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Abstract. Quantifier elimination and its cousin functional synthesis are
fundamental problems in automated reasoning that could be used in
many applications of formal methods. But, effective algorithms are still
elusive. In this paper, we suggest a simple modification to a QBF algo-
rithm to adapt it for quantifier elimination and functional synthesis. We
demonstrate that the approach significantly outperforms previous algo-
rithms for functional synthesis.

1 Introduction

Given a Boolean formula ∃Y. ϕ with free variables X, quantifier elimination
(also called projection) is the problem to find a formula ψ ≡ ∃Y. ϕ that only
contains variables X. Closely related, the functional synthesis problem is to find
a function fy : 2X → B for all y ∈ Y , such that ϕ[Y �→ fy(X)] ≡ ∃Y. ϕ.

Quantifier elimination and functional synthesis are fundamental operations in
automated reasoning, computer-aided design, and verification. Hence, progress
in algorithms for these problems benefits a broad range of applications of for-
mal methods. For example, typical algorithms for reactive synthesis reduce to
computing the safe region of a safety game through repeated quantifier elimi-
nations [1–3] or directly employ functional synthesis [4]. Until today, algorithms
for quantifier elimination often involve (reduced ordered) Binary Decision Dia-
grams (BDDs) [5]. However, BDDs often grow exponentially for applications in
verification, and extracting formulas (or strategies, etc.) from BDDs typically
results in huge expressions. The search for alternatives resulted in CEGAR-style
algorithms [6–10].

In this work, we take look at the closely related field of QBF solving. There
pure CEGAR solving [11–13] on the CNF representation is not competitive any-
more [14], and it has been augmented by preprocessing [15,16], circuit repre-
sentations [17–21], and Incremental Determinization (ID) [22]. It may hence be
fruitful to leverage some of the recent developments of QBF.

The contribution of this work is a simple modification of ID to enable quanti-
fier elimination and functional synthesis. Incremental Determinization (ID) is an
algorithm for solving quantified Boolean formulas of the shape ∀X.∃Y. ϕ, where
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ϕ is a propositional formula in conjunctive normal form (CNF), i.e. 2QBF. It
follows a proof-theoretic approach, very similar to a SAT solver, alternating
between building a model (i.e. Skolem functions for the existential variables Y )
and a refutation proof [23]. This allows ID to provide a model (i.e. a Skolem
function) when it determines that a formula is true, which sets it apart from
other QBF algorithms.

The modification of ID to enable quantifier elimination for a given formula
∃Y. ϕ is very simple: We run ID on the formula as if it was a quantified Boolean
formula ∀X.∃Y. ϕ, where X are the free variables, but add ϕ to the conflict
check within ID. This suppresses the UNSAT result in the ID algorithm and it is
hence forced to terminate with a model (that is, a function), which is guaranteed
to satisfy the functional synthesis requirements. Quantifier elimination is then
only a substitution away.

Our experimental evaluation shows that ID significantly outperforms previ-
ous algorithms for functional synthesis and quantifier elimination.

This paper is structured as follows: We review related work in Sect. 2 and
introduce standard notation in Sect. 3. In Sect. 4 we first review the Incremental
Determinization algorithm before introducing the change necessary to lift it to
functional synthesis. The experimental evaluation is in Sect. 5. We summarize
the current state of the tool CADET in Sect. 6 and conclude the paper in Sect. 7.

2 Related Work

Functional Synthesis. Early works on functional synthesis tried to exploit Craig
interpolation, but did not scale well enough [24]. This was followed by first
attempts to use CEGAR [6], which failed, however, to surpass the performance
of BDDs [7]. More recent works revisited the use of BDDs, e.g. the tools SSyft [25]
and RSynth [26,27]. This motivated the search for alternatives to BDDs [8–10].
At their core, these new algorithms all rely on counter-example guided abstrac-
tion refinement (CEGAR) [28], but they apply it in clever, compositional ways.
However, they still inherit the well-known weaknesses of CEGAR (as, for exam-
ple, discussed in the QBF literature): For the simple formula ϕ =

∧
i<n xi ↔ yi,

where n = |X| = |Y | and xi ∈ X and yi ∈ Y , CEGAR needs to browse through
2n satisfying assignments just to recover that the function we were looking for
is f(x) = x.

