
Fast Algorithms for Handling Diagonal
Constraints in Timed Automata

Paul Gastin1 , Sayan Mukherjee2 , and B. Srivathsan2(B)

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France
paul.gastin@lsv.fr

2 Chennai Mathematical Institute, Chennai, India
{sayanm,sri}@cmi.ac.in

Abstract. A popular method for solving reachability in timed automata
proceeds by enumerating reachable sets of valuations represented as
zones. A naïve enumeration of zones does not terminate. Various ter-
mination mechanisms have been studied over the years. Coming up with
efficient termination mechanisms has been remarkably more challenging
when the automaton has diagonal constraints in guards.

In this paper, we propose a new termination mechanism for timed
automata with diagonal constraints based on a new simulation relation
between zones. Experiments with an implementation of this simulation
show significant gains over existing methods.

Keywords: Timed automata · Diagonal constraints · Reachability ·
Zones · Simulations

1 Introduction

Timed automata have emerged as a popular model for systems with real-time
constraints [2]. Timed automata are finite automata extended with real-valued
variables called clocks. All clocks are assumed to start at 0, and increase at the
same rate. Transitions of the automaton can make use of these clocks to disallow
behaviours which violate timing constraints. This is achieved by making use of
guards which are constraints of the form x ≤ 5, x − y ≥ 3, y > 7, etc. where x, y
are clocks. A transition guarded by x ≤ 5 says that it can be fired only when
the value of clock x is ≤ 5. Another important feature is the reset of clocks in
transitions. Each transition can specify a subset of clocks whose values become
0 once the transition is fired. The combination of guards and resets allows to
track timing distance between events. A basic question that forms the core of
timed automata technology is reachability : given a timed automaton, does there

This work is supported by UMI Relax. The first author is partly supported by ANR
project TickTac (ANR-18-CE40-0015) and third author by CEFIPRA project IoTTTA
(Indo-French program in ICST-DST/CNRS ref. 2016-01). The second and third authors
are partly supported by Infosys Foundation (India) and Tata Consultancy Services -
Innovation Labs (Pune, India).
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 41–59, 2019.
https://doi.org/10.1007/978-3-030-25540-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_3&domain=pdf
http://orcid.org/0000-0002-1313-7722
http://orcid.org/0000-0001-6473-3172
http://orcid.org/0000-0003-2666-0691
https://doi.org/10.1007/978-3-030-25540-4_3

42 P. Gastin et al.

exist an execution from its initial state to a final state. This question is known
to be decidable [2]. Various algorithms for this problem have been studied over
the years and have been implemented in tools [6,21,26,28,31,32].

Since the clocks are real valued variables, the space of configurations of a
timed automaton (consisting of a state and a valuation of the clocks) is infinite
and an explicit enumeration is not possible. The earliest solution to reachability
was to partition this space into a finite number of regions and build a region
graph that provides a finite abstraction of the behaviour of the timed automa-
ton [2]. However, this solution was not practical. Subsequent works introduced
the use of zones [14]. Zones are special sets of clock valuations with efficient
data structures and manipulation algorithms [6]. Within zone based algorithms,
there is a division: forward analysis versus backward analysis. The current indus-
try strength tool UPPAAL [28] implements a forward analysis approach, as this
works better in the presence of other discrete data structures used in UPPAAL
models [9]. We focus on this forward analysis approach using zones in this paper.

The forward analysis of a timed automaton essentially enumerates sets of
reachable configurations stored as zones. Some extra care needs to be taken
for this enumeration to terminate. Traditional development of timed automata
made use of extrapolation operators over zones to ensure termination. These are
functions which map a zone to a bigger zone. Importantly, the range of these
functions is finite. The goal was to come up with extrapolation operators which
are sound: adding these extra valuations should not lead to new behaviours.
This is where the role of simulations between configurations was studied and
extrapolation operators based on such simulations were devised [14]. A certain
extrapolation operation, which is now known as ExtraM [5] was proposed and
reachability using ExtraM was implemented in tools [14].

