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may be expressed as either degree (e.g., 45�) or
percent (e.g., 50%). Information about slope can
be used for location analysis in urban planning to
find suitable places for new development
(Fig. 3.19).

3.2.5.5 Aspect
The aspect identifies the orientation or direction
of slope. Aspect is the down-slope direction of a
cell to its neighbours. The cell values in an aspect
grid are compass directions ranging from 0 to
360. North is 0, and in a clockwise direction,
90 is east, 180 is south, and 270 is west. Input
grid cells that have 0 slope (flat areas) are

assigned an aspect value of �1 (Albrecht 2005).
Similarly, to slope analysis, aspect can be used for
suitability and location analysis too (Fig. 3.20).

3.2.5.6 Hillshade (Illumination)
Hillshading is a technique used to create a realis-
tic view (shades) of terrain by creating a three-
dimensional surface from a two-dimensional dis-
play of it. Hillshading creates a hypothetical illu-
mination of a surface by setting a position for a
light source and calculating an illumination value
for each cell based on the cell’s relative orienta-
tion to the light or based on the slope and aspect
of the cell (Albrecht 2005). Hillshades are often

Fig. 3.19 Example of slope. (Source: Authors)
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used to increase the quality and readability of
maps (Fig. 3.21).

3.2.5.7 Viewshed (Visibility Analysis)
The viewshed analysis identifies the cells in an
input raster that can be seen from one or more
observation points or lines. Each cell in the output
raster receives a value that indicates how many
observer points can see the location (Albrecht
2005). This raster analysis has a wide range of
usage and applications. It can be used to deter-
mine the aesthetic impact of new city develop-
ment (e.g. new houses), or for the placement of

communications towers (if the direct visibility is
needed) or optimal placement of a new lookout
tower (Fig. 3.22).

3.2.5.8 Cost Distance Analysis
(Least-Cost Path)

The cost distance analysis elaborates movement
over continuous space, in which the cost of
moving through any location is variable. Cost
surface represents some factor or combination of
factors that affect travel across an area (e.g. high
values for steep terrain, low values for flat areas).
In the second step, the least-cost path analysis

Fig. 3.20 Example of aspect. (Source: Authors)
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uses the cost-weighted distance and direction
surfaces for an area to determine a cost-effective
route between a source and a destination. This can
be used e.g. for the planning of new highways to
find the cheapest solution (Fig. 3.23).

3.2.5.9 Solar Radiation (Insolation)
Analysis

The solar radiation analysis enables to calculate
the amount of the solar energy over a geographic
area for specific periods. It accounts for atmo-
spheric effects, site latitude and elevation, steep-
ness (slope) and compass direction (aspect), daily

and seasonal shifts of the sun angle, and effects
of shadows cast by surrounding topography
(ESRI 2018a). Information about the amount of
insolation is helpful for application in many
fields, such as civil engineering, economy or agri-
culture research. It may be useful in localisation
of a new site for a ski resort, wine yard or solar
panels (Fig. 3.24).

3.2.5.10 Multi-Criteria Analysis
Multi-criteria analysis (MCA) is a method used to
consider many different criteria when making a
decision. In GIS, MCA is represented by overlay

Fig. 3.21 Example of hillshade. (Source: Authors)
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analysis (weighted overlay) that overlays several
rasters using a common measurement scale and
weights each according to its importance. In this
case, each criterion (or map layer) is brought to a
common scale (reclassified) to simplify the pro-
cess of combining the layers. Spatial MCA is
used for decisions with a geographical factor
(suitability analysis, location analysis), where
multiple factors need to be considered (e.g. land-
use, distances to public transportation, shops
accessibility, park accessibility, etc.). In
Fig. 3.25, you can see an example of multi-
criteria analysis, that combines environmental

(green), social (red), and economic suitability
(blue) to obtain total land suitability for new
housing development (dark green).

