)

Check for
updates

Symbolic Monitoring Against
Specifications Parametric
in Time and Data

Masaki Waga'23®)®  Etienne André45
and Ichiro Hasuo!?

! National Institute of Informatics, Tokyo, Japan
mwaga@nii.ac. jp
2 SOKENDAI (The Graduate University for Advanced Studies), Tokyo, Japan
3 JSPS Research Fellow, Tokyo, Japan
4 Université Paris 13, LIPN, CNRS, UMR 7030, 93430 Villetaneuse, France
5 JFLI, CNRS, Tokyo, Japan

Abstract. Monitoring consists in deciding whether a log meets a given
specification. In this work, we propose an automata-based formalism to
monitor logs in the form of actions associated with time stamps and
arbitrarily data values over infinite domains. Our formalism uses both
timing parameters and data parameters, and is able to output answers
symbolic in these parameters and in the log segments where the prop-
erty is satisfied or violated. We implemented our approach in an ad-hoc
prototype SYMON, and experiments show that its high expressive power
still allows for efficient online monitoring.

1 Introduction

Monitoring consists in checking whether a sequence of data (a log or a signal)
satisfies or violates a specification expressed using some formalism. Offline mon-
itoring consists in performing this analysis after the system execution, as the
technique has access to the entire log in order to decide whether the specifi-
cation is violated. In contrast, online monitoring can make a decision earlier,
ideally as soon as a witness of the violation of the specification is encountered.

Using existing formalisms (e.g., the metric first order temporal logic [14]),
one can check whether a given bank customer withdraws more than 1,000 €
every week. With formalisms extended with data, one may even identify such
customers. Or, using an extension of the signal temporal logic (STL) [18], one can
ask: “is that true that the value of variable x is always copied to y exactly 4 time
units later?” However, questions relating time and data using parameters become

This work is partially supported by JST ERATO HASUO Metamathematics for Sys-
tems Design Project (No. JPMJER1603), by JSPS Grants-in-Aid No. 15KT0012 &
18J22498 and by the ANR national research program PACS (ANR-14-CE28-0002).

© The Author(s) 2019

I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 520-539, 2019.
https://doi.org/10.1007/978-3-030-25540-4_30


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_30&domain=pdf
http://orcid.org/0000-0001-9360-7490
http://orcid.org/0000-0001-8473-9555
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-030-25540-4_30

Symbolic Monitoring Against Specifications Parametric in Time and Data 521

much harder (or even impossible) to express using existing formalisms: “what
are the users and time frames during which a user withdraws more than half of
the total bank withdrawals within seven days?” And even, can we synthesize the
durations (not necessarily 7 days) for which this specification holds? Or “what
is the set of variables for which there exists a duration within which their value
is always copied to another variable?” In addition, detecting periodic behaviors
without knowing the period can be hard to achieve using existing formalisms.

In this work, we address the challenging problem to monitor logs enriched
with both timing information and (infinite domain) data. In addition, we sig-
nificantly push the existing limits of expressiveness so as to allow for a further
level of abstraction using parameters: our specification can be both parametric
in the time and in the data. The answer to this symbolic monitoring is richer
than a pure Boolean answer, as it synthesizes the values of both time and data
parameters for which the specification holds. This allows us notably to detect
periodic behaviors without knowing the period while being symbolic in terms of
data. For example, we can synthesize variable names (data) and delays for which
variables will have their value copied to another data within the aforementioned
delay. In addition, we show that we can detect the log segments (start and end
date) for which a specification holds.

Ezample 1. Consider a system updating three variables a, b and ¢ (i. e., strings)
to values (rationals). An example of log is given in Fig. la. Although our work
is event-based, we can give a graphical representation similar to that of signals
in Fig. 1b. Consider the following property: “for any variable px, whenever an
update of that variable occurs, then within strictly less than tp time units, the
value of variable b must be equal to that update”. The variable parameter px is
compared with string values and the timing parameter tp is used in the timing
constraints. We are interested in checking for which values of and tp this
property is violated. This can be seen as a synthesis problem in both the variable
and timing parameters. For example, = c and tp = 1.5 is a violation of
the specification, as the update of ¢ to 2 at time 4 is not propagated to b
within 1.5 time unit. Our algorithm outputs such violation by a constraint e.g.,

= c Atp < 2. In contrast, the value of any signal at any time is always such
that either b is equal to that signal, or the value of b will be equal to that value
within at most 2 time units. Thus, the specification holds for any valuation of
the variable parameter px, provided tp > 2.

We propose an automata-based approach to perform monitoring parametric
in both time and data. We implement our work in a prototype SYMON and
perform experiments showing that, while our formalism allows for high expres-
siveness, it is also tractable even for online monitoring.

We believe our framework balances expressiveness and monitoring perfor-
mance well: (i) Regarding expressiveness, comparison with the existing work is
summarized in Tablel (see Sect.2 for further details). (%) Our monitoring is
complete, in the sense that it returns a symbolic constraint characterizing all
the parameter valuations that match a given specification. (iii) We also achieve



522 M. Waga et al.

Table 1. Comparison of monitoring expressiveness

‘Work [7]] [18] | [14] | [13] | [30] | [26] |[4]]|[9]]| This work

Timing parameters V| X ? ? ? X || % v/

Data VIV IV I VIV VX[V

Parametric data V| X v/ v/ VvV | VXV N

Memory x| v | Vv vV | V| V[ x]x v

Aggregation x| x X v | V| x | x]|x v

Complete parameter identification|/|N/A|\// [// |N/A|N/A|/|\/ N
@0 update(a,0) @4 update(c,2) __________C
@1 update(c,l1) @5 update(a,2) ! i b

(N E——
@2 update(a,0) @6 update(b,2) 1 : a
@3 update(b,1) @7 update(c,3) el i
@4 update(b,0) @9 update(b,3) HE-
01 2 3 4 5 6 7 8 9 t
(a) Log (b) Graphical representation
update(z, v) update(z, v) update(, v)
r#b = ) c<tp
valb # v v#b
c:=0,valr:=v update(b, v)
Lo c<tp
update(b, v) v # valw

v =valx

update(b,v)  update(z,v) c<tp

valb := v T =
valb = v

(¢) Monitoring PTDA

Fig. 1. Monitoring copy to b within tp time units

reasonable monitoring speed, especially given the degree of parametrization in
our formalism. Note that it is not easy to formally claim superiority in expres-
siveness: proofs would require arguments such as the pumping lemma; and such
formal comparison does not seem to be a concern of the existing work. More-
over, such formal comparison bears little importance for industrial practitioners:
expressivity via an elaborate encoding is hardly of practical use. We also note
that, in the existing work, we often observe gaps between the formalism in a
theory and the formalism that the resulting tool actually accepts. This is not
the case with the current framework.