A seminal paper by Bouyer [9] revealed that ExtraM is not correct in the
presence of diagonal constraints in guards. These are constraints of the form
x − y � c where � is either < or ≤, and c is an integer. Moreover, it was proved
that no such extrapolation operation would be correct when there are diago-
nal constraints present. It was shown that for automata without diagonal con-
straints (henceforth referred to as diagonal-free automata), the extrapolation
works. After this result, developments in timed automata reachability focussed
on the class of diagonal-free automata [4,5,23,24], and diagonal constraints were
mostly sidelined. All these developments have led to quite efficient algorithms
for diagonal-free timed automata.

Diagonal constraints are a useful modeling feature and occur naturally in
certain problems, especially scheduling [3,17,20,27] and logic-automata transla-
tions [16,25], also in [29]. It is however known that they do not add any expres-
sive power: every timed automaton can be converted into a diagonal-free timed
automaton [7]. This conversion suffers from an exponential blowup, which was
later shown to be unavoidable: diagonal constraints could potentially give expo-
nentially more succinct models [10]. Therefore, a good forward analysis algorithm
that works directly on a timed automaton with diagonal constraints would be
handy. This is the subject of this paper.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 43

Related Work. The first attempt at such an algorithm was to split the (extrap-
olated) zones with respect to the diagonal constraints present in the automa-
ton [6]. This gave a correct procedure, but since zones are split, an enumeration
starts from each small zone leading to an exponential blow-up in the number
of visited zones. A second attempt was to do a more refined conversion into a
diagonal free automaton by detecting “relevant” diagonals [13,30] in an iterative
manner. In order to do this, special data structures storing sets of sets of diagonal
constraints were utilized. In [18] we extended the works [5] and [23] on diagonal-
free automata to the case of diagonal constraints. All the approaches suffer from
either a space or time bottleneck and are incomparable to the efficiency and
scalability of tools for diagonal-free automata.

Our Contributions. The goal of this paper is to come up with fast algorithms for
handling diagonal constraints. Since the extrapolation based approach is a dead
end, we work with simulation between zones directly, as in [23] and [18]. We
propose a new simulation relation between zones that is correct in the presence
of diagonal constraints (Sect. 3). We give an algorithm to test this simulation
between zones (Sect. 4). We have incorporated this simulation test in (an older
version of) the tool TChecker [21] checking reachability for timed automata, and
compared our results with the state-of-the-art tool UPPAAL. Experiments show
an encouraging gain, both in the number of zones enumerated and in the time
taken by the algorithm, sometimes upto four orders of magnitude (Sect. 6). The
main advantage of our approach is that it does not split zones, and furthermore
it leverages the optimizations studied for diagonal-free automata.

From a technical point of view, our presentation does not make use of regions
and instead works with valuations, zones and simulation relations. We think
that this presentation provides a clearer perspective - as a justification of this
claim, we extend our simulation to timed automata with general updates of
the form x := c and x := y + d in transitions (where x, y are clocks and c, d
are constants) in a rather natural manner (Sect. 5). In general, reachability for
timed automata with updates is undecidable [12]. Some decidable cases have
been proposed for which the algorithms are based on regions. For decidable
subclasses containing diagonal constraints, no zone based approach has been
studied. Our proposed method includes these classes, and also benefits from
zones and standard optimizations studied for diagonal-free automata.

Missing proofs can be found in the full version of this paper [19].

2 Preliminaries

Let N be the set of natural numbers, R≥0 the set of non-negative reals and Z the
set of integers. Let X be a finite set of variables ranging over R≥0, called clocks.
Let Φ(X) denote the set of constraints ϕ formed using the following grammar:
ϕ := x � c | c � x | x − y � d | ϕ ∧ ϕ, where x, y ∈ X, c ∈ N, d ∈ Z

and � ∈ {<,≤}. Constraints of the form x � c and c � x are called non-diagonal
constraints and those of the form x − y � c are called diagonal constraints. We
have adopted a convention that in non-diagonal constraints x � c and c � x, the

44 P. Gastin et al.

constant c is restricted to N. A clock valuation v is a function which maps every
clock x ∈ X to a real number v(x) ∈ R≥0. A valuation is said to satisfy a guard
g, written as v |= g if replacing every x in g with v(x) makes the constraint
g true. For δ ∈ R≥0 we write v + δ for the valuation which maps every x to
v(x) + δ. Given a subset of clocks R ⊆ X, we write [R]v for the valuation which
maps each x ∈ R to 0 and each x �∈ R to v(x).