3.3 Network Analysis (by Nicolai
Moos)

3.3.1 Introduction

Most people are familiar with using a navigation
system, which means that they have at least once
processed a basic network analysis by looking for

Fig. 3.22 Example of viewshed analysis. (Source: Authors)
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the shortest path or fastest route to a different
location from their own. Since GIS-Software is
a lot more sophisticated than a common naviga-
tion system and consequently offers many more
possibilities, this chapter will characterize the
fundamental functions and approaches of net-
work analyses in GIS.

When dealing with network analysis tools and
functions it is necessary to prepare a suitable spatial
network in form of a network dataset which is able
to perform all functions that are included in a
network analysis (DeMers 2008). Network datasets
typically consist of line features that stand for the
routes of motion in the network, enhanced with
further features and premises to ensure proper

usage (ESRI 2018b). Regular line features are gen-
erally not related to each other and have no or only
a few connectivity rules. This means for instance if
two different lines are intersecting each other, none
of them is aware of it, what makes the dataset
restrictive as you cannot turn from one to another.
To make sure that the network recognizes these
crossings as such, it is necessary to transfer the
network into a new one that has nodes which
allow a turn from one edge to another, except for
over- or underpass lines (e.g. tunnels, bridges, etc.),
where this intentionally should not be possible.
Basically, it is necessary to decide whether the
network dataset should have an end point or any
vertex connectivity (see Fig. 3.26).

Fig. 3.23 Example of cost distance analysis. (Source: Authors)
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Furthermore, a working network dataset needs
information on directions linked to each street
segment as there are one-way streets as well as
streets that can be driven on in both directions. If
an outcome of the analysis should deal with a
time or street capacity component these are also
figures that have to be included as impedances
constructing a network dataset (Chang 2010).

Once the network dataset is built up, there are
several different opportunities of calculations in a
network analysis.

3.3.2 Optimal Routes

The most basic function is the calculation of an
optimal route from point A to point B and any
number of intermediate stops, while the order of
these stops is determined by the user and not the
tool. This route can be either focusing on the
shortest distance or the fastest route, depending on
the needs of the respective user (Fig. 3.27). Rele-
vant factors for this calculation can be the existence
of one-way streets, barriers like construction sites

Fig. 3.24 Example of solar radiation intensity. (Source: Authors)
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or other obstacles, prohibited turns or other
restrictions that influence the way the route will
be computed (ESRI 2018b). All the different
factors can be parametrized before the calculation
and adjusted afterwards, as the result is only a
virtual and therefore temporary layer in the map

that can be permanently exported if necessary.
Additionally to the line feature of the route, the
user can generate driving directions containing spe-
cific information about the route, e.g. how long to
stay on a certain street and when turn to another.

Fig. 3.25 Example of multi-criteria analysis. (Source: Authors)

Fig. 3.26 Line Feature input with nodes and edges and different output connectivities for a network dataset. (Source:
Authors)
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3.3.3 Traveling Salesman Problem

The traveling salesman problem is an issue that is
not only present in classical spatial analyses, but
also in various other fields, like e.g. logistics or
designing products that contain several different
spots which need to be connected in a specific
chronological order. The most relevant aspect in
this network analysis is the efficiency of a route
no matter if it is a real person that is travelling or
any other subject that is moving between several
different locations (Curtin 2007).

The starting situation is a given amount of
different locations in a network and a person or
subject that has to visit each of these locations in a
certain order. That order has to be the most effi-
cient one regarding distance, required time or
costs (see Fig. 3.28). Depending on how these

different factors are weighted, the routes can
vary significantly what makes choosing the right
parameters essential for getting a proper result.

3.3.4 Service Areas

If there is a location in a network dataset and it is
desirable to know for instance how far one can get
with a car in a determined time range or how long
it will last to reach a certain distance from that
starting point, then a service area analysis is a
reasonable approach. All that has at least to be
parametrized are the different breaks in terms of
certain time ranges or distances that define the
borders between the different areas (see
Fig. 3.29). These analyses could for example
help to find a suitable location for a new hospital

Fig. 3.27 Optimal
Route from location
1 to location 2. (Source:
Authors)
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as their output is the information about the size of
an area (and the number of inhabitants) that is
covered by e.g. an ambulance within two, four or
10 min during a specific time of the day.

