
Formal Verification of Quantum
Algorithms Using Quantum Hoare Logic

Junyi Liu1,2, Bohua Zhan1,2(B), Shuling Wang1(B), Shenggang Ying1,
Tao Liu1, Yangjia Li1, Mingsheng Ying1,3,4, and Naijun Zhan1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{liujy,bzhan,wangsl,yingsg,liut,yangjia,znj}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 University of Technology Sydney, Sydney, Australia
4 Tsinghua University, Beijing, China

Abstract. We formalize the theory of quantum Hoare logic (QHL)
[TOPLAS 33(6),19], an extension of Hoare logic for reasoning about
quantum programs. In particular, we formalize the syntax and semantics
of quantum programs in Isabelle/HOL, write down the rules of quantum
Hoare logic, and verify the soundness and completeness of the deduc-
tion system for partial correctness of quantum programs. As preliminary
work, we formalize some necessary mathematical background in linear
algebra, and define tensor products of vectors and matrices on quantum
variables. As an application, we verify the correctness of Grover’s search
algorithm. To our best knowledge, this is the first time a Hoare logic for
quantum programs is formalized in an interactive theorem prover, and
used to verify the correctness of a nontrivial quantum algorithm.

1 Introduction

Due to the rapid progress of quantum technology in the recent years, it is
predicted that practical quantum computers can be built within 10–15 years.
Especially during the last 3 years, breakthroughs have been made in quantum
hardware. Programmable superconductor quantum computers and trapped ion
quantum computers have been built in universities and companies [1,3,4,6,23].

In another direction, intensive research on quantum programming has been
conducted in the last decade [16,45,51,53], as surveyed in [27,52]. In particular,
several quantum programming languages have been defined and their compil-
ers have been implemented, including Quipper [31], Scaffold [35], QWire [47],
Microsoft’s LIQUi|〉 [25] and Q# [57], IBM’s OpenQASM [22], Google’s Cirq
[30], ProjectQ [56], Chisel-Q [40], Quil [55] and Q |SI〉 [39]. These research allow
quantum programs to first run on an ideal simulator for testing, and then on
physical devices [5]. For instance, many small quantum algorithms and proto-
cols have already been programmed and run on IBM’s simulators and quantum
computers [1,2].

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11562, pp. 187–207, 2019.
https://doi.org/10.1007/978-3-030-25543-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25543-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-25543-5_12

188 J. Liu et al.

Clearly, simulators can only be used for testing. It shows the correctness of
the program on one or a few inputs, not its correctness under all possible inputs.
Various theories and tools have been developed to formally reason about quan-
tum programs for all inputs on a fixed number of qubits. Equivalence checking
[7,8], termination analysis [38], reachability analysis [64], and invariant gen-
eration [62] can be used to verify the correctness or termination of quantum
programs. Unfortunately, the size of quantum programs on which these tools
are applicable is quite limited. This is because all of these tools still perform
calculations over the entire state space, which for quantum algorithms has size
exponential in the number of qubits. For instance, even on the best supercom-
puters today, simulation of a quantum program is restricted to about 50–60
qubits. Most model-checking algorithms, which need to perform calculations on
operators over the state space, are restricted to 25–30 qubits with the current
computing resources.

Deductive program verification presents a way to solve this state space explo-
sion problem. In deductive verification, we do not attempt to execute the pro-
gram or explore its state space. Rather, we define the semantics of the program
using precise mathematical language, and use mathematical reasoning to prove
the correctness of the program. These proofs are checked on a computer (for
example, in proof assistants such as Coq [15] or Isabelle [44]) to ensure a very
high level of confidence.

To apply deductive reasoning to quantum programs, it is necessary to first
define a precise semantics and proof system. There has already been a lot of work
along these lines [9,20,21,61]. A recent result in this direction is quantum Hoare
logic (QHL) [61]. It extends to sequential quantum programs the Floyd-Hoare-
Naur inductive assertion method for reasoning about correctness of classical
programs. QHL is proved to be (relatively) complete for both partial correctness
and total correctness of quantum programs.

In this paper, we formalize the theory of quantum Hoare logic in
Isabelle/HOL, and use it to verify a non-trivial quantum algorithm – Grover’s
search algorithm1. In more detail, the contributions of this paper are as follows.

1. We formally prove the main results of quantum Hoare logic in Isabelle/HOL.
That is, we write down the syntax and semantics of quantum programs, spec-
ify the basic Hoare triples, and prove the soundness and completeness of the
resulting deduction system (for partial correctness of quantum programs). To
our best knowledge, this is the first formalization of a Hoare logic for quantum
programs in an interactive theorem prover.

2. As an application of the above formalization, we verify the correctness of
Grover’s search algorithm. In particular, we prove that the algorithm always
succeeds on the (infinite) class of inputs where the expected probability of
success is 1.

3. As preparation for the above, we extend Isabelle/HOL’s library for linear
algebra. Based on existing work [13,58], we formalize many further results in
linear algebra for complex matrices, in particular positivity and the Löwner

1 Available online at https://www.isa-afp.org/entries/QHLProver.html.

https://www.isa-afp.org/entries/QHLProver.html

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 189

order. Another significant part of our work is to define the tensor product
of vectors and matrices, in a way that can be used to extend and combine
operations on quantum variables in a consistent way. Finally, we implement
algorithms to automatically prove identities in linear algebra to ease the for-
malization process.

The organization of the rest of the paper is as follows. Section 2 gives a brief
introduction to quantum Hoare logic. Section 3 describes in detail our formal-
ization of QHL in Isabelle/HOL. Section 4 describes the application to Grover’s
algorithm. Section 5 discusses automation techniques, and gives some idea about
the cost of the formalization. Section 6 reviews some related work. Finally, we
conclude in Sect. 7 with a discussion of future directions of work.

We expect theorem proving techniques will play a crucial role in formal rea-
soning about quantum computing, as they did for classical computing, and we
hope this paper will be one of the first steps in its development.

2 Quantum Hoare Logic

In this section, we briefly recall the basic concepts and results of quantum Hoare
logic (QHL). We only introduce the proof system for partial correctness, since
the one for total correctness is not formalized in our work. In addition, we make
two simplifications compared to the original work: we consider only variables
with finite dimension, and we remove the initialization operation. The complete
version of QHL can be found in [61].