The Back-and-Forth algorithm explores stronger abstraction using MaxSAT
solvers as a means to reduce the number of assignments that CEGAR needs
to explore [8]. ParSyn attempts to combat the problem with parallel compute
power and a compositional approach [9]. This compositional approach has later
been refined using a wDNNF decomposition [10].

QBF Certification. Some solvers and preprocessors for QBF have the ability to
not only provide a yes/no answer, but also produce a certificate (i.e. Skolem func-
tions) for their result [13,22,29,30]. While most QBF approaches suffer heavy
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performance penalties when asked to provide a certificate, Incremental Deter-
minization naturally computes Skolem functions that can be extracted easily
from the final state [22].

3 Preliminaries

Boolean formulas over a finite set of variables x ∈ X with domain B = {0,1}
are generated by the following grammar:

ϕ := 0 | 1 | x | ¬ϕ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ

Other logical operations, such as implication, XOR, and equality, are considered
syntactic sugar with the usual definitions.

An assignment x to a set of variables X is a function x : X → B that maps
each variable x ∈ X to either 1 or 0. We denote the space of assignments to
some set of variables X with 2X .

Given formulas ϕ and ϕ′, and a variable x, we denote the substitution of x
by ϕ′ in ϕ as ϕ[x → ϕ′]. We lift substitutions to sets of variables ϕ[X �→ tx]
when tx maps each x ∈ X to a formula ϕ′.

A literal l is either a variable x ∈ X, or its negation ¬x. We use l to denote
the literal that is the logical negation of l. A disjunction of literals (l1 ∨ . . . ∨ ln)
is called a clause and their conjunction (l1 ∧ . . .∧ ln) is called a cube. We denote
the variable of a literal by var(l) and lift the notion to clauses var(l1∨· · ·∨ ln) =
{var(l1), . . . , var(ln)}.

A formula is in conjunctive normal form (CNF), if it is a conjunction of
clauses. Throughout this exposition, we assume that the input formula is given
in CNF. (The output, however, can be a non-CNF formula.) It is trivial to lift the
approach to general Boolean formulas: Given a Boolean formula ϕ over variables
X, the Tseitin transformation provides us a formula ψ with ϕ ≡ ∃Z.ψ, where Z
are fresh variables [31]. Note that eliminating a group of variables X ′ ⊆ X in ϕ
is then the same as eliminating X ′ ∪ Z in ψ.

Resolution is a well-known proof rule that allows us to merge two clauses
as follows. Given two clauses C1 ∨ v and C2 ∨ ¬v, we call C1 ⊗v C2 = C1 ∨ C2

their resolvent with pivot v. The resolution rule states that C1 ∨ v and C2 ∨ ¬v
imply their resolvent. Resolution is refutationally complete for Boolean formulas
in CNF, i.e. given a formula in CNF that is equivalent to false, we can derive
the empty clause using only resolution.

4 Lifting Incremental Determinization

In the sequel, we formally define functional synthesis, review the working prin-
ciple of Incremental Determinization for 2QBF, discuss how the solver state
corresponds to functions, and then introduce the modification to Incremental
Determinization to turn it into an algorithm for functional synthesis. The func-
tional synthesis problem is to find a function fy : 2X → B for all y ∈ Y , such
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that ϕ[Y �→ fy(X)] ≡ ∃Y. ϕ. Functional synthesis is closely related to solving
2QBF: Given a true 2QBF problem ∀X.∃Y. ϕ, any Skolem function that is a
model for the formula is also a solution to the functional synthesis problem for
variable sets X and Y . Only for false 2QBF there is a difference between the
problems: if there is an assignment x to X for which there is no assignment to
Y , the 2QBF cannot be proven with a Skolem function, but the functional syn-
thesis problem still requires us to produce a function f . It is clear that for input
x the f can produce any output. We will exploit this similarity between 2QBF
and functional synthesis in the following to lift the Incremental Determinization
algorithm to functional synthesis.