A timed automaton A is a tuple (Q,X, q0, T, F) where Q is a finite set of
states, X is a finite set of clocks, q0 ∈ Q is the initial state, F ⊆ Q is a set
of accepting states and T ∈ Q × Φ(X) × 2X × Q is a set of transitions. Each
transition t ∈ T is of the form (q, g,R, q′) where q and q′ are respectively the
source and target states, g is a constraint called the guard, and R is a set of
clocks which are reset in t. We call a timed automaton diagonal-free if guards
in transitions do not use diagonal constraints.

A configuration of A is a pair (q, v) where q ∈ Q and v is a valuation. The
semantics of a timed automaton is given by a transition system SA whose states
are the configurations of A. Transitions in SA are of two kinds: delay transitions
are given by (q, v) δ−→ (q, v + δ) for all δ ≥ 0, and action transitions are given by
(q, v) t−→ (q′, v′) for each t := (q, g,R, q′), if v |= g and v′ = [R]v. We write δ,t−→ for
a sequence of delay δ followed by action t. A run of A is an alternating sequence of
delay-action transitions starting from the initial state q0 and the initial valuation
0 which maps every clock to 0: (q0,0)

δ0,t0−−−→ (q1, v1)
δ1,t1−−−→ · · · (qn, vn). A run of

the above form is said to be accepting if the last state qn ∈ F . The reachability
problem for timed automata is the following: given an automaton A, decide if
there exists an accepting run. This problem is known to be PSPACE-complete [2].
Since the semantics SA is infinite, solutions to the reachability problem work with
a finite abstraction of SA that is sound and complete. Before we explain one of
the popular solutions to reachability, we state a result which allows to convert
every timed automaton into a diagonal-free timed automaton.

Theorem 1. [7] For every timed automaton A, there exists a diagonal-free
timed automaton Adf s.t. there is a bijection between runs of A and Adf . The
number of states in Adf is 2d · n where d is the number of diagonal constraints
and n is the number of states of A.

The above theorem allows to solve the reachability of a timed automaton A
by first converting it into the diagonal free automaton Adf and then checking
reachability on Adf . However, this conversion comes with a systematic exponen-
tial blowup (in terms of the number of diagonal constraints present in A). It was
shown in [10] that such a blowup is unavoidable in general. We will now recall
the general algorithm for analyzing timed automata, and then move into specific
details which depend on whether the automaton has diagonal constraints or not.

Zones and Simulations. Fix a timed automaton A with clock set X for the
rest of the discussion in this section. As the space of valuations of A is infinite,
algorithms work with sets of valuations called zones. A zone is set of clock
valuations given by a conjunction of constraints of the form x − y � c, x � c and

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 45

c � x where c ∈ Z and � ∈ {<,≤}, for example the solutions of x−y < 5∧y ≤ 10
is a zone. The transition relation over configurations (q, v) is extended to (q, Z)
where Z is a zone. We define the following operations on zones given a guard g

and a set of clocks R: time elapse
−→
Z = {v+ δ | v ∈ Z, δ ≥ 0}; guard intersection

Z∧g := {v | v ∈ Z and v |= g} and reset [R]Z := {[R]v | v ∈ Z}. It can be shown
that all these operations result in zones. Zones can be efficiently represented and
manipulated using Difference Bound Matrices (DBMs) [15].

The zone graph ZG(A) of timed automaton A is a transition system whose
nodes are of the form (q, Z) where q is a state of A and Z is a zone. For
each transition t := (q, g,R, q′) of A, and each zone (q, Z) there is a transi-
tion (q, Z) ⇒t (q′, Z ′) where Z ′ =

−−−−−−−→
[R](Z ∧ g). The initial node is (q0, Z0) where

q0 is the initial state of A and Z0 = {0 + δ | δ ≥ 0} is the zone obtained by
elapsing an arbitrary delay from the initial valuation. A path in the zone graph
is a sequence (q0, Z0) ⇒t0 (q1, Z1) ⇒t1 · · · ⇒tn−1 (qn, Zn) starting from the
initial node. The path is said to be accepting if qn is an accepting state. The
zone graph is known to be sound and complete for reachability.