3.3.5 Location-Allocation Analysis

How can we save money for transportation?
Where should we place a new facility? How big

is the potential area that is covered by the store?
Are stores reachable for all customers in a certain
amount of time? The location-allocation analysis
has several approaches like minimizing
impedances, number of facilities or maximize
area coverage, accessibility or market shares
(Chang 2010). It therefore combines the different
methods of a network analysis. Each of these
tasks implies the preparation of an analysis layer

Fig. 3.28 Fastest Route to stop once at every location, order calculated by the tool. (Source: Authors)

Fig. 3.29 Locations of hotels in blue, service areas for accessibility from five minutes (darkest blue) to 15 minutes
(lightest blue). (Source: Authors)
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that can calculate the optimal location for the
particular case of application.

Necessary inputs for this layer are a network
dataset as well as facility locations and demand
points. The facilities are split up into candidate
facilities that represent the potential location of a
new facility, competitor facilities that mark the
existing sites of present competitors and required
facilities that represent existing sites of say one’s
own organization. Demand points are locations
that represent the different factors that determine
the grade of suitability for a new candidate facil-
ity. These can be centroids of districts or other
administrative units as well as different kinds of
demand profiles like accumulation of students,
families or workers of a certain business. The
demand points contain information like income,
age, social status, etc.

As there are too many possible cases of
application, the maximize attendance approach
as the most frequently used one is presented
in this chapter. In this example the target is to
detect the locations that would generate the
most efficient business (maximized attendance)
for a retail chain, assuming that the customers
rather frequent stores that are close to dense
population centers and don’t want to travel for

more than 5 min. Once everything is set up,
the generated output layer shows the detected
site(s) connected with lines to the most valuable
demand points (number of population) that
determine the chosen target classes (see
Fig. 3.30).

3.3.6 Origin-Destination Matrices

For the creation of an origin-destination
(OD) matrix it is essential to set a certain amount
of starting point features as well as a certain
amount of target point features that are all located
within the network dataset. The analysis settings
can vary between different impedances, barriers in
the network, a certain point of time and other
parameters that influence the result concerning
the properties of the network dataset (Curtin 2007).

The result layer shows the shortest routes and
directions from all starting point features to all
target point features that are within a determined
range of distance or time (see Fig. 3.31). This
can be used e. g. for creating a new model of
pedestrian movements or checking the suitability
of new sites within a network dataset.

Fig. 3.30 Location-Allocation Analysis result with lines showing the connection to valuable and affecting demand
points. (Source: Authors)
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3.4 Spatial Statistics (by Karel
Macků)

In the context of the Tobler’s first law of
geography saying “Everything is related to every-
thing else, but near things are more related than
distant things”, spatial statistics is a set of explor-
atory techniques for describing and modelling
spatial distributions, patterns, processes and
relationships. This group of analyses is necessary
for a deeper understanding of spatial data,
which is provided with the use of statistical
methods. In this chapter, the most frequently
used methods of spatial statistics are briefly
introduced.

Spatial statistics is a subcategory of spatial
data analysis which is closely linked to mathe-
matical statistics. Spatial statistics is a set of
exploratory techniques for describing and
modelling spatial distributions, patterns, pro-
cesses and relationships (Bennett et al. 2017).
According to Haining (2003) some of the spatial
analyses include mathematical modelling where
model outcomes are dependent on the spatial
interaction between objects in the model, or spa-
tial relationships of the geographical positioning
of objects within the model. This statement
represents the difference between simple spatial

analyses and more advanced methods that
approach the tasks using mathematical and statis-
tical apparatus. Question is why any events hap-
pen on their location and not elsewhere? Is there
any association with the environment? Are the
events spread or clustered in any area? With
proper data, these types of questions can be
answered with spatial statistics.