4.1 Working Principle of Incremental Determinization for 2QBF

ID was originally introduced as an algorithm for 2QBF, the fragment of quanti-
fied Boolean formulas with at most one quantifier alternation. Given a formula
∀X.∃Y. ϕ, ID alternates between constructing a model (i.e. a Skolem function)
to prove the formula correct, and constructing a Q-resolution proof to refute
the formula [32]. During model construction, ID identifies which variables in
Y have unique Skolem functions considering the current set of clauses. When
all variables with unique Skolem functions are identified, ID greedily introduces
additional clauses to reduce the space of possible Skolem functions, such that the
remaining variables may get unique Skolem functions, too. Whenever the model
construction ends up in a dead-end (=conflict), ID switches to constructing a
refutation proof [32] and derives clauses using resolution. As soon as ID found a
clause that prevents the model construction from trying the same partial model
again, it switches back to the model search. Since there are only finitely many
clauses and models, either the model construction or the refutation proof must
eventually finish [22,23].

Example 1. We will use the following formula as a running example:

∀x1, x2.∃y1, y2, y3. (x1 ∨ ¬y1) ∧ (¬x1 ∨ y1) ∧
(y1 ∨ ¬y2) ∧ (¬y1 ∨ ¬x2 ∨ y2) ∧
(¬y1 ∨ y3) ∧ (y2 ∨ ¬y3) ∧ (x2 ∨ ¬y3)

Looking at the first two clauses it is clear that y1 is uniquely determined by x1

and y1’s Skolem function must be fy1(X) = x1. For this step, we intentionally
ignore all clauses of y1 that contain y2 and y3, as they do not yet have a Skolem
function and we have to consider them as undefined. The other clauses containing
y1 will only become relevant when looking for Skolem functions for y2 and y3.

Variables y2 and y3 do not have unique Skolem functions in the formula
above. ID would now greedily add a decision clause, such as (x2 ∨ ¬y2), to also
make the Skolem function for y2 unique. The added clause, plus clauses 3 and 4
in the formula define: fy2(X) = fy1(X) ∧ x2.

This results in the situation that there is no Skolem function for y3: For the
assignment x1 �→ 1, x2 �→ 0, the functions for y1 and y2 assign y1 �→ 1, y2 �→ 0.
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Then clauses 4 and 5 cannot be satisfied both by y3, which means there is a
conflict for this assignment to the universals. During conflict analysis, ID would
now resolve clauses 5 and 6 to obtain clause (¬y1 ∨ y2), and then backtrack to
the point before introducing the decision clause. �
4.2 Representation of Functions

What is particularly interesting about ID is its ability to produce Skolem func-
tions when it has proven a formula correct. Other than previous QBF algorithms,
these Skolem functions are produced without any overhead.

ID avoids costly representations of Skolem functions: It maintains a set D ⊆
Y of variables that have a unique Skolem function, and its state includes a
formula δ characterizing the input-output behavior of the Skolem functions for
variables D. Formula δ satisfies ∀X.∃!D. δ, where ∃!D means that there exists
exactly one assignment to D. We can thus think of δ also as a function fδ

mapping X assignments to D assignments.