Theorem 2. [14] A has an accepting run iff ZG(A) has an accepting path.

This does not yet give an algorithm as the zone graph ZG(A) is still not
finite. Moreover, there are examples of automata for which the reachable part
of ZG(A) is also infinite: starting from the initial node, applying the successor
computation leads to infinitely many zones. Two different approaches have been
studied to get finiteness, both of them based on the usage of simulation relations.

A (time-abstract) simulation relation (�) between configurations of A is a
reflexive and transitive relation such that (q, v) � (q′, v′) implies q = q′ and (1)
for every δ ≥ 0, there exists δ′ ≥ 0 such that (q, v + δ) � (q, v′ + δ′) and (2)
for every transition t of A, if (q, v) t−→ (q1, v1) then (q, v′) t−→ (q1, v′

1) such that
(q1, v1) � (q1, v′

1).
We say v � v′, read as v is simulated by v′ if (q, v) � (q, v′) for all states

q. The simulation relation can be extended to zones: Z � Z ′ if for every v ∈ Z
there exists v′ ∈ Z ′ such that v � v′. We write ↓Z for {v | ∃v′ ∈ Z s.t. v � v′}.
The simulation relation � is said to be finite if the function mapping zones Z to
the down sets ↓Z has finite range. We now recall a specific simulation relation
�LU [5,23]. Current algorithms and tools for diagonal-free automata are based
on this simulation. The conditions required for v �LU v′ ensure that when all
lower bound constraints c � x satisfy c ≤ L(x) and all upper bound constraints
x � c satisfy c ≤ U(x), whenever v satisfies a constraint, v′ will also satisfy it.

Definition 1 (LU-bounds and the relation �LU [5,23]). An LU -bounds
function is a pair of functions L : X �→ N∪ {−∞} and U : X �→ N∪ {−∞} that
map each clock to either a non-negative constant or −∞. Given an LU -bounds
function, we define v �LU v′ for valuations v, v′ if for every clock x ∈ X:

v′(x) < v(x) implies L(x) < v′(x) and v(x) < v′(x) implies U(x) < v(x).

46 P. Gastin et al.

Reachability in Diagonal-Free Timed Automata. A natural method to
get finiteness of the zone graph is to prune the zone graph computation through
simulations Z � Z ′: do not explore a node (q, Z) if there is an already visited
node (q, Z ′) such that Z � Z ′. Since these simulation tests need to be done often
during the zone graph computation, an efficient algorithm for performing this
test is crucial. Note that Z � Z ′ iff Z ⊆ ↓Z ′. However, it is known that the set
↓Z ′ is not necessarily a zone (this was proved for ↓LUZ ′ in [5]), and hence no
simple zone inclusions are applicable. The first algorithms for timed automata
followed a different approach, which we call the extrapolation approach. In this
approach, whenever a new zone Z is discovered by the algorithm, a new zone
Extra(Z)(⊇ Z) gets computed and stored in the place of Z.

Reachability Algorithm Using Zone Extrapolation. The input to the algorithm is
a timed automaton A. The algorithm maintains two lists, Passed and Waiting.
Initially, the node (q0,Extra(Z0)) is added to the Waiting list (recall that (q0, Z0)
is the initial node of the zone graph ZG(A)). Wlog. we assume that q0 is not
accepting. The algorithm repeatedly performs the following steps:

Step 1. If Waiting is empty, then return “A has no accepting run”; else pick
(and remove) a node (q, Z) from Waiting. Add (q, Z) to Passed.

Step 2. For each transition t := (q, g,R, q1), compute the successor (q, Z) ⇒t

(q1, Z1): if Z1 �= ∅ perform the following operations - if q1 is accepting, return
“A has an accepting run”; else compute Ẑ1 := Extra(Z1) and check if there
exists a node (q1, Z ′

1) in Passed or Waiting such that Ẑ1 ⊆ Z ′
1: if yes, ignore

the node (q1, Ẑ1), otherwise add (q1, Ẑ1) to Waiting.