Spatial statistics methods are based on the
assumption that elements that are close to each
other are also more closely related. A direct link
to Tobler’s first law of geography can be observed
here: “Everything is related to everything else, but
near things are more related than distant things”
(Tobler 1970, p. 236). Spatial statistics can also be
viewed as a complementary tool to spatial data
analysis – it offers a mathematical apparatus and
methods for evaluating spatial information, on the
other hand, stands geography or other spatial sci-
ence, which formulates a hypothesis or identifies
the key parameters of these spatial data (Getis
2005). In the search for a high degree of certainty,
the statistical approach is always recommended.

There should be no confusion between the
terms spatial statistics and geostatistics –

geostatistics is one of the spatial statistics
sub-disciplines and has emerged as a tool for a
probability prediction of the distribution of ore

Fig. 3.31 ODMatrix for accessibility from certain locations (blue circle) to hotels (blue square) with needed amount of
travel time (in minutes). (Source: Authors)
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deposits in the mining industry (Longley et al.
2010).

Spatial statistics include methods based on
stochastic (i.e. random) nature and pattern of phe-
nomena. These tasks can be divided into descrip-
tive (producing essential information about a set
of elements) and interference – analysis of
patterns and behaviour of spatial data. This type
of analyses is the subject of this chapter.

3.4.1 Pattern Analysis

One of the frequently asked questions in the
advanced spatial analysis regarding the spatial
distribution is the question whether elements are
in a random structure or there is a pattern in their
behaviour. In particular, it is essential whether the
presence of one value causes an increase or
decrease in the probability of occurrence of
another value in its vicinity (Longley et al.
2010). By their deployment in space, the elements
can create one of the following structure:

– Random structure
– Cluster structure
– Regular/scattered structure

At the beginning, the term ‚cluster‘should be
clarified. Clustering is a global property of the
spatial pattern in a dataset, measured by a single
statistics (Anselin 2005). Then cluster is a group
of features, whose value and/or its locations are
closer together than they would be by random.
The purpose of pattern analyses is to determine
whether the spatial behaviour of the geographic
elements follows one of the above-mentioned
options and if this behaviour is somehow statisti-
cally demonstrable. Actual spatial distribution is
therefore tested against one of these options.
Confirming the existence of significant clusters
of similar values/clusters of points near one
another is one of the most common tasks. Such
a task could be based only on a visual analysis of
spatially visualised data; however, the use of spa-
tial statistics underlies this estimate by numerical
tests and makes it more reliable. The resulting
finding helps to understand the behaviour of the
observed phenomenon and to support the

hypotheses that explain this behaviour. The fol-
lowing lines will describe selected spatial pattern
analysis.

3.4.2 Point Patterns

3.4.2.1 Ripley’s K Function
The K function is one of the methods for assessing
the randomness of the distribution of the set of
point data. It allows seeing if the elements appear
to be dispersed, clustered, or randomly distributed
throughout the area of interest. The basis of this
method is to monitor the occurrence frequency in
a defined space – for example, the area in the
distance d from each point. The K function is
defined as the ratio of the number of occurrence
points in the defined area (grid or defined distance
d ) and the expected density of points per area
unit, how would it be within the random distribu-
tion of the elements (most often represented by
the homogeneous Poisson process, also known as
complete spatial randomness). This principle
allows identification of deviations from spatially
evenly distributed data (Dixon et al. 2002). If the
number of observed points within a given area is
higher than for a random distribution, the distri-
bution is clustered. If the number is smaller, the
distribution is dispersed (Gillan and Gonzalez).

For an example, data of position of small and
medium enterprises in Olomouc region has been
analyses with K function. In such a data, it is
expected that companies are located in the sites
that means they will be clustered within the city.

The result of point pattern analysis can be
presented as a graph – see Fig. 3.32. The vertical
axis is the K-function value; the horizontal axis is
the searching distance d. The blue line represents
the k value of the random distribution of the
points, and the red line represents the K function
value – the real observed distribution of the points
(the position of companies). If the observed value
is above the random, it means that points are
clustered. If the observed were under the random,
the data would be dispersed. In this case, result
points to strongly clustered data. This supports
the original hypothesis about the location of
enterprises.
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3.4.2.2 Kernel Density
Kernel smoothing methods are used to transform
data from a discrete representation (geolocated
points) into a continuous array. This process is
particularly useful for better interpretation of spa-
tial distinction of variables behaviour. The kernel
density estimate works with localised data, which
are used for the expression of the spatially
smoothed estimate of the local intensity of the
occurrence of objects/events. This local smoothed
intensity can also be understood as the surface of
the risk of occurrence of these objects/events
(INSEE Eurostat 2018). The application on spa-
tial data is based on density estimation, a function
of estimating the values occurrence based on
observed data (Silverman 1986).