Outline. After discussing related works in Sect.2, we introduce the necessary
preliminaries in Sect. 3, and our parametric timed data automata in Sect. 4. We
present our symbolic monitoring approach in Sect.5 and conduct experiments
in Sect. 6. We conclude in Sect. 7.



Symbolic Monitoring Against Specifications Parametric in Time and Data 523

2 Related Works

Robustness and Monitoring. Robust (or quantitative) monitoring extends the
binary question whether a log satisfies a specification by asking “by how much”
the specification is satisfied. The quantification of the distance between a sig-
nal and a signal temporal logic (STL) specification has been addressed in, e.g.,
[20-23,25,27] (or in a slightly different setting in [5]). The distance can be under-
stood in terms of space (“signals”) or time. In [6], the distance also copes for
reordering of events. In [10], the robust pattern matching problem is considered
over signal regular expressions, by quantifying the distance between the signal
regular expression specification and the segments of the signal. For piecewise-
constant and piecewise-linear signals, the problem can be effectively solved using
a finite union of convex polyhedra. While our framework does not fit in robust
monitoring, we can simulate both the robustness w.r.t. time (using timing param-
eters) and w.r.t. data, e.g., signal values (using data parameters).

Monitoring with Data. The tool MARQ [30] performs monitoring using Quanti-
fied Event Automata (QEA) [12]. This approach and ours share the automata-
based framework, the ability to express some first-order properties using “events
containing data” (which we encode using local variables associated with actions),
and data may be quantified. However, [30] does not seem to natively support
specification parametric in time; in addition, [30] does not perform complete
(“symbolic”) parameters synthesis, but outputs the violating entries of the log.

The metric first order temporal logic (MFOTL) allows for a high expressive-
ness by allowing universal and existential quantification over data—which can
be seen as a way to express parameters. A monitoring algorithm is presented for
a safety fragment of MFOTL in [14]. Aggregation operators are added in [13],
allowing to compute sums or maximums over data. A fragment of this logics is
implemented in MoONPoOLY [15]. While these works are highly expressive, they
do not natively consider timing parameters; in addition, MONPOLY does not
output symbolic answers, i.e., symbolic conditions on the parameters to ensure
validity of the formula.

In [26], binary decision diagrams (BDDs) are used to symbolically repre-
sent the observed data in QTL. This can be seen as monitoring data against
a parametric specification, with a symbolic internal encoding. However, their
implementation DEJAVU only outputs concrete answers. In contrast, we are
able to provide symbolic answers (both in timing and data parameters), e.g., in
the form of union of polyhedra for rationals, and unions of string constraints
using equalities (=) and inequalities (#).

Freeze Operator. In [18], STL is extended with a freeze operator that can
“remember” the value of a signal, to compare it to a later value of the same
signal. This logic STL* can express properties such as “In the initial 10s, x
copies the values of y within a delay of 45”: Gig 10) * (Go,4y* = z). While the
setting is somehow different (STL* operates over signals while we operate over
timed data words), the requirements such as the one above can easily be encoded



524 M. Waga et al.

in our framework. In addition, we are able to synthesize the delay within which
the values are always copied, as in Example 1. In contrast, it is not possible to
determine using STL* which variables and which delays violate the specification.

Monitoring with Parameters. In [7], a log in the form of a dense-time real-valued
signal is tested against a parameterized extension of STL, where parameters can
be used to model uncertainty both in signal values and in timing values. The
output comes in the form of a subset of the parameters space for which the
formula holds on the log. In [9], the focus is only on signal parameters, with an
improved efficiency by reusing techniques from the robust monitoring. Whereas
[7,9] fit in the framework of signals and temporal logics while we fit in words and
automata, our work shares similarities with [7,9] in the sense that we can express
data parameters; in addition, [9] is able as in our work to exhibit the segment
of the log associated with the parameters valuations for which the specification
holds. A main difference however is that we can use memory and aggregation,
thanks to arithmetic on variables.

In [24], the problem of inferring temporal logic formulae with constraints
that hold in a given numerical data time series is addressed.

Timed Pattern Matching. A recent line of work is that of timed pattern match-
ing, that takes as input a log and a specification, and decides where in the log
the specification is satisfied or violated. On the one hand, a line of works con-
siders signals, with specifications either in the form of timed regular expressions
[11,31-33], or a temporal logic [34]. On the other hand, a line of works considers
timed words, with specifications in the form of timed automata [4,36]. We will
see that our work can also encode parametric timed pattern matching. There-
fore, our work can be seen as a two-dimensional extension of both lines of works:
first, we add timing parameters ([4] also considers similar timing parameters)
and, second, we add data—themselves extended with parameters. That is, com-
ing back to Example 1, [31-33,36] could only infer the segments of the log for
which the property is violated for a given (fixed) variable and a given (fixed)
timing parameter; while [4] could infer both the segments of the log and the
timing parameter valuations, but not which variable violates the specification.

Summary. We compare related works in Table 1. “Timing parameters” denote
the ability to synthesize unknown constants used in timing constraints (e.g.,
modalities intervals, or clock constraints). “?” denotes works not natively sup-
porting this, although it might be encoded. The term “Data” refers to the ability
to manage logs over infinite domains (apart from timestamps). For example, the
log in Fig.la features, beyond timestamps, both string (variable name) and
rationals (value). Also, works based on real-valued signals are naturally able to
manage (at least one type of) data. “Parametric data” refer to the ability to
express formulas where data (including signal values) are compared to (quan-
tified or unquantified) variables or unknown parameters; for example, in the
log in Fig.la, an example of property parametric in data is to synthesize the
parameters for which the difference of values between two consecutive updates of



Symbolic Monitoring Against Specifications Parametric in Time and Data 525

variable px is always below pv, where px is a string parameter and pv a rational-
valued parameter. “Memory” is the ability to remember past data; this can be
achieved using e.g., the freeze operator of STL*, or variables (e.g., in [14,26,30]).
“Aggregation” is the ability to aggregate data using operators such as sum or
maximum; this allows to express properties such as “A user must not withdraw
more than $10,000 within a 31 day period” [13]. This can be supported using
dedicated aggregation operators [13] or using variables ([30], and our work).
“Complete parameter identification” denotes the synthesis of the set of param-
eters that satisfy or violate the property. Here, “N/A” denotes the absence of
parameter [18], or when parameters are used in a way (existentially or univer-
sally quantified) such as the identification is not explicit (instead, the position
of the log where the property is violated is returned [26]). In contrast, we return
in a symbolic manner (as in [4,7]) the exact set of (data and timing) parameters
for which a property is satisfied. “\//x” denotes “yes” in the theory paper, but
not in the tool.