Several extrapolation operators (ExtraM , ExtraLU , Extra+LU) were introduced
in [5]. The function Extra+LU has nice properties - (1) Extra+LU(Z) ⊆ ↓LUZ and (2)
Extra+LU(Z) is a zone for all Z. These properties give an algorithm that performs
only efficient zone operations: successor computations and zone inclusions.

Reachability Algorithm Using Simulations. The initial node (q0, Z0) is added
to the Waiting list. Wlog. we assume that q0 is not accepting. The algorithm
repeatedly performs the following steps:

Step 1. If Waiting is empty, then return “A has no accepting run”; else pick
(and remove) a node (q, Z) from Waiting. Add (q, Z) to Passed.

Step 2. For each transition t := (q, g,R, q1), compute the successor (q, Z) ⇒t

(q1, Z1): if Z1 �= ∅ perform the following operations - if q1 is accepting, return
“A has an accepting run”; else check if there exists a node (q1, Z ′

1) in Passed
or Waiting such that Z1 � Z ′

1: if yes, ignore the node (q1, Z1), otherwise add
(q1, Z1) to Waiting.

An O(|X|2) algorithm for Z �LU Z ′ was proposed in [23]. The efficiency of
this simulation check makes it well suited for use in practice. Moreover, as
Extra+LU(Z) ⊆ ↓LUZ, we expect to get more simulations (and hence quicker ter-
mination) through �LU .

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 47

Reachability in the Presence of Diagonal Constraints. The �LU relation
is no longer a simulation when diagonal constraints are present. Moreover, it was
shown in [9] that no extrapolation operator (along the lines of Extra+LU) can work
in the presence of diagonal constraints. The first option to deal with diagonals is
to use Theorem 1 to get a diagonal free automaton and then apply the methods
discussed previously. One problem with this is the systematic exponential blowup
introduced in the number of states of the resulting automaton. Another problem
is to get diagnostic information: counterexamples need to be translated back to
the original automaton [6]. Various methods have been studied to circumvent
the diagonal free conversion and instead work on the automaton with diagonal
constraints directly. We recall the approach used in the state-of-the-art tool
UPPAAL below.

Zone Splitting [6]. The paper introducing timed automata gave a notion of equiv-
alence between valuations v �M v′ parameterized by a function M mapping each
clock x to the maximum constant M among the guards of the automaton that
involve x. This equivalence is a finite simulation for diagonal-free automata.
Equivalence classes of �M are called regions. This was extended to the diagonal
case by [6] as: v �d

M v′ if v �M v′ and for all diagonal constraints g present in
the automaton, if v |= g then v′ |= g. The �d

M relation splits the regions further,
such that each region is either entirely included inside g, or entirely outside g for
each g. The next step is to use this notion of equivalence in zones. The paper [6]
follows the extrapolation approach: to each zone Z, an extrapolation operation
ExtraM(Z) is applied; this adds some valuations which are �M equivalent to
valuations in Z; then it is further split into multiple zones, so that each small
zone is either inside g or outside g for each diagonal constraint g. If d is the
number of diagonal constraints present in the automaton, this splitting process
can give rise to 2d zones for each zone Z. From each small zone, the zone graph
computation is started. Essentially, the exponential blow-up at the state level
which appeared in the diagonal-free conversion now appears in the zone level.

In this paper, we propose a new simulation to handle diagonal constraints.
This has two advantages - using this avoids the blow-up in the number of nodes
arising due to zone splitting, and the simulation test between zones has an effi-
cient implementation and is significantly quicker than the simulation of [18].

3 A New Simulation Relation

We start with a definition of a relation between timed automata configurations,
which in some sense “declares” upfront what we need out of a simulation relation
that can be used in a reachability algorithm. As we proceed, we will make its
description more concrete and give an effective simulation algorithm between
zones, that can be implemented. Fix a clock set X. This generates constraints
Φ(X).