In QHL, the number of quantum variables is pre-set before each run of the
program. Each quantum variable qi has dimension di. The (pure) state of the
quantum variable takes value in a complex vector space of dimension di. The
overall (pure) state takes value in the tensor product of the vector spaces for the
variables, which has dimension d =

∏
di. The mixed state for variable qi (resp.

overall) is given by a di × di (resp. d × d) matrix satisfying certain conditions
(making them partial density operators). The notation q is used to denote some
finite sequence of distinct quantum variables (called a quantum register). We
denote the vector space corresponding to q by Hq.

The syntax of quantum programs is given by the following grammar:

S:: = skip | q := Uq | S1;S2 | measure M [q] : S | while M [q] = 1 do S

where

– In q := Uq, U is a unitary operator on Hq, i.e., U†U = UU† = I, where U† is
the conjugate transpose of U .

– In measure M [q] : S, M = {Mm} is a quantum measurement on Hq, and
S = {Sm} gives quantum programs that will be executed after each possible
outcome of the measurement;

– In while M [q] = 1 do S, M = {M0,M1} is a yes-no measurement on q.

190 J. Liu et al.

Quantum programs can be regarded as quantum extensions of classical while
programs. The skip statement does nothing, which is the same as in the classi-
cal case. The unitary transformation changes the state of q according to U . It is
the counterpart to the assignment operation in classical programming languages.
The sequential composition is similar to its classical counterpart. The measure-
ment statement is the quantum generalisation of the classical case statement
if (�m · bm → Sm) fi. The loop statement is a quantum generalisation of the
classical loop while b do S.

(Skip) {P} skip {P}

(UT) {U†PU} q := Uq {P}

(Seq) {P} S1 {Q} {Q} S2 {R}
{P} S1;S2 {R}

(Mea) {Pm} Sm {Q} for all m
{

m

Mm
†PmMm}measureM [q] : S {Q}

(Loop) {Q} S {M†
0PM0 +M†

1QM1}
{M†

0PM0 +M†
1QM1} whileM [q] = 1 do S {P}

(Order) P P {P } S {Q } Q Q
{P} S {Q}

Fig. 1. Proof system qPD for partial correctness

Formally, the denotational semantics for quantum programs is defined as a
super-operator �S�(·), assigning to each quantum program S a mapping between
partial density operators. As usual, the denotational semantics is defined by
induction on the structure of the quantum program:

1. �skip�(ρ) = ρ.
2. �q := Uq�(ρ) = UρU†.
3. �S1;S2�(ρ) = �S2�(�S1�(ρ)).
4. �(measure M [q] : S)�(ρ) =

∑
m�Sm�(MmρM†

m).
5. �(while M [q] = 1 do S)�(ρ) =

∨∞
n=0�(while M [q] = 1 do S)n�(ρ), where

∨

stands for the least upper bound of partial density operators according to the
Löwner partial order �.

The correctness of a quantum program S is expressed by a quantum extension
of the Hoare triple {P}S{Q}, where the precondition P and the postcondition
Q are matrices satisfying certain conditions for quantum predicates [24]. The
semantics for partial correctness is defined as follows:

|=par {P}S{Q} iff tr(Pρ) ≤ tr(Q�S�(ρ)) + tr(ρ) − tr(�S�(ρ))

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 191

for all partial density operators ρ. Here tr is the trace of a matrix. The semantics
for total correctness is defined similarly:

|=tot {P}S{Q} iff tr(Pρ) ≤ tr(Q�S�(ρ)).

We note that they become the same when the quantum program S is terminating,
i.e. tr(�S�(ρ)) = tr(ρ) for all partial density operators ρ.

The proof system qPD for partial correctness of quantum programs is given
in Fig. 1. The soundness and (relative) completeness of qPD is proved in [61]:

Theorem 1. The proof system qPD is sound and (relative) complete for partial
correctness of quantum programs.

3 Formalization in Isabelle/HOL

In this section, we describe the formalization of quantum Hoare logic in
Isabelle/HOL. Isabelle/HOL [44] is an interactive theorem prover based on
higher-order logic. It provides a flexible language in which one can state and
prove theorems in all areas of mathematics and computer science. The proofs
are checked by the Isabelle kernel according to the rules of higher-order logic,
providing a very high level of confidence in the proofs. A standard application
of Isabelle/HOL is the formalization of program semantics and Hoare logic. See
[43] for a description of the general technique, applied to a very simple classical
programming language.

3.1 Preliminaries in Linear Algebra

Our work is based on the linear algebra library developed by Thiemann and
Yamada in the AFP entry [58]. We also use some results on the construction of
tensor products in another AFP entry by Bentkamp [13].

In these libraries, the type ’a vec of vectors with entries in type ’a is defined
as pairs (n, f), where n is a natural number, and f is a function from natural
numbers to ’a, such that f(i) is undefined when i ≥ n. Likewise, the type ’a mat
of matrices is defined as triples (nr, nc, f), where nr and nc are natural numbers,
and f is a function from pairs of natural numbers to ’a, such that f(i, j) is
undefined when i ≥ nr or j ≥ nc. The terms carrier vec n (resp. carrier mat m
n) represent the set of vectors of length n (resp. matrices of dimension m × n).
In our work, we focus almost exclusively on the case where ’a is the complex
numbers. For this case, existing libraries already define concepts such as the
adjoint of a matrix, and the (complex) inner product between two vectors. We
further define concepts such as Hermitian and unitary matrices, and prove their
basic properties.

A key result in linear algebra that is necessary for our work is the Schur
decomposition theorem. It states that any complex n×n matrix A can be written
in the form QUQ−1, where Q is unitary and U is upper triangular. In particular,
if A is normal (that is, if AA† = A†A), then A is diagonalizable. A version of

192 J. Liu et al.

the Schur decomposition theorem is formalized in [58], showing that any matrix
is similar to an upper-triangular matrix U . However, it does not show that Q
can be made unitary. We complete the proof of the full theorem, following the
outline of the previous proof.

Next, we define the key concept of positive semi-definite matrices (called
positive matrices from now on for simplicity). An n × n matrix A is positive if
v†Av ≥ 0 for any vector v. We formalize the basic theory of positive matrices,
in particular showing that any positive matrix is Hermitian.