3 Preliminaries

Clocks, Timing Parameters and Timed Guards. We assume a set C =
{c1,...,cy} of clocks, i.e., real-valued variables that evolve at the same rate. A
clock valuation is v : C — R>(o. We write 0 for the clock valuation assigning 0
to all clocks. Given d € R>g, v +d is s.t. (v 4+ d)(¢c) = v(c) +d, for all ¢ € C.
Given R C C, we define the reset of a valuation v, denoted by [V]g, as follows:
[V]r(c) =0if c € R, and [v]r(c) = v(c) otherwise.

We assume a set TP = {tp,,...,tp;} of timing parameters. A timing parame-
ter valuation is v : TP — Q4. We assume i € {<, <, =,>,>}. A timed guard tg
is a constraint over C U TP defined by a conjunction of inequalities of the form
¢ d, or ¢ tp with d € N and tp € TP. Given tg, we write v = v(tg) if the
expression obtained by replacing each ¢ with v(c¢) and each tp with y(tp) in tg
evaluates to true.

Variables, Data Parameters and Data Guards. For sake of simplicity, we
assume a single infinite domain D for data. The formalism defined in Sect.4
can be extended in a straightforward manner to different domains for different
variables (and our implementation does allow for different types). The case of
finite data domain is immediate too. We define this formalism in an abstract
manner, so as to allow a sort of parameterized domain.

We assume a set V = {v1,...,va} of variables valued over D. These variables
are internal variables, that allow an high expressive power in our framework,
as they can be compared or updated to other variables or parameters. We also
assume a set LV = {lvq, ..., lwp} of local variables valued over D. These variables
will only be used locally along a transition in the “argument” of the action (e.g.,
x and v in upate(z,v)), and in the associated guard and (right-hand part of)
updates. We assume a set VP = {vp,,...,vpy} of data parameters, i. e., unknown
variable constants.



526 M. Waga et al.

A data type (D, DE,DU) is made of (i) an infinite domain D, (i) a set of
admissible Boolean expressions DE (that may rely on V, LV and VP), which will
define the type of guards over variables in our subsequent automata, and (i) a
domain for updates DU (that may rely on V, LV and VP), which will define the
type of updates of variables in our subsequent automata.

Example 2. As a first example, let us define the data type for rationals. We have
D = Q. Let us define Boolean expressions. A rational comparison is a constraint
over VULV U VP defined by a conjunction of inequalities of the form v i d,
v <o, or v i< vp with v,v" € VULV, d € Q and vp € VP. DE is the set of all
rational comparisons over VULVUVP. Let us then define updates. First, a linear
arithmetic expression over VULV UVP is ). av; + 3, where v; € VULV U VP
and «a;,0 € Q. Let LAV ULV U VP) denote the set of arithmetic expressions
over V, LV and VP. We then have DU = LA(VULV U VP).

As a second example, let us define the data type for strings. We have D = S,
where S denotes the set of all strings. A string comparison is a constraint over
VULV U VP defined by a conjunction of comparisons of the form v = s, v ~ v/,
or v & vp with v,v' € VULV, s € S, vp € VP and =~ € {=,#}. DE is the set of
all string comparisons over VULVUVP. DY = VULV US, i.e., a string variable
can be assigned another string variable, or a concrete string.

A wariable valuation is p : 'V — D. A local variable valuation is a partial
function n : LV —-» D. A data parameter valuation is ( : VP — D. Given a data
guard dg € DE, a variable valuation u, a local variable valuation 7 defined for
the local variables in dg, and a data parameter valuation (, we write (u,n) |
¢(dg) if the expression obtained by replacing within dg all occurrences of each
data parameter vp, by ¢(vp;) and all occurrences of each variable v; (resp. local
variable {vy) with its concrete valuation p(v;) (resp. n(lv))) evaluates to true.

A parametric data update is a partial function PDU : V -» DU/. That is, we
can assign to a variable an expression over data parameters and other variables,
according to the data type. Given a parametric data update PDU, a variable
valuation pu, a local variable valuation 7 (defined for all local variables appearing
in PDU), and a data parameter valuation ¢, we define [y, ppuy) : V — D as:

[1]ncpouy) (v) = p(v) if PDU'(U) is undefined
n(u(¢(PDU(v)))) otherwise

where n(u(¢(PDU(v)))) denotes the replacement within the update expression
PDU(v) of all occurrences of each data parameter vp, by ((vp,), and all occur-

Table 2. Variables, parameters and valuations used in guards

Timed guards Data guards

Clock | Timing parameter | (Data) variable | Local variable | Data parameter

Variable |c¢ tp v v vp

Valuation | v 0 o n ¢




Symbolic Monitoring Against Specifications Parametric in Time and Data 527

rences of each variable v; (resp. local variable lvg) with its concrete valuation
w(vj) (resp. n(lvg)). Observe that this replacement gives a value in D, therefore
the result of [u],(ppu)) is indeed a data parameter valuation V — D. That
is, [p]y(cpouy) computes the new (non-parametric) variable valuation obtained
after applying to u the partial function PDU valuated with (.

Ezample 3. Consider the data type for rationals, the variables set {vy,vs}, the
local variables set {lvy, lva} and the parameters set {vp; }. Let x be the variable
valuation such that p(v1) = 1 and p(vs) = 2, and 7 be the local variable valuation
such that n(lvy) = 2 and n(lvs) is not defined. Let ¢ be the data parameter valu-
ation such that {(vp;) = 1. Consider the parametric data update function PDU
such that PDU(v1) = 2 X vy +v2 — lvg +vp;, and PDU(vy) is undefined. Then the
result of 1], ¢(ppuy) is p' such that p/(v1) = 2x p(v1)+p(v2) —n(lv1)+¢(vpy) =3
and p/(vg) = 2.