Conceptually, a smoothly curved surface is
fitted over each point. The surface value is highest
at the location of the point and diminishes with

increasing distance from the point (ESRI 2018c).
The final surface is created by estimating the
intensity at any point using the appropriate prob-
ability density function (K – kernel function). It is
necessary to determine the area in which the
algorithm will assess the density of the phenome-
non. This sphere – so-called bandwidth, might be
calculated on all input points and median distance
between its centre and all input points. The band-
width parameter essentially determines the degree
of smoothing of the resulting surface. The differ-
ent kernel functions can be used to make the
result of density estimation different. The appli-
cation on the spatial data implemented in ArcMap
software uses the quartic function, which
approximates to the normal distribution.

The resulting surface is represented in the form
of a raster, which can be conveniently visualised
for the purpose of overview of the phenomenon

Fig. 3.32 A graphical output of K function. (Source: Authors)
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and revealing point patterns. The same data
describing location of enterprises in Olomouc
region (as for the K function in previous chapter)
was used for demonstration of Kernel density
function. Figure 3.33 shows the visualisation of
input points and output surface. The bandwidth
was set to five kilometres, with the aim to produce
more smoothen output. The output presents the
probability of enterprise occurrence, this type of
visualisation brings a generalized overview of the
spatial distribution of points in the area of interest.
The aim is not to estimate the correct probability
of occurrence, but rather to get overall impression
about spatial distribution of points. For that rea-
son, a legend for interpretation of result is not
included.

3.4.3 Spatial Autocorrelation

The previous chapter has described how clusters
of point phenomena can be identified based on

their location. A following task can be to identify
clusters based on the location combined with the
value of the observed phenomenon at the same
time. Such an analysis makes possible to evaluate
whether there are spatially closer elements that
have similar values of the observed phenomenon
and form together high or low-value clusters, or
whether the elements in the space are located at
random. In the natural world, we expect some
influence of environment on the monitored phe-
nomenon. For example, analysing a strong eco-
nomic region concerning the GDP per capita, we
naturally assume that the regions in its immediate
neighbourhood will be similar, as the whole area
is characterised by similar conditions. Similarly,
we expect these regions to differ from other, more
remote areas. To support such a claim, an analysis
of spatial autocorrelation can be used.

Spatial autocorrelation is a correlation between
the values of one variable, and it allows to evalu-
ate the degree of similarity of one object with
objects in its neighbourhood and comparison

Fig. 3.33 (a) input point data, (b) result of Kernel density function. (Source: Authors)
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with more remote objects (Cliff and Ord 1973).
First, it is necessary to define relations of the
object with its surrounding objects, which is
provided by the matrices of spatial weights.
Here, the distance of objects enters as a weight
for defining spatial relationships – the autocorre-
lation of neighbouring objects will have more
importance than the autocorrelation of distant
objects. If positive autocorrelation occurs, we
conclude that objects with similar values are spa-
tially located near each other, forming spatial
clusters of similar values. Negative autocorrela-
tion indicates the proximity of different values,
autocorrelation around zero indicate randomity in
the spatial distribution of values.

Autocorrelation can be measured by several
measures – an example of them is the Moran’s
I or Geary’s criterion. Positive index value
indicates a positive autocorrelation, and negative
values represent negative autocorrelation. These
indicators, however, measure autocorrelation
only at the global level, that is the whole area of
interest. If the result of these tests come out posi-
tively, it makes sense to ask how the autocorrela-
tion varies in the space. A local test – LISA
(Local Indicators of Spatial Association) serves
for this task. Since the method of identifying
spatial autocorrelation is based on traditional sta-
tistical methods, the calculation is complemented
by the statistical significance, represented by
p-value. This makes it possible to assess whether
the result obtained is statistically significant
or not.