Density operators and partial density operators are then defined as follows:

definition density operator A ←→ positive A ∧ trace A = 1
definition partial density operator A ←→ positive A ∧ trace A ≤ 1

Next, the Löwner partial order is defined as a partial order on the type
complex mat as follows:

definition lowner le (infix ≤L 65) where
A ≤L B ←→ dim row A = dim row B ∧ dim col A = dim col B ∧ positive (B − A)

A key result that we formalize states that under the Löwner partial order, any
non-decreasing sequence of partial density operators has a least upper bound,
which is the pointwise limit of the operators when written as n × n matrices.
This is used to define the infinite sum of matrices, necessary for the semantics
of the while loop.

3.2 Syntax and Semantics of Quantum Programs

We now begin with the definition of syntax and semantics of quantum programs.
First, we describe how to model states of a quantum program. Recall that each
quantum program operates on a fixed set of quantum variables qi, where each qi
has dimension di. These information can be recorded in a locale [33] as follows:

locale state sig =
fixes dims :: nat list

The total dimension d is given by (here prod list denotes the product of a
list of natural numbers).

definition d = prod list dims

The (mixed) state of the system is given by a partial density operator with
dimension d × d. Hence, we declare

type synonym state = complex mat

definition density states :: state set where
density states = {ρ ∈ carrier mat d d. partial density operator ρ}

Next, we define the concept of quantum programs. They are declared as an
inductively-defined datatype in Isabelle/HOL, following the grammar given in
Sect. 2.

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 193

datatype com =
SKIP

| Utrans (complex mat)
| Seq com com (;;/ [60, 61] 60)
| Measure nat (nat ⇒ complex mat) (com list)
| While (nat ⇒ complex mat) com

At this stage, we assume that all matrices involved operate on the global state
(that is, all of the quantum variables). We will define commands that operate on a
subset of quantum variables later. Measurement is defined over any finite number
of matrices. Here Measure n f C is a measurement with n options, f i for i < n
are the measurement matrices, and C ! i is the command to be executed when the
measurement yields result i. Likewise, the first argument to While gives measure-
ment matrices, where only the first two values are used.

Next, we define well-formedness and denotation of quantum programs. The
predicate well com :: com ⇒ bool expresses the well-formedness condition. For a
quantum program to be well-formed, all matrices involved should have the right
dimension, the argument to Utrans should be unitary, and the measurements for
Measure and While should satisfy the condition

∑
i M

†
i Mi = In. Denotation is

written as denote :: com ⇒ state ⇒ state, defined as in Sect. 2. Both well com
and denote is defined by induction over the structure of the program. The details
are omitted here.

3.3 Hoare Triples

In this section, we define the concept of Hoare triples, and state what needs to
be proved for soundness and completeness of the deduction system. First, the
concept of quantum predicates is defined as follows:

definition is quantum predicate P ←→ P ∈ carrier mat d d ∧ positive P ∧ P ≤L 1m d

With this, we can give the semantic definition of Hoare triples for partial and
total correctness. These definitions are intended for the case where P and Q are
quantum predicates, and S is a well-formed program. They define what Hoare
triples are valid.

definition hoare total correct (|=t {(1)}/ ()/ {(1)} 50) where
|=t {P} S {Q} ←→ (∀ρ∈density states. trace (P * ρ) ≤ trace (Q * denote S ρ))

definition hoare partial correct (|=p {(1)}/ ()/ {(1)} 50) where
|=p {P} S {Q} ←→ (∀ρ∈density states.

trace (P * ρ) ≤ trace (Q * denote S ρ) + (trace ρ − trace (denote S ρ)))

Next, we define what Hoare triples are provable in the qPD system. A Hoare
triple for partial correctness is provable (written as �p {P} S {Q}) if it can
be derived by combining the rules in Fig. 1. This condition can be defined in
Isabelle/HOL as an inductive predicate. The definition largely parallels the for-
mulae shown in the figure.

194 J. Liu et al.

With these definitions, we can state and prove soundness and completeness of
the Hoare rules for partial correctness. Note that the statement for completeness
is very simple, seemingly without needing to state “relative to the theory of the
field of complex numbers”. This is because we are taking a shallow embedding
for predicates, hence any valid statement on complex numbers, in particular
positivity of matrices, is in principle available for use in the deduction system
(for example, in the assumption to the order rule).

theorem hoare partial sound:
	p {P} S {Q} =⇒ well com S =⇒ |=p {P} S {Q}

theorem hoare partial complete:
|=p {P} S {Q} =⇒ well com S =⇒

is quantum predicate P =⇒ is quantum predicate Q =⇒ 	p {P} S {Q}

The soundness of the Hoare rules is proved by induction on the predicate
�p, showing that each rule is sound with respect to |=p. Completeness is proved
using the concept of weakest-preconditions, following [61].

3.4 Partial States and Tensor Products

So far in our development, all quantum operations act on the entire global state.
However, for the actual applications, we are more interested in operations that
act on only a few of the quantum variables. For this, we need to define an
extension operator, that takes a matrix on the quantum state for a subset of the
variables, and extend it to a matrix on all of the variables. More generally, we
need to define tensor products on vectors and matrices defined over disjoint sets
of variables. These need to satisfy various consistency properties, in particular
commutativity and associativity of the tensor product. Note that directly using
the Kronecker product is not enough, as the matrix to be extended may act
on any (possibly non-adjacent) subset of variables, and we need to distinguish
between all possible cases.

Before presenting the definition, we first review some preliminaries. We make
use of existing work in [13], in particular their encode and decode operations, and
emulate their definitions of matricize and dematricize (used in [13] to convert
between tensors represented as a list and matrices). Given a list of dimensions di,
the encode and decode operations (named digit encode and digit decode) produce
a correspondence between lists of indices ai satisfying ai < di for each i < n,
and a natural number less than

∏
i di. This works in a way similar to finding

the binary representation of a number (in which case all “dimensions” are 2).
List operation nths xs S constructs the subsequence of xs containing only the
elements at indices in the set S .

The locale partial state extends state sig , adding vars for a subset of quantum
variables. Our goal is to define the tensor product of two vectors or matrices over
vars and its complement −vars, respectively.