4 Parametric Timed Data Automata

We introduce here Parametric timed data automata (PTDAs). They can be
seen as an extension of parametric timed automata [2] (that extend timed
automata [1] with parameters in place of integer constants) with unbounded
data variables and parametric variables. PTDAs can also be seen as an exten-
sion of some extensions of timed automata with data (see e.g., [16,19,29]), that
we again extend with both data parameters and timing parameters. Or as an
extension of quantified event automata [12] with explicit time representation
using clocks, and further augmented with timing parameters. PTDAs feature
both timed guards and data guards; we summarize the various variables and
parameters types together with their notations in Table 2.

We will associate local variables with actions (which can be see as predicates).
Let Dom : X — 2V denote the set of local variables associated with each
action. Let Var(dg) (resp. Var(PDU)) denote the set of variables occurring in dg
(resp. PDU).

Definition 1 (PTDA). Given a data type (D, DE, DU), a parametric timed
data automaton (PTDA) A over this data type is a tuple A = (X, L, ¢, F,C,
TP, V,LV, uo, VP, E), where:

. X is a finite set of actions,

. L is a finite set of locations, ¢y € L is the initial location,

. F C L is the set of accepting locations,

. C is a finite set of clocks,

. TP is a finite set of timing parameters,

.V (resp. LV ) is a finite set of variables (resp. local variables) over D,
. o s the initial variable valuation,

. VP is a finite set of data parameters,

D Grds o ® =~

® =



528 M. Waga et al.

9. E is a finite set of edges e = (£,tg,dg,a, R,PDU, ") where (i) £,¢' € L are
the source and target locations, (i) tg is a timed guard, (i) dg € DE is a
data guard such as Var(dg) NLV C Dom(a), (iv) a € ¥, (v) R C C is a set
of clocks to be reset, and (vi) PDU : V - DU is the parametric data update
function such that Var(PDU) NLV C Dom(a).

The domain conditions on dg and PDU ensure that the local variables used
in the guard (resp. update) are only those in the action signature Dom/(a).

open(f,m)

open(f, m) c:=0 open(f,m) open(f,m)
F# f# /=

@2046 open(Hakuchi.txt ,rw) | ose
@2136 open(Unagi.mp4,rw) [ # .
@2166 close (Hakuchi.txt)

(a) Example of log (b) PTDA monitor

Fig. 2. Monitoring proper file opening and closing

Example 4. Consider the PTDA in Fig.2b over the data type for strings. We
have C = {c}, TP = {tp}, V=0 and LV = {f,m}. Dom(open) = {f, m} while
Dom(close) = {f}. €5 is the only accepting location, modeling the violation of
the specification.

This PTDA (freely inspired by a formula from [26] further extended with
timing parameters) monitors the improper file opening and closing, i.e., a file
already open should not be open again, and a file that is open should not be
closed too late. The data parameter vp is used to symbolically monitor a given
file name, i.e., we are interested in opening and closings of this file only, while
other files are disregarded (specified using the self-loops in £y and ¢; with data
guard f # vp). Whenever f is opened (transition from ¢y to ¢1), a clock c is
reset. Then, in ¢, if f is closed within tp time units (timed guard “c < tp”),
then the system goes back to £o. However, if instead f is opened again, this is an
incorrect behavior and the system enters {5 via the upper transition. The same
occurs if f is closed more than tp time units after opening.

Given a data parameter valuation ¢ and a timing parameter valuation -y,
we denote by v|¢(A) the resulting timed data automaton (TDA), i.e., the non-
parametric structure where all occurrences of a parameter vp; (resp. tpj) have
been replaced by ((vp;) (resp. ¥(tp;)). Note that, if V = LV = (), then A is a
parametric timed automaton [2] and v|C(A) is a timed automaton [1].

We now equip our TDAs with a concrete semantics.



Symbolic Monitoring Against Specifications Parametric in Time and Data 529

Definition 2 (Semantics of a TDA). Given a PTDA A = (X,L,{, F,
C,TP,V,LV, o, VP, E) over a data type (D, DE, DU), a data parameter valu-
ation ¢ and a timing parameter valuation vy, the semantics of v|((A) is given by
the timed transition system (TTS) (S, so, —), with

-S=Lx ]D)M X ]ngo, S0 = (Zo,ﬂo,()),
— — consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: ((,p,v) =5 (0, ' v'), there exist e = ({,tg,dg,a,
R,PDU,¢) € E and a local variable valuation n defined exactly for Dom(a),
such that v = (tg), (k,n) = C(dg), v' = [V]r, and i’ = [y (pou))-

2. delay transitions: (¢, p,v) A (, p, v+ d), with d € R>q.

Moreover we write ((¢, u,v), (e,n,d), (¢, u',v")) € — for a combination of a
delay and discrete transition if v : (¢, p, v) % (4, p,v") ey ).

Given a TDA +|C(A) with concrete semantics (S,sg,—), we refer to
the states of S as the concrete states of |((A). A run of ~|((A) is
an alternating sequence of concrete states of v|((A) and triples of edges,
local variable valuations and delays, starting from the initial state sg of
the form (4, po, o), (€0sm,do), (b1, p1,01),--- with ¢ = 0,1,..., ¢, € E,
d; € Rzo and ((&,,ui,ui),(ei,m,di),(€i+1,ui+1,1/¢+1)) € —. Given such
a run, the associated timed data word is (a1,71,m), (a2, T2,72), -+, where
a; is the action of edge e;_1, 7; is the local variable valuation associ-
ated with that transition, and =, = Zogjgi—l dj, for i+ = 1,2.--. For
a timed data word w and a concrete state (¢,u,v) of v|C(A), we write
(€0, 110,0) = (£, p,v) in y|C(A) if w is associated with a run of |C(A) of
the form (o, 140,0), ..., (b, fin,vn) with (€, in,vn) = (¢, u,v). For a timed

data word w = (ala’rlanl)a(a237_2’7’2)3"'a(anaTn77’n)a we denote ‘w| =n
and for any ¢ € {1,2,...,n}, we denote w(1,i) = (a1,m,m), (a2, 72,72), .-,
(@iyTiy i)

A finite run is accepting if its last state (¢, u,v) is such that £ € F. The
language L(v|((A)) is defined to be the set of timed data words associated with
all accepting runs of v|¢(A).