Example 2. Back to our running example. After identifying a unique Skolem
function for y1, formula δ consists exactly of the first two clauses of the formula,
(x1 ∨¬y1)∧ (¬x1 ∨y1). After adding the decision clause and identifying a unique
Skolem function for y2, δ consists exactly of the first four clauses and the decision
clause. �
4.3 Conflict Checks in ID

The formulas representing functions have primarily one purpose: to check for the
existence of conflicts. Whenever we attempt to grow the set D by a variable v,
we need to check whether v has a unique Skolem function. This check consists
of two parts; given an arbitrary universal assignment x ∈ 2X ,

(1) is there at most one legal assignment to v, and
(2) is there at least one legal assignment to v?

To formally define this, let us consider the clauses (d1 ∨ · · ·∨dn ∨ l) in ϕ that
contain a literal l of variable v and otherwise only contain literals di of variables
in D and X. We call these the clauses with unique consequence, as they can
be read as implications (¬d1 ∧ · · · ∧ ¬dn ⇒ l), and we call ¬d1 ∧ · · · ∧ ¬dn

the antecedent of that clause. Further, we define Al as the disjunction over all
antecedents of literal l. (Note that Al depends on D and therefore changes as
the state of the solver progresses.)

The two checks from above can now be defined as follows:

(1) ∃X. δ ∧ ¬Av ∧ ¬A¬v

(2) ∃X. δ ∧ Av ∧ A¬v

Checking for case (1) can be efficiently approximated [22], but checking for
case (2) cannot easily be avoided. We thus query a SAT solver with δ∧Av ∧A¬v

to perform a conflict check.
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Example 3. We revisit the conflict described in Example 1. The starting point
is the situation when D = {y1, y2} and δ consists of the first four clauses of
the formula as well as the decision clause (x2 ∨ ¬y2). The antecedents of y3 are
Ay3 = y1 and A¬y3 = ¬y2∨¬x2. It is easy to verify that the universal assignment
x1 �→ 1, x2 �→ 0, y1 �→ 1, y2 �→ 0 satisfies the conflict criterion δ∧Av ∧A¬v. �
4.4 Functional Synthesis

Remember that in the case of functional synthesis for ϕ over sets of variables X
and Y , we search for a function f : 2X → 2Y such that f produces a satisfying
assignment whenever it can, but can produce anything when there is no assign-
ment to Y satisfying the formula. In case there are satisfying assignments to Y
for all X, we can simply run ID as if it was a QBF ∀X.∃. ϕ to obtain a Skolem
function that also satisfies the functional synthesis criterion. In the other case,
that there is an X for which there is no assignment to Y satisfying ϕ, ID for
2QBF would eventually detect a conflict that did not depend on a decision and
return with UNSAT.

In order to lift ID to functional synthesis, we want to ignore universal assign-
ments that have no satisfying assignment to Y . A simple way to suppress these
conflicts is to add ϕ to the conflict check. In order for an assignment to X
to remain a conflict, we must now additionally find an assignment to Y that
demonstrates that the conflict could be prevented by a different decision.

All other parts of ID, including the extraction of functions, remain untouched.
In particular, termination is still guaranteed, as the greedy model construction
either results in a function for all variables in Y or in a conflict, upon which at
least one model is excluded through resolution.

Example 4. For the conflict in our running example, the universal assignment
x1 �→ 1, x2 �→ 0 is excluded in the modified conflict check. Consider the UNSAT
core consisting of clauses 2, 5, and 7 for that universal assignment: propagate
y1 �→ 1 using clause 2; propagate y3 �→ 1 using clause 5; and finally propagate
y3 �→ 0 using clause 7. So, instead of going into conflict analysis and backtrack-
ing, ID for functional synthesis concludes that it has found a function for all
existential variables and terminates.

4.5 Quantifier Elimination

Given a formula ∃Y. ϕ with free variables X, quantifier elimination is the problem
to find a formula ψ ≡ ∃Y. ϕ over variables X only. Hence, given a solution f to
the functional synthesis problem for ϕ, we only have to substitute Y by f in ϕ
to obtain the projected formula.