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 195

locale partial state = state sig +
fixes vars :: nat set

First, dims1 and dims2 are dimensions of variables vars and -vars:

definition dims1 = nths dims vars
definition dims2 = nths dims (−vars)

The operation encode1 (resp. encode2) provides the map from the product
of dims to the product of dims1 (resp. dims2).

definition encode1 i = digit decode dims1 (nths (digit encode dims i) vars)
definition encode2 i = digit decode dims2 (nths (digit encode dims i) (−vars))

With this, tensor products on vectors and matrices are defined as follows
(here d is the product of dims).

definition tensor vec :: ’a vec ⇒ ’a vec ⇒ ’a vec where
tensor vec v1 v2 = Matrix.vec d (λi. v1 $ encode1 i * v2 $ encode2 i)

definition tensor mat :: ’a mat ⇒ ’a mat ⇒ ’a mat where
tensor mat m1 m2 = Matrix.mat d d (λ(i,j).

m1 $$ (encode1 i, encode1 j) * m2 $$ (encode2 i, encode2 j))

We prove the basic properties of tensor vec and tensor mat , including that
they behave correctly with respect to identity, multiplication, adjoint, and trace.

Extension of matrices is a special case of the tensor product, where the matrix
on −vars is the identity (here d2 is the product of dim2).

definition mat extension :: ’a mat ⇒ ’a mat where
mat extension m = tensor mat m (1m d2)

With mat extension, we can define “partial” versions of quantum program
commands Utrans, Measure and While. They take a set of variables q as an
extra parameter, and all matrices involved act on the vector space associated
to q. These commands are named Utrans P , Measure P and While P . They are
usually used in place of the global commands in actual applications.

More generally, we can define the tensor product of vectors and matrices on
any two subsets of quantum variables. For this, we define another locale:

locale partial state2 = state sig +
fixes vars1 :: nat set and vars2 :: nat set
assumes disjoint: vars1 ∩ vars2 = {}

To make use of tensor mat to define tensor product in this more general
setting, we need to find the relative position of variables vars1 within vars1 ∪
vars2 . This is done using ind in set , which counts the position of x within A.

definition ind in set A x = card {i. i ∈ A ∧ i < x}
definition vars1’ = (ind in set (vars1 ∪ vars2)) ‘ vars1

196 J. Liu et al.

Finally, the more general tensor products are defined as follows (note since
we are now outside the partial state locale, we must use qualified names for ten-
sor vec and tensor mat , and supply extra arguments for variables in the locale.
Here dims0 = nths dims (vars1 ∪ vars2) is the total list of dimensions).

definition ptensor vec :: ’a vec ⇒ ’a vec ⇒ ’a vec where
ptensor vec v1 v2 = partial state.tensor vec dims0 vars1’ v1 v2

definition ptensor mat :: ’a mat ⇒ ’a mat ⇒ ’a mat where
ptensor mat m1 m2 = partial state.tensor mat dims0 vars1’ m1 m2

The partial extension pmat extension is defined in a similar way as before.

definition pmat extension :: ’a mat ⇒ ’a mat where
pmat extension m = ptensor mat m (1m d2)

The definitions ptensor vec and ptensor mat satisfy several key consistency
properties. In particular, they satisfy associativity of tensor product. For matri-
ces, this is expressed as follows:

theorem ptensor mat assoc:
v1 ∩ v2 = {} =⇒
(v1 ∪ v2) ∩ v3 = {} =⇒
v1 ∪ v2 ∪ v3 ⊆ {0..<length dims} =⇒
ptensor mat dims (v1 ∪ v2) v3 (ptensor mat dims v1 v2 m1 m2) m3 =
ptensor mat dims v1 (v2 ∪ v3) m1 (ptensor mat dims v2 v3 m2 m3)

Together, these constructions and consistency properties provide a framework
in which one can reason about arbitrary tensor product of vectors and matrices,
defined on mutually disjoint sets of quantum variables.

3.5 Case Study: Products of Hadamard Matrices

In this section, we illustrate the above framework for tensor product of matrices
with an application, to be used in the verification of Grover’s algorithm in the
next section.

In many quantum algorithms, we need to deal with the tensor product of
an arbitrary number of Hadamard matrices. The Hadamard matrix (denoted
hadamard in Isabelle) is given by:

H =
1√
2

[
1 1
1 −1

]

For example, in Grover’s algorithm, we need to apply the Hadamard trans-
form on each of the first n quantum variables, given by vars1 . A single Hadamard
transform on the i’th quantum variable, extended to a matrix acting on the first
n quantum variables, is defined as follows:

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 197

definition hadamard on i :: nat ⇒ complex mat where
hadamard on i i = pmat extension dims {i} (vars1 − {i}) hadamard

The effect of consecutively applying the Hadamard transform on each of the
first n quantum variables is equivalent to multiplying the quantum state by
exH k (n − 1), where exH k is defined as follows.

fun exH k :: nat ⇒ complex mat where
exH k 0 = hadamard on i 0

| exH k (Suc k) = exH k k * hadamard on i (Suc k)

Crucially, this matrix product of extensions of Hadamard matrices must equal
the tensor product of Hadamard matrices. That is, with H k defined as

fun H k :: nat ⇒ complex mat where
H k 0 = hadamard

| H k (Suc k) = ptensor mat dims {0..<Suc k} {Suc k} (H k k) hadamard

we have the theorem

lemma exH eq H: exH k (n − 1) = H k (n − 1)

The proof of this result is by induction, requiring the use of associativity of
tensor product stated above.

4 Verification of Grover’s Algorithm

In this section, we describe our application of the above framework to the veri-
fication of Grover’s quantum search algorithm [32]. Quantum search algorithms
[18,32] concern searching an unordered database for an item satisfying some
given property. This property is usually specified by an oracle. In a database of
N items, where M items satisfy the property, finding an item with the property
requires on average O(N/M) calls to the oracle for classical computers. Grover’s
algorithm reduces this complexity to O(

√
N/M).

The basic idea of Grover’s algorithm is rotation. The algorithm starts from an
initial state/vector. At every step, it rotates towards the target state/vector for
a small angle. As summarised in [18,19,42], it can be mathematically described
by the following equation [42, Eq. (6.12)]:

Gk |ψ0〉 = cos(
2k + 1

2
θ) |α〉 + sin(

2k + 1
2

θ) |β〉 ,

where G represents the operator at each step, |ψ0〉 is the initial state, θ =
2arccos

√
(N − M)/N , |α〉 is the bad state (for items not satisfying the prop-

erty), and |β〉 is the good state (for items satisfying the property). Thus when θ
is very small, i.e., M � N , it costs O(

√
N/M) rounds to reach a target state.

Originally, Grover’s algorithm only resolves the case M = 1 [32]. It is imme-
diately generalized to the case of known M with the same idea and the case of

198 J. Liu et al.

unknown M with some modifications [18]. After that, the idea is generalized to
all invertible quantum processes [19].