The initial analysis of autocorrelation reveals
spatial dependence, so it is known that clusters of
high and low values occur in the area of interest.
Local Moran’s I can be visualised to identify
these areas. However, it is still unknown whether
the high value of autocorrelation means clustering
of high or low values. For a deeper understanding
of the phenomenon, it is possible to visualise the
observed variable depending on the average value
in its surroundings – this is presented by Moran’s
plot (Anselin 1996).

Using LISA and Moran’s plot as supporting
tools, all objects can be classified into four groups
corresponding to the quadrants in Moran’s plot.
Spatial clusters showing above-average or below-

average values of a variable in a particular unit
consistent with its surroundings are found in the
graph in the top right (hot spots, high-high) and
left-low (cold spots, low-low) quadrants. This is
evidence of high autocorrelation. On the contrary,
the areas identified in the left upper (LH) or right
lower (HL) quadrants are characterized by the
existence of a low value surrounded by high and
vice versa (Anselin 1995) (Fig. 3.34).

Similar output as provided by LISA is avail-
able also with Getis – Ord G�. The main differ-
ence is that for LISA, the value of the feature
being analysed is not included in that analysis,
only neighbouring values are. Alternatively,
when the local analysis is being done with
Getis-Ord Gi�, the value of each feature is
included in its analysis (Getis and Ord 2010).
The local sum for a feature and its neighbours is
compared proportionally to the sum of all
features; when the local sum is very different
from the expected local sum, and when that dif-
ference is too large to be the result of random
chance, a statistically significant z-score results
(ESRI 2018d).

The output of this indicator is the so-called
z-score for each analysed object. The higher (pos-
itive) the z-score value, the higher the intensity of
clustering of high values in the area (so-called
hotspot), and vice versa – the smaller (negative)
the z-score is, the higher the intensity of cluster-
ing with a cold spot.

An example demonstrating the use of spatial
autocorrelation methods is described in the anal-
ysis of the economically strongest and also the
weakest regions in Europe. The monitored vari-
able is GDP, the spatial unit is NUTS 3 regions.

The GDP is expressed in purchasing power
standard per inhabitant in the year 2015. In
Fig. 3.35a, a choropleth map is used to display
the GDP in regions. By this visualisation, areas
with the highest or lowest values can be defined,
especially the big difference between east and
west are visible. But can be said with certainty
which regions are the strongest and which are the
weakest? In many cases, when the data doesn’t
have a clear pattern, or inappropriate visualisation
is used, it might be a difficult task. For that reason,
spatial autocorrelation is calculated. Figure 3.35b
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shows the distribution of spatial autocorrelation
calculated for the GDP data. Only the shades of
green are statistically significant; darker shade
stands for higher autocorrelations ¼ clusters of
low or high values are present. The final step is
the derivation of cluster type based on the value of
autocorrelation in every region and its
neighbourhood. This can be done by LISA analy-
sis (Fig. 3.35c) or Getis-Ord G� (Fig. 3.35d). See
the difference between this methods caused by the
different approach, how they calculate the mem-
bership to any clusters.

Now user can state that regarding the spatial
distribution of GDP, there is a great cluster of low
values in the eastern European and several small
clusters of high value in the central Europe,
Sweden and UK. In the rest of the area of interest,

the GDP value has a random distribution without
statistically significant patterns.

3.4.4 Geostatistics

As mentioned in the introduction to the chapter,
the term spatial statistics is often confused with
the term geostatistics. In the narrower sense,
geostatistics is used only to define a set of inter-
polation algorithms – algorithms used to estimate
the values of the continuous phenomenon or its
intensity in any location of the controlled area
where no measurements have been made. The
continuous character is typical of environmental
phenomena such as temperature, air pressure or
soil concentration. In the context of economic

Fig. 3.34 Moran’s plot. (Source: Authors)
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Fig. 3.35 Analysis of spatial autocorrelation of GDP in Europe. (Source: Authors)
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data, there would be a lack of applications, so this
topic will not be further discussed.