Definition 2 (the relation �G). Let G be a (finite or infinite) set of con-
straints. We say v �G v′ if for all ϕ ∈ G and all δ ≥ 0, v + δ |= ϕ implies
v′ + δ |= ϕ.

48 P. Gastin et al.

Our goal is to utilize the above relation in a simulation (as defined in p. xx)
for a timed automaton. Directly from the definition, we get the following lemma
which shows that the �G relation is preserved under time elapse.

Lemma 1. If v �G v′, then v + δ �G v′ + δ for all δ ≥ 0.

The other kind of transformation over valuations is resets. Given sets of
guards G1, G and a set of clocks R, we want to find conditions on G1 and G so
that if v �G1 v′ then [R]v �G [R]v′. To do this, we need to answer this question:
what guarantees should we ensure for v, v′ (via G1) so that [R]v �G [R]v′. This
motivates the next definition.

Definition 3 (weakest pre-condition of �G over resets). For a constraint
ϕ and a set of clocks R, we define a set of constraints wp(�ϕ, R) as follows:
when ϕ is of the form x � c or c � x, then wp(�ϕ, R) is empty if x ∈ R and is
{ϕ} otherwise; when ϕ is a diagonal constraint x − y � c, then wp(�ϕ, R) is:

– {x − y � c} if {x, y} ∩ R = ∅
– {x � c} if y ∈ R, x �∈ R and c ≥ 0
– {−c � y} if x ∈ R, y �∈ R and −c ≥ 0
– empty, otherwise.

For a set of guards G, we define wp(�G, R) :=
⋃

ϕ∈G wp(�ϕ, R).

Note that the relation �G is parameterized by a set of constraints. Addi-
tionally, we desire this set to be finite, so that the relation can be used in an
algorithm. We need to first link an automaton A with such a set of constraints.
One way to do it is to take the set of all guards present in the automaton and
to close it under weakest pre-conditions with respect to all possible subsets of
clocks. A better approach is to consider a set of constraints for each state, as in
[4] where the parameters for extrapolation (the maximum constants appearing
in guards) are calculated at each state.

Definition 4 (State based guards). Let A = (Q,X, q0, T, F) be a timed
automaton. We associate a set of guards G(q) for each state q ∈ Q, which is the
least set of guards (for the coordinate-wise subset inclusion order) such that for
every transition (q, g,R, q1): the guard g and the set wp(�G(q1), R) are present
in G(q). More precisely, {G(q)}q∈Q is the least solution to the following set of
equations written for each q ∈ Q:

G(q) =
⋃

(q,g,R,q1)∈T

{g} ∪ wp(�G(q1), R)

All constraints present in the set wp(�G(q1), R) contain constants which are
already present in �G(q1). The least solution to the above set of equations can
therefore be obtained by a fixed point computation which starts with G(q) set to⋃

(q,g,R,q1)∈T {g} and then repeatedly updates the weakest-preconditions. Since
no new constants are generated in this process, the fixed point computation
terminates. We now have the ingredients to define a simulation relation over
configurations of a timed automaton with diagonal constraints.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 49

Definition 5 (A-simulation). Let A = (Q,X, q0, T, F) be a timed automaton
and let the set of guards G(q) of Definition 4 be associated to every state q ∈
Q. We define a relation �A between configurations of A as (q, v) �A (q, v′) if
v �G(q) v′.

Lemma 2. The relation �A is a simulation on the configurations of timed
automaton A.

As pointed before, Definition 2 gives a declarative description of the simula-
tion and it is unclear how to work with it algorithmically, even when the set of
constraints G is finite. The main issue is with the ∀δ quantification, which is not
finite. We will first provide a characterization that brings out the fact that this
∀δ quantification is irrelevant for diagonal constraints (essentially because value
of v(x) − v(y) does not change with time elapse). Given a set of constraints G,
let G− ⊆ G be the set of non-diagonal constraints in G.

Proposition 1. v �G v′ iff v �G− v′ and for all diagonal constraints ϕ ∈ G, if
v |= ϕ then v′ |= ϕ.