The paper [61] uses Grover’s algorithm as the main example illustrating
quantum Hoare logic. We largely follow its approach in this paper. See also [42,
Chapter 6] for a general introduction.

First, we setup a locale for the inputs to the search problem.

locale grover state =
fixes n :: nat and f :: nat ⇒ bool
assumes n: n > 1
and dimM: card {i. i < (2::nat) ˆ n ∧ f i} > 0

card {i. i < (2::nat) ˆ n ∧ f i} < (2::nat) ˆ n

Here n is the number of qubits used to represent the items. That is, we assume
N = 2n items in total. The oracle is represented by the function f , where only
its values on inputs less than 2n are used. The number of items satisfying the
property is given by M = card {i. i < N ∧ f i}.

Next, we setup a locale for Grover’s algorithm.

locale grover state sig = grover state + state sig +
fixes R :: nat and K :: nat
assumes dims def: dims = replicate n 2 @ [K]
assumes R: R = π / (2 * θ) − 1 / 2
assumes K: K > R

As in [61], we assume R = π/2θ − 1/2 is an integer. This implies that the
quantum algorithm succeeds with probability 1. This condition holds, for exam-
ple, for all N,M where N = 4M . Since we did not formalize quantum states with
infinite dimension, we replace the loop counter, which is infinite dimensional in
[61], with a variable of dimension K > R. We also remove the control variable
for the oracle used in [61]. Overall, our quantum state consists of n variables of
dimension 2 for representing the items, and one variable of dimension K for the
loop counter.

We now present the quantum program to be verified. First, the operation
that performs the Hadamard transform on each of the first n variables is defined
by induction as follows.

fun hadamard n :: nat ⇒ com where
hadamard n 0 = SKIP

| hadamard n (Suc i) = hadamard n i ;; Utrans (tensor P (hadamard on i i) (1m K))

Here tensor P denotes the tensor product of a matrix on the first n variables
(of dimension 2n × 2n) and a matrix on the loop variable (of dimension K ×K).
Executing this program is equivalent to multiplying the quantum state corre-
sponding to the first n variables by H⊗n, as shown in Sect. 3.5.

The body of the loop is given by:

definition D :: com where
D = Utrans P vars1 mat O ;;

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 199

hadamard n n ;;
Utrans P vars1 mat Ph ;;
hadamard n n ;;
Utrans P vars2 (mat incr n)

where each of the three matrices mat O , mat Ph and mat incr can be defined
directly.

definition mat O :: complex mat where
mat O = mat N N (λ(i,j). if i = j then (if f i then 1 else −1) else 0)

definition mat Ph :: complex mat where
mat Ph = mat N N (λ(i,j). if i = j then if i = 0 then 1 else −1 else 0)

definition mat incr :: nat ⇒ complex mat where
mat incr n = mat n n (λ(i,j). if i = 0 then (if j = n − 1 then 1 else 0)

else (if i = j + 1 then 1 else 0))

Finally, the Grover’s algorithm is as follows. Since we do not have initializa-
tion, we skip initialization to zero at the beginning and instead assume that the
state begins in the zero state in the precondition.

definition Grover :: com where
Grover = hadamard n n ;;

While P vars2 M0 M1 D ;;
Measure P vars1 N testN (replicate N SKIP)

where the measurements for the while loop and at the end of the algorithm are:

definition M0 = mat K K (λ(i,j). if i = j ∧ i ≥ R then 1 else 0)
definition M1 = mat K K (λ(i,j). if i = j ∧ i < R then 1 else 0)
definition testN k = mat N N (λ(i,j). if i = k ∧ j = k then 1 else 0)

We can now state the final correctness result. Let proj v be the outer product
vv†, and proj k k be |k〉〈k|, where |k〉 is the k’th basis vector on the vector space
corresponding to the loop variable. Let pre and post be given as follows:

definition pre = proj (vec N (λk. if k = 0 then 1 else 0))
definition post = mat N N (λ(i, j). if i = j ∧ f i then 1 else 0)

Then, the (partial) correctness of Grover’s algorithm is specified by the fol-
lowing Hoare triple.

theorem grover partial correct:
|=p {tensor P pre (proj k 0)}

Grover
{tensor P post (1m K)}

We now briefly outline the proof strategy. Following the definition of Grover ,
the proof of the above Hoare triple is divided into three main parts, for the
initialization by Hadamard matrices, for the while loop, and for the measurement
at the end.

200 J. Liu et al.

In each part, assertions are first inserted around commands according to the
Hoare rules to form smaller Hoare triples. In particular, the precondition of the
while loop part is exactly the invariant of the loop. Moreover, it has to be shown
that these assertions satisfy the conditions for being quantum predicates, which
involve computing their dimension, showing positiveness, and being bounded
by the identity matrix under the Löwner order. Then, these Hoare triples are
derived using our deduction system. Before combining them together, we have
to show that the postcondition of each command is equal to the precondition
of the later one. After that, the three main Hoare triples can be obtained by
combining these smaller ones.

After the derivation of the three Hoare triples above, we prove the Löwner
order between the postcondition of each triple and the precondition of the follow-
ing triple. Afterwards, the triples can be combined into the Hoare triple below:

theorem grover partial deduct:
	p {tensor P pre (proj k 0)}

Grover
{tensor P post (1m K)}

Finally, the (partial) correctness of Grover’s algorithm follows from the
soundness of our deduction system.

5 Discussion

Compared to classical programs, reasoning about quantum programs is more
difficult in every respect. Instead of discrete mathematics in the classical case,
even the simplest reasoning about quantum programs involves complex numbers,
unitary and positivity properties of matrices, and the tensor product. Hence, it
is to be expected that formal verification of quantum Hoare logic and quantum
algorithms will take much more effort. In this section, we describe some of the
automation that we built to simplify the manual proof, and give some statistics
concerning the amount of effort involved in the formalization.

5.1 Automatic Proof of Identities in Linear Algebra

During the formalization process, we make extensive use of ring properties of
matrices. These include commutativity and associativity of addition, associativ-
ity of multiplication, and distributivity. Compared to the usual case of numbers,
applying these rules for matrices is more difficult in Isabelle/HOL, since they
involve extra conditions on dimensions of matrices. For example, the rule for
commutativity of addition of matrices is stated as:

lemma comm add mat:
A ∈ carrier mat nr nc =⇒ B ∈ carrier mat nr nc =⇒ A + B = B + A

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 201

These extra conditions make the rules difficult to apply for standard Isabelle
automation. For our work, we implemented our own tactic handling these rules.
In addition to the ring properties, we also frequently need to use the cyclic
property of trace (e.g. tr(ABC) = tr(BCA)), as well as the properties of adjoint
((AB)† = B†A† and A†† = A). For simplicity, we restrict to identities involving
only n × n matrices, where n is a parameter given to the tactic.