References

Albrecht, J. (2005). Geographic information science. http://
www.geography.hunter.cuny.edu/~jochen/gtech361/.

Anselin, L. (1995). Local indicators of spatial association –
LISA. Geographical Analysis, 27, 93–115. https://doi.
org/10.1111/j.1538-4632.1995.tb00338.x.

Anselin, L. (1996). The Moran scatterplot as an ESDA tool
to assess local instability in spatial association. In Spa-
tial analytical perspectives on GIS (pp. 111–125).
London: Taylor and Francis.

Anselin, L. (2005). Spatial statistical modeling in a GIS
environment. In D. J. Maguire, M. Batty, &
M. Goodchild (Eds.), GIS, spatial analysis, and
modeling (1st ed.). ESRI Press.

Bennett, L., Vale, F., D’Acosta, J. (2017). Spatial statis-
tics: Simple ways to do more with your data. https://
www.esri.com/arcgis-blog/products/product/analytics/
spatial-statistics-resources/

Chang, K. T. (2010). Introduction to geographic
information systems (5th ed.). New York: McGraw-
Hill.

Cliff A. D., & Ord J. K. (1973). Spatial autocorrelation.
London: Pion Ltd.

Curtin, K. (2007). Network analysis in geographic
information science: Review, assessment, and
projections. In Cartography and geographic informa-
tion science (Vol. 34, pp. 103–111). London: Taylor
and Francis.

DeMers, M. (2008). Fundamentals of geographic infor-
mation systems (4th ed.). Hoboken: Wiley.

Dixon, P. M., El-shaarawi, A. H., & Piegorsch, W. W.
(2002). Ripley’s K function. Encyclopedia of
Environmetrics, 3, 1796–1803.

ESRI. (2018a). ArcGIS Desktop Help. http://desktop.
arcgis.com/en/arcmap/10.3

ESRI. (2018b).What is a network dataset? https://desktop.
arcgis.com/en/arcmap/latest/extensions/network-ana
lyst/what-is-a-network-dataset.htm. Accessed 28 Dec
2018.

ESRI. (2018c). How Kernel density works—Help | ArcGIS
desktop. http://pro.arcgis.com/en/pro-app/tool-refer
ence/spatial-analyst/how-kernel-density-works.htm.
Accessed 22 Nov 2018.

ESRI. (2018d). How hot spot analysis (Getis-Ord Gi�)
works. http://pro.arcgis.com/en/pro-app/tool-reference/
spatial-statistics/h-how-hot-spot-analysis-getis-ord-
gi-spatial-stati.htm. Accessed 23 Oct 2018.

Getis, A. (2005). Spatial statistics. In New developments in
geographical information systems: Principles,
techniques, management and applications (2nd ed.,
pp. 239–252). New York: Wiley.

Getis, A., & Ord, J. K. (2010). The analysis of spatial
association by use of distance statistics. Geographical
Analysis, 24, 189–206. https://doi.org/10.1111/j.1538-
4632.1992.tb00261.x .

Gillan, J., Gonzalez, L. Ripley’s K Function and pair
correlation function. http://wiki.landscapetoolbox.org/
doku.php/spatial_analysis_methods:ripley_s_k_and_
pair_correlation_function. Accessed 22 Oct 2018.

Haining, R. (2003). Spatial data analysis: Theory and
practice. Cambridge: Cambridge University Press.

INSEE Eurostat. (2018). Handbook of spatial analysis.
Longley PA, Goodchild MF, Maguire DJ, Rhind DW

(1999) Geographical information systems: Principles
and technical issues.

Longley, P. A., Goodchild, M., Maguire, D. J., & Rhind,
D. W. (2010). Geographic information: Systems and
science (3rd ed.). Wiley Publishing.

Silverman, B. W. (1986). Density estimation for statistics
and data analysis. Monogr Stat Appl Probab.

Tobler, W. (1970). A computer movie simulating urban
growth in the Detroit region. Economic Geography,
46, 234–240.