Ezxample 5. Consider the PTDA in Fig.2b over the data type for strings. Let
~(tp) = 100 and ¢(vp) = Hakuchi.txt. An accepting run of the TDA ~|((.A)
is: (€07 @, 1/0)7 (60, Mo, 2046), (@1, @, 1/1), (61, m, 90), (61, [b, 1/2)(62, 2, 30), (62, @, 1/3),
where () denotes a variable valuation over an empty domain (recall that V =
in Fig.2b), vp(c) =0, v1(c) = 0, va(c) = 90, vs3(c) = 120, ep is the upper edge
from £y to £1, ey is the self-loop above {1, ey is the lower edge from ¢; to /s,
no(f) = ma(f) = Hakuchi.txt, 11(f) = Unagiupé, no(m) = ni(m) = rw, and
n2(m) is undefined (because Dom/(close) = {f}).

The associated timed data word is (open,2046,n0), (open,2136,n7),
(close, 2166, 12).

Since each action is associated with a set of local variables, given an ordering
on this set, it is possible to see a given action and a variable valuation as a pred-
icate: for example, assuming an ordering of LV such as f precedes m, then open



530 M. Waga et al.

with 19 can be represented as open(Hakuchi.txt, rw). Using this convention, the
log in Fig. 2a corresponds exactly to this timed data word.

5 Symbolic Monitoring Against PTDA Specifications

In symbolic monitoring, in addition to the (observable) actions in X, we employ
unobservable actions denoted by e and satisfying Dom(e) = (. We write X,
for X U {e}. We let n. be the local variable valuation such that n.(lv) is unde-
fined for any lv € LV. For a timed data word w = (a1,71,m1), (a2, 72,m2), ...,
(any Tn,nn) over X, the projection w|y is the timed data word over X
obtained from w by removing any triple (a;,7;,7;) where a; = e. An edge
e = (4,tg,dg,a, R,PDU,¢') € E is unobservable if a = ¢, and observable oth-
erwise. The use of unobservable actions allows us to encode parametric timed
pattern matching (see Sect. 5.3).
We make the following assumption on the PTDAs in symbolic monitoring.

Assumption 1. The PTDA A does not contain any loop of unobservable edges.

5.1 Problem Definition

Roughly speaking, given a PTDA A and a timed data word w, the symbolic
monitoring problem asks for the set of pairs (7,¢) € (Q4)™ x D' satisfying
w(l,4) € y|¢(A), where w(1,4) is a prefix of w. Since A also contains unobserv-
able edges, we consider w’ which is w augmented by unobservable actions.

Symbolic monitoring problem:

INPUT: a PTDA A over a data type (D, DE,DU) and actions Y., and a
timed data word w over X

PROBLEM: compute all the pairs (v, ) of timing and data parameter valua-
tions such that there is a timed data word w’ over X and ¢ € {1,2, ..., |[w/|}
satisfying ']y, = w and w’(1,i) € L(v|((A)). That is, it requires the
validity domain D(w, A) = {(v,¢) | F' : i € {1,2,...,|v'|},w']ly =
w and w'(1,4) € L(v|¢(A))}.

Ezample 6. Consider the PTDA A and the timed data word w shown in Fig. 1.
The validity domain D(w,.A) is D(w, A) = D1 U Dy, where

D1 = {(7,¢) |0 <~(tp) <2,{(xp) =c} and Da = {(7,¢) | 0 < ~(tp) < 1,¢(xp) = a}.

For w' = w(1,3) - (¢,7¢,2.9), we have w’ € L(v|¢(A)) and w’'|x = w(1,3),
where v and ¢ are such that v(tp) = 1.8 and {(xp) = ¢, and w(1,3) - (¢,7., 2.9)
denotes the juxtaposition.

For the data types in Example 2, the validity domain D(w,.4) can be rep-
resented by a constraint of finite size because the length |w| of the timed data
word is finite.



Symbolic Monitoring Against Specifications Parametric in Time and Data 531

5.2 Online Algorithm

Our algorithm is online in the sense that it outputs (v,¢) € D(w, .A) as soon as
its membership is witnessed, even before reading the whole timed data word w.

Let w = (a1, 71,m), (a2, 72,m2), . .. (n, Tn, nn) and A be the timed data word
and PTDA given in symbolic monitoring, respectively. Intuitively, after reading
(a;, 74, 1mi), our algorithm symbolically computes for all parameter valuations

(7,¢) € (Q4)™ x DYF the concrete states (¢, v, u) satisfying ({o, uo, 0) A,
(¢, u,v) in v|¢(A). Since A has unobservable edges as well as observable edges,
we have to add unobservable actions before or after observable actions in w. By
Conf?, we denote the configurations after reading (a;, 74, 7;) and no unobservable
actions are appended after (a;,7;,7;). By Conf}, we denote the configurations
after reading (a;,7;,1;) and at least one unobservable action is appended after

(i, 7i,15)-

Definition 3 (Conf;, Conf;'). For a PTDA A over actions Y., a timed data
word w over X, and i € {0,1,...,|w|} (resp. i € {-1,0,...,|w|}), Conf?
(resp. Conf}') is the set of 5-tuples (¢,v,v,u, ) such that there is a timed data
word w' over Y. satisfying the following: (i) (Lo, po,0) — (£, 1, v) in v|C(A),
(i) w'| e = w(l,q), (iii) The last action af,, of w’ is observable (resp. unob-
servable and its timestamp is less than Ti41).

Algorithm 1. Outline of our algorithm for symbolic monitoring
Input: A PTDA A= (X, L,{, F,C,TP,V,LV, uo, VP, E) over a data
type (D, DE, DU) and actions X, and a timed data
word w = (a1,71,m), (a2, 72,Mm2), .. ., (Gn, Tn,Mn) over X
Output: U;cqy 0, o1y Resulli is the validity domain D(w, A)
Confy « 0; Conf§ — {(fo,0,7, pu0,¢) | v € (Q+)™,¢ € D}
for i — 1 to n do
compute (Conf} |, Conf?) from (Conf} ., Conf?_;)
Result; — {(v,¢) | (4, v,v,1,¢) € Conf} ;U Conf?. £ € F}
compute Conf; from (Conf,_,, Conf;)
Resultnt1 — {(7,¢) | 3¢, v,v,p,¢) € Confy. L € F}

[=2 0L SV I G

Algorithm 1 shows an outline of our algorithm for symbolic monitoring
(see [35] for the full version). Our algorithm incrementally computes Conf;" ; and
Conf? (line 3). After reading (a;, 74, 7;), our algorithm stores the partial results
(v,¢) € D(w, A) witnessed from the accepting configurations in Conf;’ ; and
Conf? (line 4). (We also need to try to take potential unobservable transitions
and store the results from the accepting configurations after the last element of
the timed data word (lines 5 and 6).)