The tactic is designed to prove equality between two expressions. It works
by computing the normal form of the expressions – using ring identities and
identities for the adjoint to fully expand the expression into polynomial form.
To handle the trace, the expression tr(A1 · · · An) is normalized to put the Ai

that is the largest according to Isabelle’s internal term order last. All dimension
assumptions are collected and reduced (for example, the assumption A * B ∈
carrier mat n n is reduced to A ∈ carrier mat n n and B ∈ carrier mat n n).

Overall, the resulting tactic is used 80 times in our proofs. Below, we list some
of the more complicated equations resolved by the tactic. The tactic reduces the
goal to dimensional constraints on the atomic matrices (e.g. M ∈ carrier mat n
n and P ∈ carrier mat n n in the first case).

tr(MM†(PP †)) = tr((P †M)(P †M)†)

tr(M0AM†
0) + tr(M1AM†

1) = tr((M†
0M0 + M†

1M1)A)
H†(Ph†(H†Q2H)Ph)H = (HPhH)†Q2(HPhH)

5.2 Statistics

Overall, the formalization consists of about 11,500 lines of Isabelle theories. An
old version of the proof is developed on and off for two years. The current version
is re-developed, using some ideas from the old version. The development of the
new version took about 5 person months. Detailed breakdown of number of lines
for different parts of the proof is given in the following table.

Description Files Number of lines

Preliminaries Complex Matrix, Matrix Limit, Gates 4197

Semantics Quantum Program 1110

Hoare logic Quantum Hoare 1417

Tensor product Partial State 1664

Grover’s algorithm Grover 3184

Total 11572

In particular, with the verification framework in place, the proof of correct-
ness for Grover’s search algorithm takes just over 3000 lines. While this shows
that it is realistic to use the current framework to verify more complicated algo-
rithms such as Shor’s algorithm, it is clear that more automation is needed to
enable verification on a larger scale.

202 J. Liu et al.

6 Related Work

The closest work to our research is Robert Rand’s implementation of Qwire in
Coq [49,50]. Qwire [47] is a language for describing quantum circuits. In this
model, quantum algorithms are implemented by connecting together quantum
gates, each with a fixed number of bit/qubit inputs and outputs. How the gates
are connected is determined by a classical host language, allowing classical con-
trol of quantum computation. The work [49] defines the semantics of Qwire in
Coq, and uses it to verify quantum teleportation, Deutsch’s algorithm, and an
example on multiple coin flips to illustrate applicability to a family of circuits. In
this framework, program verification proceeds directly from the semantics, with-
out defining a Hoare logic. As in our work, it is necessary to solve the problem
of how to define extensions of an operation on a few qubits to the global state.
The approach taken in [49] is to use the usual Kronecker product, augmented
either by the use of swaps between qubits, or by inserting identity matrices at
strategic positions in the Kronecker product.

There are two main differences between [49] and our work. First, quantum
algorithms are expressed using quantum circuits in [49], while we use quantum
programs with while loops. Models based on quantum circuits have the advan-
tage of being concrete, and indeed most of the earlier quantum algorithms can be
expressed directly in terms of circuits. However, several new quantum algorithms
can be more properly expressed by while loops, e.g. quantum walks with absorb-
ing boundaries, quantum Bernoulli factory (for random number generation),
HHL for systems of linear equations and qPCA (Principal Component Analy-
sis). Second, we formalized a Hoare logic while [49] uses denotational semantics
directly. As in verification of classical programs, Hoare logic encapsulates stan-
dard forms of argument for dealing with each program construct. Moreover,
the rules for QHL is in weakest-precondition form, allowing the possibility of
automated verification condition generation after specifying the loop invariants
(although this is not used in the present paper).

Besides Rand’s work, quite a few verification tools have been developed for
quantum communication protocols. For example, Nagarajan and Gay [41] mod-
eled the BB84 protocol [12] and verified its correctness. Ardeshir-Larijani et al.
[7,8] presented a tool for verification of quantum protocols through equivalence
checking. Existing tools, such as PRISM [37] and Coq, are employed to develop
verification tools for quantum protocols [17,29]. Furthermore, an automatic tool
called Quantum Model-Checker (QMC) is developed [28,46].

Recently, several specific techniques have been proposed to algorithmically
check properties of quantum programs. In [63], the Sharir-Pnueli-Hart method
for verifying probabilistic programs [54] has been generalised to quantum pro-
grams by exploiting the Schrödinger-Heisenberg duality between quantum states
and observables. Termination analysis of nondeterministic and concurrent quan-
tum programs [38] was carried out based on reachability analysis [64]. Invariants
can be generated at some steps in quantum programs for debugging and verifi-
cation of correctness [62]. But up to now no tools are available that implements

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 203

these techniques. Another Hoare-style logic for quantum programs was proposed
in [36], but without (relative) completeness.

Interactive theorem proving has made significant progress in the formal ver-
ification of classical programs and systems. Here, we focus on listing some tools
designed for special kinds of systems. EasyCrypt [10,11] is an interactive frame-
work for verifying the security of cryptographic constructs in the computational
model. It is developed based on a probabilistic relational Hoare logic to support
machine-checked construction and verification of game-based proofs. Recently,
verification of hybrid systems via interactive theorem proving has also been stud-
ied. KeYmaera X [26] is a theorem prover implementing differential dynamic
logic (dL) [48], for the verification of hybrid programs. In [60], a prover has been
implemented in Isabelle/HOL for reasoning about hybrid processes described
using hybrid CSP [34].

Our work is based on existing formalization of matrices and tensors in
Isabelle/HOL. In [59] (with corresponding AFP entry [58]), Thiemann et al.
developed the matrix library that we use here. In [14] (with corresponding AFP
entry [13]), Bentkamp et al. developed tensor analysis based on the above work,
in an effort to formalize an expressivity result of deep learning algorithms.