It now amounts to solving the ∀δ problem for non-diagonals. It turns out
that the �LU simulation achieves this, almost. We will see this in more detail in
the next section.

4 Algorithm for Z �G Z′

Fix a finite set of guards G. Restating the definition of �G extended to zones:
Z �G Z ′ if for all v ∈ Z there exists a v′ ∈ Z ′ such that v �G v′. In this
section, we will view the characterization of �G as in Proposition 1 and give an
algorithm to check Z �G Z ′ that uses as an oracle a test Z �G− Z ′. We discuss
the computation of Z �G− Z ′ later in this section. We start with an observation
following from Proposition 1.

Lemma 3. Let ϕ := x − y � c be a diagonal constraint in G. Then Z �G Z ′ if
and only if Z ∩ ϕ �G′ Z ′ ∩ ϕ and Z ∩ ¬ϕ �G′ Z ′ where G′ = G \ {ϕ}.

If G has no diagonal constraints, Z �G Z ′ if and only if Z �G− Z ′.

This leads to the following algorithm consisting of two mutually recursive
procedures. This algorithm is essentially an implementation of the above lemma,
with two optimizations:

– we start with the non-diagonal check in Line 6 of Algorithm 1 - if this is
already violated, then the algorithm returns false;

– suppose Z �G− Z ′, the next task is to perform the checks in the first statement
of Lemma 3 - this is done by Algorithm 2; note however that when Algorithm
2 is called, we already have Z �G− Z ′, hence Z ∩ ¬ϕ �G− Z ′. Therefore we
use an optimization in Line 7 by calling Algorithm 2 directly (as the check in
Line 6 of Algorithm 1 will be redundant).

50 P. Gastin et al.

1 check Z �G Z ′:
2 if Z = ∅ :
3 return true

4 if Z ′ = ∅ :
5 return false

6 if Z ��G− Z ′ :
7 return false

8 return Z �∗
G Z ′

Algorithm 1

1 check Z �∗
G Z ′:

2 if G does not contain any
diagonal constraints :

3 return true

4 pick a diagonal constraint
ϕ = x − y � c from G

5 G′ ←− G \ {ϕ}
6 if Z ∩ ¬ϕ �= ∅ :
7 if Z ∩ ¬ϕ ��∗

G′ Z ′ :
8 return false

9 return Z ∩ ϕ �G′ Z ′ ∩ ϕ

Algorithm 2

Computing Z �G− Z′. We will use �LU to approximate �G− : in our imple-
mentation of the above algorithms, we replace Z �G− Z ′ with Z �LU Z ′. This
works because for an appropriate choice of LU (explained below), we have
Z �LU(G) Z ′ ⇒ Z �G− Z ′. The converse is not true as the LU bounds func-
tions cannot distinguish between guards with < and ≤ comparisons. Therefore,
the �LU simulation does not characterize v �G− v′ completely. Although we are
aware of the (rather technical) modifications to �LU simulation that are needed
for this characterization, we choose to use the existing �LU directly as it is safe
to do so and it has already been implemented in tools. This gives us a finer
simulation than v �G− v′.

Definition 6 (LU-bounds from G). Let G be a finite set of constraints. We
define LU(G) to denote the pair of functions LG and UG defined as follows:

LG(x) =

{
−∞ if there is no guard of the form c � x in G
max{c | c � x ∈ G} otherwise

UG(x) =

{
−∞ if there is no guard of the form x � c in G
max{c | x � c ∈ G} otherwise

Lemma 4. For every set of constraints G, v �LU(G) v′ implies v �G− v′.

The above observations call for the next definition and subsequent lemmas.

Definition 7 (approximating �G). Let G be a finite set of constraints. We
define a relation �LU

G as follows: v �LU
G v′ if v �LU(G) v′ and for all diagonal

constraints ϕ ∈ G, if v |= ϕ then v′ |= ϕ. Similarly, define �LU
A as (q, v) �LU

A
(q, v′) if v �LU

G(q) v′.

Lemma 5. The relation �LU
A is a finite simulation on the configurations of A.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 51

The above lemma and the fact that Z �LU(G) Z ′ can be checked in O(|X|2)
[23,33], imply the following theorem.