Since (Q4 )™ xDY¥ is an infinite set, we cannot try each (7, () € (Q1 )™ xDF
and we use a symbolic representation for parameter valuations. Similarly to the



532 M. Waga et al.

reachability synthesis of parametric timed automata [28], a set of clock and tim-
ing parameter valuations can be represented by a convex polyhedron. For variable
valuations and data parameter valuations, we need an appropriate representa-
tion depending on the data type (D, DE, DU). Moreover, for the termination of
Algorithm 1, some operations on the symbolic representation are required.

Theorem 1 (termination). For any PTDA A over a data type (D, DE, DU)
and actions X, and for any timed data word w over X, Algorithm 1 terminates
if the following operations on the symbolic representation Vy of a set of variable
and data parameter valuations terminate.

1. restriction and update {([u]cpouy), <) | 3(1,¢) € Va. (1, m) = ((dg)}, where
1 is a local variable valuation, PDU is a parametric data update function, and
dg is a data guard;

2. emptiness checking of Vy;

3. projection Vylyp of Vy to the data parameters VIP. a

Ezxample 7. For the data type for rationals in Example 2, variable and data
parameter valuations V; can be represented by convex polyhedra and the above
operations terminate. For the data type for strings S in Example 2, variable and
data parameter valuations Vy can be represented by SIVI x (S U Pg,(S))IVFl and
the above operations terminate, where Pg, (S) is the set of finite sets of S.

withdraw(n,a), vp =n

c—tp; < 100 -
e vpi=vta c=tp -
withdraw(n, a) c=tp, WE=nata oo (567 100) withdraw(a)

withdraw(a) | a >
= 0,00 =0 /O\ 20, > 1y 0 < tp, < c < tp,
— \61/ @ c:=0

withdraw(n, a), vp # n
c—tp; <100, vy :=v5+a

Fig. 3. PTDAs in DOMINANT (left) and PERIODIC (right)

5.3 Encoding Parametric Timed Pattern Matching

The symbolic monitoring problem is a generalization of the parametric timed
pattern matching problem of [4]. Recall that parametric timed pattern matching
aims at synthesizing timing parameter valuations and start and end times in the
log for which a log segment satisfies or violates a specification. In our approach,
by adding a clock measuring the absolute time, and two timing parameters
encoding respectively the start and end date of the segment, one can easily infer
the log segments for which the property is satisfied.

Consider the DOMINANT PTDA (left of Fig.3). It is inspired by a mon-
itoring of withdrawals from bank accounts of various users [15]. This PTDA
monitors situations when a user withdraws more than half of the total with-
drawals within a time window of (50,100). The actions are X' = {withdraw}



Symbolic Monitoring Against Specifications Parametric in Time and Data 533

and Dom(withdraw) = {n,a}, where n has a string value and @ has an inte-
ger value. The string n represents a user name and the integer a represents the
amount of the withdrawal by the user n. Observe that clock ¢ is never reset,
and therefore measures absolute time. The automaton can non-deterministically
remain in £y, or start to measure a log by taking the e-transition to ¢; checking
¢ = tpy, and therefore “remembering” the start time using timing parameter tp;.
Then, whenever a user has withdrawn more than half of the accumulated
withdrawals (data guard 2v; > v5) in a (50,100) time window (timed guard
¢ —tp; € (50,100)), the automaton takes a e-transition to the accepting loca-
tion, checking ¢ = tp,, and therefore remembering the end time using timing
parameter tp,.

6 Experiments

We implemented our symbolic monitoring algorithm in a tool SYMON in C++,
where the domain for data is the strings and the integers. Our tool SYMoON
is distributed at https://github.com/MasWag/symon. We use PPL [8] for the
symbolic representation of the valuations. We note that we employ an optimiza-
tion to merge adjacent polyhedra in the configurations if possible. We evaluated
our monitor algorithm against three original benchmarks: Copy in Fig. 1c; and
DoMINANT and PERIODIC in Fig. 3. We conducted experiments on an Amazon
EC2 c4.large instance (2.9 GHz Intel Xeon E5-2666 v3, 2 vCPUs, and 3.75 GiB
RAM) that runs Ubuntu 18.04 LTS (64 bit).

6.1 Benchmark 1: Copy

Our first benchmark COPY is a monitoring of variable updates much like the
scenario in [18]. The actions are X' = {update} and Dom(update) = {n,v},
where n has a string value representing the name of the updated variables and
v has an integer value representing the updated value. Our set consists of 10
timed data words of length 4,000 to 40,000.

The PTDA in Copry is shown in Fig. 1c, where we give an additional con-
straint 3 < tp < 10 on tp. The property encoded in Fig. 1c is “for any variable px,
whenever an update of that variable occurs, then within tp time units, the value
of b must be equal to that update”.

The experiment result is in Fig. 4. We observe that the execution time is linear
to the number of the events and the memory usage is more or less constant with
respect to the number of events.