Tomlin, D. (1994). Map algebra: One perspective. Land-
scape and Urban Planning, 30, 3–12. https://doi.org/
10.1016/0169-2046(94)90063-9.

Tomlin, D., & Berry, J. K. (1979). A mathematical struc-
ture for cartographic modeling in environmental anal-
ysis. In Proceedings of the 39th symposium of the
American conference on surveying and mapping.

w3schools.com. (2018) Retrieved December 30, 2018,
from, https://www.w3schools.com/sql/sql_where.asp

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

92 A. Redecker et al.

http://www.geography.hunter.cuny.edu/~jochen/gtech361/
http://www.geography.hunter.cuny.edu/~jochen/gtech361/
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://www.esri.com/arcgis-blog/products/product/analytics/spatial-statistics-resources/
https://www.esri.com/arcgis-blog/products/product/analytics/spatial-statistics-resources/
https://www.esri.com/arcgis-blog/products/product/analytics/spatial-statistics-resources/
http://desktop.arcgis.com/en/arcmap/10.3
http://desktop.arcgis.com/en/arcmap/10.3
https://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/what-is-a-network-dataset.htm
https://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/what-is-a-network-dataset.htm
https://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/what-is-a-network-dataset.htm
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
http://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
http://wiki.landscapetoolbox.org/doku.php/spatial_analysis_methods:ripley_s_k_and_pair_correlation_function
http://wiki.landscapetoolbox.org/doku.php/spatial_analysis_methods:ripley_s_k_and_pair_correlation_function
http://wiki.landscapetoolbox.org/doku.php/spatial_analysis_methods:ripley_s_k_and_pair_correlation_function
https://doi.org/10.1016/0169-2046(94)90063-9
https://doi.org/10.1016/0169-2046(94)90063-9
https://www.w3schools.com/sql/sql_where.asp
http://creativecommons.org/licenses/by/4.0/

	Chapter 3: Spatial Analysis in Geomatics
	3.1 Simple Spatial Analysis (by Andreas Redecker)
	3.1.1 Selections
	3.1.1.1 Select by Attribute
	3.1.1.2 Linking Tabular Data
	3.1.1.3 Select by Location

	3.1.2 Single Feature Class Operations
	3.1.2.1 Buffer
	3.1.2.2 Dissolve

	3.1.3 Overlay Operations
	3.1.3.1 Clip
	3.1.3.2 Difference
	3.1.3.3 Union
	3.1.3.4 Intersect
	3.1.3.5 Symmetrical Difference


	3.2 Raster Analysis (by Jaroslav Burian)
	3.2.1 Raster Data
	3.2.2 Map Algebra
	3.2.3 Raster Operators
	3.2.4 Raster Functions
	3.2.4.1 Local
	3.2.4.2 Focal
	3.2.4.3 Zonal
	3.2.4.4 Global

	3.2.5 Selected Raster Analysis
	3.2.5.1 Resampling
	3.2.5.2 Reclassification
	3.2.5.3 Surface Analysis
	3.2.5.4 Slope
	3.2.5.5 Aspect
	3.2.5.6 Hillshade (Illumination)
	3.2.5.7 Viewshed (Visibility Analysis)
	3.2.5.8 Cost Distance Analysis (Least-Cost Path)
	3.2.5.9 Solar Radiation (Insolation) Analysis
	3.2.5.10 Multi-Criteria Analysis


	3.3 Network Analysis (by Nicolai Moos)
	3.3.1 Introduction
	3.3.2 Optimal Routes
	3.3.3 Traveling Salesman Problem
	3.3.4 Service Areas
	3.3.5 Location-Allocation Analysis
	3.3.6 Origin-Destination Matrices

	3.4 Spatial Statistics (by Karel Macku)
	3.4.1 Pattern Analysis
	3.4.2 Point Patterns
	3.4.2.1 Ripley´s K Function
	3.4.2.2 Kernel Density

	3.4.3 Spatial Autocorrelation
	3.4.4 Geostatistics

	References