5 Experimental Evaluation

We implemented the modifications to ID in CADET,1 a competitive 2QBF
solver [22]. In this section, we compare CADET experimentally with existing
1 CADET is available at https://github.com/MarkusRabe/cadet.

https://github.com/MarkusRabe/cadet
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Fig. 1. Log-scale cactus plot comparing the performance over all instances.

algorithms for functional synthesis. Additionally, we implemented a certificate
checker for functional synthesis and for quantifier elimination, to make sure that
the computed functions are correct. The certificate checker only shares the code
for AIGER circuits and the SAT solver (of which we have tried several), but
is completely independent otherwise to reduce the chance of correlated bugs.
The results of CADET have been checked with the proof checker; running times
reported below are excluding the time to check the certificates.

So far, there is no standard benchmark for functional synthesis or quantifier
elimination. Like previous works on functional synthesis, we resort to using the
2QBF benchmark from QBFEVAL’17 [14], and re-interpret them as functional
synthesis problems. The 2QBF benchmark from QBFEVAL’17 is a collection of
384 formulas from various domains, mostly from software verification, program
synthesis, and logical equivalences [33–36].

We compare CADET to the most recent tools on functional synthesis, BaF-
Syn [8] and BFSS [10], the latter of which has been shown to consistently outper-
form the earlier, BDD-based tools SSyft [25] and RSynth [26,27]. We ran CADET
in two configurations: with (CADET+) and without (CADET) its CEGAR mod-
ule [23]. We present the results as a cactus plot, which is obtained by running
each tool on all formulas, sorting the running times for each tool separately. A
point x, y in this plot means that x formulas were solved in less than time y.
Note that the time axis is in log-scale (Fig. 1).

CADET shows a clear edge in performance: it is one to two orders of mag-
nitude faster than its strongest competitor, BFSS, and can solve significantly
more formulas. But despite the clear performance advantage in this aggregate
view, BaFSyn and BFSS can be faster for individual formulas or subfamilies of
QBFEval, as shown in previous works [8,10].
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6 The Current State of CADET

Originally designed as an experimentation platform, CADET has grown to
become a performant and versatile tool for the synthesis of Boolean functions.
It consistently wins awards at the annual QBFEVAL competitions, and is the
only such tool able to prove all its results [14].

CADET reads specifications in the QDIMACS and the QAIGER formats,
and now supports the synthesis of Boolean functions for 2QBF, functional syn-
thesis, and quantifier elimination with the command line options -c [file], -f
[file], and -e [file]. The functions computed by CADET are much smaller
compared to those found by CEGAR-based algorithms [22], and in its default
configuration, CADET double-checks its results before reporting them. This can
be deactivated by the flag --dontverify.

It has also been integrated in py-aiger [37], a Python package for the conve-
nient handling of circuits due to Marcell Vazquez-Chanlatte, which enables us
to easily model and prototype new approaches. For example, we can write:

import a i g e r a n a l y s i s as aa
import a igerbv as bv
x = bv . atom (32 , ’ x ’ ) # Create a 32 b i t v a r i a b l e
y = bv . atom (32 , ’ y ’ )
expr = (x != y)
r e s u l t = aa . e l im ina t e ( expr , [ ’ y ’ ] )
a s s e r t aa . i s e q u a l (x , r e s u l t )

CADET also has an experimental reinforcement learning interface that allows
us to automatically learn decision heuristics with the help of graph neural net-
works. A recent effort shows that there is huge potential in learning better
branching heuristics from scratch [38].

7 Conclusions

In this work, we extended ID with the ability to solve functional synthesis and
quantifier elimination problems. The extension is very simple—we only need
to add the clauses of the original formula to its conflict check. The resulting
algorithm significantly outperforms previous algorithms for functional synthesis.

Acknowledgements. The author wants to thank to Shubham Goel, Shetal Shah, and
Lucas Tabajara for insightful discussions and for their assistance with running their
functional synthesis tools. In particular, I want to express my gratitude to Supratik
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