6.2 Benchmark 2: Dominant

Our second benchmark is DOMINANT (Fig. 3 left). Our set consists of 10 timed
data words of length 2,000 to 20,000. The experiment result is in Fig.5. We
observe that the execution time is linear to the number of the events and the
memory usage is more or less constant with respect to the number of events.


https://github.com/MasWag/symon

534 M. Waga et al.

7 T T T T T T T 10000 T T T T T T
G Cory Cory
20| [ g o a
4l | & 6000 f ———————
C. =
237 12 4000 | ]
Ea2 L 1
= 2 2000 L J
ST 1 =
0 I I I I I I I 0 I I I I I I I
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Number of events [x1, 000 Number of events [x1, 000
Fig. 4. Execution time (left) and memory usage (right) of Copy
160 T T T T T T 10000 T T T T T
) DOMINANT DOMINANT
= 140 PERIODIC 1 3 8000 PERIODIC
£ 12 = i 1
g 100 © 6000 F T T
=80 2
2 60 7 4000 4
ER g
g 22000 | A
=20 =
0 I I I I I I I I 0 I I I I I I I I
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
Number of events [x1, 000] Number of events [x1, 000]

Fig. 5. Execution time (left) and memory usage (right) of DOMINANT and PERIODIC
6.3 Benchmark 3: Periodic

Our third benchmark PERIODIC is inspired by a parameter identification of peri-
odic withdrawals from one bank account. The actions are X' = {withdraw} and
Dom(withdraw) = {a}, where a has an integer value representing the amount of
the withdrawal. We randomly generated a set consisting of 10 timed data words
of length 2,000 to 20,000. Each timed data word consists of the following three
kinds of periodic withdrawals:

shortperiod One withdrawal occurs every 5 + 1 time units. The amount of
the withdrawal is 50 + 3.

middleperiod One withdrawal occurs every 50 + 3 time units. The amount
of the withdrawal is 1000 =+ 40.

longperiod One withdrawal occurs every 100+ 5 time units. The amount of
the withdrawal is 5000 £ 20.

The PTDA in PERIODIC is shown in the . 100
right of Fig. 3. The PTDA matches situations
where, for any two successive withdrawals of
amount more than vp, the duration between
them is within [tp;,tp,]. By the symbolic
monitoring, one can identify the period of the

tp; |
80 tpy;

60
40
20

Values of tp; and tp,

0
0 1000 2000 3000 4000 5000

The threshold (vp) of the withdrawal amount



Symbolic Monitoring Against Specifications Parametric in Time and Data 535

periodic withdrawals of amount greater than
vp is in [tpy,tps]. An example of the validity
domain is shown in the right figure.

The experiment result is in Fig. 5. We observe that the execution time is linear
to the number of the events and the memory usage is more or less constant with
respect to the number of events.

6.4 Discussion

First, a positive result is that our algorithm effectively performs symbolic mon-
itoring on more than 10,000 actions in one or two minutes even though the
PTDAs feature both timing and data parameters. The execution time in COPY
is 50-100 times smaller than that in DOMINANT and PERIODIC. This is because
the constraint 3 < tp < 10 in CoOPY is strict and the size of the configurations
(i.e., Conf? and Conf} in Algorithm 1) is small. Another positive result is that
in all of the benchmarks, the execution time is linear and the memory usage is
more or less constant in the size of the input word. This is because the size of
configurations (i.e., Conf; and Conf} in Algorithm 1) is bounded due to the
following reason. In DOMINANT, the loop in ¢; of the PTDA is deterministic, and
because of the guard ¢ —tp; € (50, 100) in the edge from ¢; to £, the number of
the loop edges at ¢; in an accepting run is bounded (if the duration between two
continuing actions are bounded as in the current setting). Therefore, | Conf?|
and |Conf}| in Algorithm 1 are bounded. The reason is similar in CoPY, too.
In PERIODIC, since the PTDA is deterministic and the valuations of the amount
of the withdrawals are in finite number, |Conf;| and |Conf}'| in Algorithm 1 are
bounded.

It is clear that we can design ad-hoc automata for which the execution time
of symbolic monitoring can grow much faster (e.g., exponential in the size of
input word). However, experiments showed that our algorithm monitors various
interesting properties in a reasonable time.

Copry and DOMINANT use data and timing parameters as well as memory
and aggregation; from Table 1, no other monitoring tool can compute the valua-
tions satisfying the specification. We however used the parametric timed model
checker IMITATOR [3] to try to perform such a synthesis, by encoding the input
log as a separate automaton; but IMITATOR ran out of memory (on a 3.75 GiB
RAM computer) for DOMINANT with |w| = 2000, while SYMON terminates in
14 s with only 6.9 MiB for the same benchmark. Concerning PERIODIC, the only
existing work that can possibly accommodate this specification is [7]. While the
precise performance comparison is interesting future work (their implementation
is not publicly available), we do not expect our implementation be vastly out-
performed: in [7], their tool times out (after 10 min) for a simple specification
(“E0,55)G0,5,)( < p)”) and a signal discretized by only 128 points.

For those problem instances which MoNPoLY and DEJAVU can accommo-
date (which are simpler and less parametrized than our benchmarks), they tend
to run much faster than ours. For example, in [26], it is reported that they can
process a trace of length 1,100,004 in 30.3s. The trade-off here is expressivity: for



536 M. Waga et al.

example, DEJAVU does not seem to accommodate DOMINANT, because DEJAVU
does not allow for aggregation. We also note that, while SYMON can be slower
than MoNPoLy and DEJAVU, it is fast enough for many scenarios of real-world
online monitoring.

7 Conclusion and Perspectives

We proposed a symbolic framework for monitoring using parameters both in data
and time. Logs can use timestamps and infinite domain data, while our monitor
automata can use timing and variable parameters (in addition to clocks and
local variables). In addition, our online algorithm can answer symbolically, by
outputting all valuations (and possibly log segments) for which the specification
is satisfied or violated. We implemented our approach into a prototype SYMON
and experiments showed that our tool can effectively monitor logs of dozens of
thousands of events in a short time.

Perspectives. Combining the BDDs used in [26] with some of our data types
(typically strings) could improve our approach by making it even more symbolic.
Also, taking advantage of the polarity of some parameters (typically the timing
parameters, in the line of [17]) could improve further the efficiency.