7 Conclusion

We formalized quantum Hoare logic in Isabelle/HOL, and verified the soundness
and completeness of the deduction system for partial correctness. Using this
deduction system, we verified the correctness of Grover’s search algorithm. This
is, to our best knowledge, the first formalization of a Hoare logic for quantum
programs in an interactive theorem prover.

This work is intended to be the first step of a larger project to construct
a framework under which one can efficiently verify the correctness of complex
quantum programs and systems. In this paper, our focus is on formalizing the
mathematical machinery to specify the semantics of quantum programs, and
prove the correctness of quantum Hoare logic. To verify more complicated pro-
grams efficiently, better automation is needed at every stage of the proof. We
have already begun with some automation for proving identities in linear alge-
bra. In the future, we plan to add to it automation facility for handling matrix
computations, tensor products, positivity of matrices, etc., all linked together
by a verification condition generator.

Another direction of future work is to formalize various extensions of quan-
tum Hoare logic, to deal with classical control, recursion, concurrency, etc., with
the eventual goal of being able to verify not only sequential programs, but also
concurrent programs and communication systems.

Acknowledgements. This research is supported through grants by NSFC under
grant No. 61625206, 61732001. Bohua Zhan is supported by CAS Pioneer Hundred
Talents Program under grant No. Y9RC585036. Yangjia Li is supported by NSFC
grant No. 61872342.

204 J. Liu et al.

References

1. IBM Q devices and simulators. https://www.research.ibm.com/ibm-q/technology/
devices/

2. IBM Q experience community. https://quantumexperience.ng.bluemix.net/qx/
community?channel=papers&category=ibm

3. IonQ. https://ionq.co/resources
4. A preview of Bristlecone, Google’s new quantum processor. https://ai.googleblog.

com/2018/03/a-preview-of-bristlecone-googles-new.html
5. Qiskit Aer. https://qiskit.org/aer, https://medium.com/qiskit/qiskit-aer-

d09d0fac7759
6. Unsupervised machine learning on Rigetti 19Q with Forest 1.2. https://

medium.com/rigetti/unsupervised-machine-learning-on-rigetti-19q-with-forest-1-
2-39021339699

7. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Equivalence checking of quantum
protocols. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
478–492. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 33

8. Ardeshir-Larijani, E., Gay, S.J., Nagarajan, R.: Verification of concurrent quantum
protocols by equivalence checking. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 500–514. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 42

9. Baltag, A., Smets, S.: LQP: the dynamic logic of quantum information. Math.
Struct. Comput. Sci. 16(3), 491–525 (2006)

10. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

11. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 5

12. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: International Conference on Computers, Systems and Signal Pro-
cessing, pp. 175–179. IEEE (1984)

13. Bentkamp, A.: Expressiveness of deep learning. Archive of Formal Proofs, Formal
proof development, November 2016. http://isa-afp.org/entries/Deep Learning.
html

14. Bentkamp, A., Blanchette, J.C., Klakow, D.: A formal proof of the expressiveness
of deep learning. In: Interactive Theorem Proving - 8th International Conference,
ITP 2017, Braśılia, Brazil, September 26–29, 2017, Proceedings, pp. 46–64 (2017).
https://dblp.org/rec/bib/conf/itp/BentkampBK17

15. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-662-07964-5

16. Bettelli, S., Calarco, T., Serafini, L.: Toward an architecture for quantum program-
ming. Eur. Phys. J. D 25, 181–200 (2003)

17. Boender, J., Kammüller, F., Nagarajan, R.: Formalization of quantum protocols
using Coq. In: QPL 2015 (2015)

https://www.research.ibm.com/ibm-q/technology /devices/
https://www.research.ibm.com/ibm-q/technology /devices/
https://quantumexperience.ng.bluemix.net/qx/ community?channel=papers&category=ibm
https://quantumexperience.ng.bluemix.net/qx/ community?channel=papers&category=ibm
https://ionq.co/resources
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://qiskit.org/aer
https://medium.com/qiskit/qiskit-aer-d09d0fac7759
https://medium.com/qiskit/qiskit-aer-d09d0fac7759
https://medium.com/rigetti/unsupervised-machine-learning-on-rigetti-19q-with-forest-1-2-39021339699
https://medium.com/rigetti/unsupervised-machine-learning-on-rigetti-19q-with-forest-1-2-39021339699
https://medium.com/rigetti/unsupervised-machine-learning-on-rigetti-19q-with-forest-1-2-39021339699
https://doi.org/10.1007/978-3-642-36742-7_33
https://doi.org/10.1007/978-3-642-36742-7_33
https://doi.org/10.1007/978-3-642-54862-8_42
https://doi.org/10.1007/978-3-642-54862-8_42
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
http://isa-afp.org/entries/Deep_Learning.html
http://isa-afp.org/entries/Deep_Learning.html
https://dblp.org/rec/bib/conf/itp/BentkampBK17
https://doi.org/10.1007/978-3-662-07964-5

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 205

18. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschr. der Phys. Prog. Phys. 46(4–5), 493–505 (1998)

19. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

20. Brunet, O., Jorrand, P.: Dynamic quantum logic for quantum programs. Int. J.
Quantum Inf. 2, 45–54 (2004)

21. Chadha, R., Mateus, P., Sernadas, A.: Reasoning about imperative quantum pro-
grams. Electron. Notes Theoret. Comput. Sci. 158, 19–39 (2006)

22. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly
language. arXiv preprint arXiv:1707.03429 (2017)

23. Debnath, S., Linke, N.M., Figgatt, C., Landsman, K.A., Wright, K., Monroe, C.:
Demonstration of a small programmable quantum computer with atomic qubits.
Nature 536(7614), 63–66 (2016)

24. D’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Math. Struct.
Comput. Sci. 16, 429–451 (2006)

25. Wecker, D., Svore, K.: Liqui|〉: a software design architecture and domain-specific
language for quantum computing. (http://research.microsoft.com/en-us/projects/
liquid/)

26. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

27. Gay, S.: Quantum programming languages: survey and bibliography. Math. Struct.
Comput. Sci. 16, 581–600 (2006)

28. Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: a model checker for quantum
systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 51

29. Gay, S.J., Nagarajan, R., Papanikolaou, N.: Probabilistic model-checking of quan-
tum protocols. In: DCM Proceedings of International Workshop on Developments
in Computational Models, p. 504007. IEEE (2005). https://arxiv.org/abs/quant-
ph/0504007