We considered infinite domains, but the case of finite domains raises inter-
esting questions concerning result representation: if the answer to a property is
“neither a nor b”, knowing the domain is {a, b, c}, then the answer should be c.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183-235 (1994). https://doi.org/10.1016,/0304-3975(94)90010-8

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In:
Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC, pp. 592-601. ACM,
New York (1993). https://doi.org/10.1145/167088.167242

3. André, E., Fribourg, L., Kiihne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
2012. LNCS, vol. 7436, pp. 33-36. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32759-9_6

4. André, E., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty.
In: Lin, A.W., Sun, J. (eds.) ICECCS, pp. 10-20. IEEE CPS (2018). https://doi.
org/10.1109/ICECCS2018.2018.00010

5. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TALIRO: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254-257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9_21

6. Asarin, E., Basset, N., Degorre, A.: Distance on timed words and applications.
In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp.
199-214. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3_12


https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1007/978-3-642-32759-9_6
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-030-00151-3_12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Symbolic Monitoring Against Specifications Parametric in Time and Data 537

Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147-160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
812

Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1-2), 3-21 (2008). https://doi.
org/10.1016/j.scico.2007.08.001

Bakhirkin, A., Ferrere, T., Maler, O.: Efficient parametric identification for STL.
In: HSCC, pp. 177-186. ACM (2018). https://doi.org/10.1145/3178126.3178132
Bakhirkin, A., Ferrere, T., Maler, O., Ulus, D.: On the quantitative semantics of
regular expressions over real-valued signals. In: Abate, A., Geeraerts, G. (eds.)
FORMATS 2017. LNCS, vol. 10419, pp. 189-206. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65765-3_11

Bakhirkin, A., Ferrére, T., Nickovic, D., Maler, O., Asarin, E.: Online timed pattern
matching using automata. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018.
LNCS, vol. 11022, pp. 215-232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00151-3_13

Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68-84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_9

Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitoring of temporal
first-order properties with aggregations. Form. Methods Syst. Des. 46(3), 262-285
(2015). https://doi.org/10.1007/s10703-015-0222-7

Basin, D.A., Klaedtke, F., Miiller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1-15:45 (2015). https://doi.org/10.1145/
2699444

Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger,
G., Havelund, K. (eds.) RV-CuBES. Kalpa Publications in Computing, vol. 3, pp.
19-28. EasyChair (2017)

Bouajjani, A., Echahed, R., Robbana, R.: On the automatic verification of systems
with continuous variables and unbounded discrete data structures. In: Antsaklis,
P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 64-85.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60472-3_4

Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Form. Methods Syst. Des. 35(2), 121-151 (2009). https://doi.
org/10.1007/s10703-009-0074-0

Brim, L., Dluhos, P., Safranek, D., Vejpustek, T.: STL*: extending signal temporal
logic with signal-value freezing operator. Inf. Comput. 236, 52—67 (2014). https://
doi.org/10.1016/j.ic.2014.01.012

Dang, Z.: Pushdown timed automata: a binary reachability characterization and
safety verification. Theor. Comput. Sci. 302(1-3), 93-121 (2003). https://doi.org/
10.1016/S0304-3975(02)00743-0

Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
Skorokhod metric. Form. Methods Syst. Des. 50(2-3), 168-206 (2017). https://
doi.org/10.1007/s10703-016-0261-8

Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167-170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6-17


https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1145/3178126.3178132
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-319-65765-3_11
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-030-00151-3_13
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/3-540-60472-3_4
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1016/j.ic.2014.01.012
https://doi.org/10.1016/j.ic.2014.01.012
https://doi.org/10.1016/S0304-3975(02)00743-0
https://doi.org/10.1016/S0304-3975(02)00743-0
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17

538

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

M. Waga et al.

Donzé, A., Ferrere, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264-279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19

Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92-106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9
Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical
data time series. Theor. Comput. Sci. 408(1), 55-65 (2008). https://doi.org/10.
1016/j.t¢s.2008.07.004

Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262-4291 (2009). https://
doi.org/10.1016/j.tcs.2009.06.021

Havelund, K., Peled, D., Ulus, D.: First order temporal logic monitoring with
BDDs. In: Stewart, D., Weissenbacher, G. (eds.) FMCAD, pp. 116-123. IEEE
(2017). https://doi.org/10.23919/FMCAD.2017.8102249

Jaksié, S., Bartocci, E., Grosu, R., Nguyen, T., Nickovi¢, D.: Quantitative moni-
toring of STL with edit distance. Form. Methods Syst. Des. 53(1), 83-112 (2018).
https://doi.org/10.1007/s10703-018-0319-x

Jovanovié, A., Lime, D.; Roux, O.H.: Integer parameter synthesis for real-time
systems. IEEE Trans. Softw. Eng. 41(5), 445-461 (2015). https://doi.org/10.1109/
TSE.2014.2357445

Quaas, K.: Verification for timed automata extended with discrete data structure.
Log. Methods Comput. Sci. 11(3) (2015). https://doi.org/10.2168/LMCS-11(3:
20)2015

Reger, G., Cruz, H.C., Rydeheard, D.: MARQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596-610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_55

Ulus, D.: MONTRE: a tool for monitoring timed regular expressions. In: Majumdar,
R., Kunéak, V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 329-335. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_16

Ulus, D., Ferrere, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222-236. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_16

Ulus, D., Ferrere, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
736-751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9.47

Ulus, D., Maler, O.: Specifying timed patterns using temporal logic. In: HSCC, pp.
167-176. ACM (2018). https://doi.org/10.1145/3178126.3178129

Waga, M., André, E., Hasuo, I.: Symbolic monitoring against specifications para-
metric in time and data. CoRR abs/1905.04486 (2019). arxiv:1905.04486

Waga, M., Hasuo, 1., Suenaga, K.: Efficient online timed pattern matching by
automata-based skipping. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017.
LNCS, vol. 10419, pp. 224-243. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65765-3_13


https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1016/j.tcs.2008.07.004
https://doi.org/10.1016/j.tcs.2008.07.004
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.23919/FMCAD.2017.8102249
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.2168/LMCS-11(3:20)2015
https://doi.org/10.2168/LMCS-11(3:20)2015
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-319-63387-9_16
https://doi.org/10.1007/978-3-319-10512-3_16
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1007/978-3-662-49674-9_47
https://doi.org/10.1145/3178126.3178129
http://arxiv.org/abs/1905.04486
https://doi.org/10.1007/978-3-319-65765-3_13
https://doi.org/10.1007/978-3-319-65765-3_13

Symbolic Monitoring Against Specifications Parametric in Time and Data 539

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	Symbolic Monitoring Against Specifications Parametric in Time and Data
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Parametric Timed Data Automata
	5 Symbolic Monitoring Against PTDA Specifications
	5.1 Problem Definition
	5.2 Online Algorithm
	5.3 Encoding Parametric Timed Pattern Matching

	6 Experiments
	6.1 Benchmark 1: Copy
	6.2 Benchmark 2: Dominant
	6.3 Benchmark 3: Periodic
	6.4 Discussion

	7 Conclusion and Perspectives
	References