30. Google AI Quantum team. https://github.com/quantumlib/Cirq
31. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scal-

able quantum programming language. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2013,
pp. 333–342. ACM, New York (2013)

32. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC 1996, pp. 212–219. ACM, New York (1996)

33. Haftmann, F., Wenzel, M.: Local theory specifications in isabelle/isar. In: Berardi,
S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 153–168.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02444-3 10

34. He, J.: From CSP to hybrid systems. In: A Classical Mind, Essays in Honour of
C.A.R. Hoare, pp. 171–189. Prentice Hall International (UK) Ltd. (1994)

35. JavadiAbhari, A., et al.: ScaffCC: scalable compilation and analysis of quantum
programs. In: Parallel Computing, vol. 45, pp. 3–17 (2015)

36. Kakutani, Y.: A logic for formal verification of quantum programs. In: Datta,
A. (ed.) ASIAN 2009. LNCS, vol. 5913, pp. 79–93. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10622-4 7

http://arxiv.org/abs/1707.03429
http://research.microsoft.com/en-us/projects/liquid/
http://research.microsoft.com/en-us/projects/liquid/
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-540-70545-1_51
https://arxiv.org/abs/quant-ph/0504007
https://arxiv.org/abs/quant-ph/0504007
https://github.com/quantumlib/Cirq
https://doi.org/10.1007/978-3-642-02444-3_10
https://doi.org/10.1007/978-3-642-10622-4_7

206 J. Liu et al.

37. Kwiatkowska, M., Norman, G., Parker, P.: Probabilistic symbolic model-checking
with PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transf. 6, 128–142
(2004)

38. Li, Y., Yu, N., Ying, M.: Termination of nondeterministic quantum programs. Acta
Informatica 51, 1–24 (2014)

39. Liu, S., et al.: Q|SI〉: a quantum programming environment. In: Jones, C., Wang,
J., Zhan, N. (eds.) Symposium on Real-Time and Hybrid Systems. LNCS, vol.
11180, pp. 133–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01461-2 8

40. Liu, X., Kubiatowicz, J.: Chisel-Q: designing quantum circuits with a scala embed-
ded language. In: 2013 IEEE 31st International Conference on Computer Design
(ICCD), pp. 427–434. IEEE (2013)

41. Nagarajan, R., Gay, S.: Formal verification of quantum protocols (2002).
arXiv: quant-ph/0203086

42. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

43. Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10542-0

44. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9

45. Ömer, B.: Structured quantum programming. Ph.D. thesis, Technical University
of Vienna (2003)

46. Papanikolaou, N.: Model checking quantum protocols. Ph.D. thesis, Department
of Computer Science, University of Warwick (2008)

47. Paykin, J., Rand, R., Zdancewic, S.: QWIRE: a core language for quantum circuits.
In: Proceedings of 44th ACM Symposium on Principles of Programming Languages
(POPL), pp. 846–858 (2017)

48. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reas. 59(2), 219–265 (2017)

49. Rand, R.: Formally verified quantum programming. Ph.D. thesis, University of
Pennsylvania (2018)

50. Robert Rand, J.P., Zdancewic, S.: QWIRE practice: formal verification of quantum
circuits in coq. In: Quantum Physics and Logic (2017)

51. Sanders, J.W., Zuliani, P.: Quantum programming. In: Backhouse, R., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 80–99. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722010 6

52. Selinger, P.: A brief survey of quantum programming languages. In: Kameyama, Y.,
Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 1–6. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24754-8 1

53. Selinger, P.: Towards a quantum programming language. Math. Struct. Comput.
Sci. 14(4), 527–586 (2004)

54. Sharir, M., Pnueli, A., Hart, S.: Verification of probabilistic programs. SIAM J.
Comput. 13, 292–314 (1984)

55. Smith, R.S., Curtis, M.J., Zeng, W.J.: A practical quantum instruction set archi-
tecture. arXiv preprint arXiv:1608.03355 (2016)

56. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework
for quantum computing. Quantum 2, 49 (2018)

57. Svore, K., et al.: Q#: enabling scalable quantum computing and development with
a high-level DSL. In: Proceedings of the Real World Domain Specific Languages
Workshop 2018, pp. 7:1–7:10 (2018)

https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
http://arxiv.org/abs/quant-ph/0203086
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/10722010_6
https://doi.org/10.1007/978-3-540-24754-8_1
http://arxiv.org/abs/1608.03355

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic 207

58. Thiemann, R., Yamada, A.: Matrices, Jordan normal forms, and spectral radius
theory. Archive of Formal Proofs, Formal proof development, August 2015. http://
isa-afp.org/entries/Jordan Normal Form.html

59. Thiemann, R., Yamada, A.: Formalizing Jordan normal forms in Isabelle/HOL.
In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, CPP 2016, pp. 88–99. ACM, New York (2016)

60. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem
prover for hybrid systems. In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 382–399. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 25

61. Ying, M.: Floyd-Hoare logic for quantum programs. ACM Trans. Programm. Lang.
Syst. 33(6), 19:1–19:49 (2011)

62. Ying, M., Ying, S., Wu, X.: Invariants of quantum programs: characterisations and
generation. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, pp. 818–832 (2017)

63. Ying, M., Yu, N., Feng, Y., Duan, R.: Verification of quantum programs. Sci.
Comput. Programm. 78, 1679–1700 (2013)

64. Ying, S., Feng, Y., Yu, N., Ying, M.: Reachability probabilities of quantum Markov
chains. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol.
8052, pp. 334–348. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40184-8 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://isa-afp.org/entries/Jordan_Normal_Form.html
http://isa-afp.org/entries/Jordan_Normal_Form.html
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-319-25423-4_25
https://doi.org/10.1007/978-3-642-40184-8_24
https://doi.org/10.1007/978-3-642-40184-8_24
http://creativecommons.org/licenses/by/4.0/

	Formal Verification of Quantum Algorithms Using Quantum Hoare Logic
	1 Introduction
	2 Quantum Hoare Logic
	3 Formalization in Isabelle/HOL
	3.1 Preliminaries in Linear Algebra
	3.2 Syntax and Semantics of Quantum Programs
	3.3 Hoare Triples
	3.4 Partial States and Tensor Products
	3.5 Case Study: Products of Hadamard Matrices

	4 Verification of Grover's Algorithm
	5 Discussion
	5.1 Automatic Proof of Identities in Linear Algebra
	5.2 Statistics

	6 Related Work
	7 Conclusion
	References