Theorem 3. When using Z �LU(G) Z ′ in the place of Z �G− Z ′, the algorithm
is correct and it terminates in O(2d · |X|2) where d is the number of diagonal
guards in G.

From a complexity viewpoint, this algorithm is not efficient since it makes
an exponential number of calls in the number of diagonal constraints (in fact
this may not be avoidable due to Lemma 6, which follows from the NP-hardness
result in [18]). Although the above algorithm does involve many calls, the internal
operations involved in each call are simple zone manipulations. Moreover, the
preliminary checks (for instance line 6 of Algorithm 1) cut short the number
of calls. This is visible in our experiments which are very good, especially with
respect to running time, as compared to other methods. A similar hardness was
shown for a different simulation in [18], but the implementation there indeed
witnessed the hardness, as the time taken by that algorithm was unsatisfactory.

Lemma 6. Deciding Z ��LU
G Z ′ is NP-complete.

5 Simulations for Updatable Timed Automata

In the timed automata considered so far, clocks are allowed to be reset to 0 along
transitions. We consider in this section more sophisticated transformations to
clocks in transitions. These are called updates. An update up : R|X|

≥0 �→ R
|X| is a

function mapping non-negative |X|-dimensional reals (valuations) v to general
|X|-dimensional reals (which may apriori not be valuations as the coordinates
may be negative). The syntax of the update function up is given by a set of
atomic updates upx to each x ∈ X, which are of the form x := c or x := y + d
where c ∈ N, d ∈ Z and y ∈ X (possibly equal to x). Note that we want d to be
an integer, since we allow for decrementing clocks, and on the other hand c ∈ N

since we have non-negative clocks. Given a valuation v and an update up, the
valuation up(v) is:

up(v)(x) :=

{
c if upx is x := c

v(y) + d if upx is x := y + d

Note that in general, due to the presence of updates x := y+d, the update up(v)
may not yield a clock valuation. However, when it does give a valuation, it can
be used as a transformation in timed automata transitions. We say up(v) ≥ 0 if
up(v)(x) ≥ 0 for all clocks x ∈ X.

An updateable timed automaton (UTA) A = (Q,X, q0, T, F) is an extension
of a classic timed automaton with transitions of the form (q, g, up, q′) where up
is an update. Semantics extend in the natural way: delay transitions remain the
same, and for action transitions t := (q, g, up, q′) we have (q, v) t−→ (q′, v′) if v |= g,
up(v) ≥ 0, and v′ = up(v). We allow the transition only if the update results

52 P. Gastin et al.

in a valuation. The reachability problem for these automata is known to be
undecidable in general [12]. Various subclasses with decidable reachability have
been discussed in the same paper. Decidability proofs in [12] take the following
flavour, for a given automaton A: (1) divide the space of all valuations into a
finite number of equivalence classes called regions (2) to build the parameters for
the equivalence, derive a set of diophantine equations from the guards of A; if
they have a solution then construct the quotient graph of the equivalence (called
region graph) parameterized by the obtained solution and check reachability on
it; if the equations have no solution, output that reachability for A cannot be
answered. Sufficient conditions on the nature of the updates that give a solution
to the diophantine equations have been tabulated in [12]. When the automaton
is diagonal-free, the “region-equivalence” can be used to build an extrapolation
operation which in turn can be used in a reachability algorithm with zones.
When the automaton contains diagonals, the region-equivalence is used to only
build a region graph - no effective zone based approach has been studied.

We use a similar idea, but we have two fundamental differences: (1) we want
to obtain reachability through the use of simulations on zones, and (2) we build
equations over sets of guards as in Definition 4. The advantage of this approach
is that this allows the use of coarser simulations over zones. Even for automata
with diagonal constraints and updates, we get a zone based algorithm, instead
of resorting to regions which are not efficient in practice.

The notion of simulations as in p. xx remains the same, now using the seman-
tics of transitions with updates. We will re-use the simulation relation �G. We
need to extend Definition 3 to incorporate updates. We do this below. Here is a
notation: for an update function up, we write up(x) to be c if upx is x := c, and
up(x) to be y + c if upx is x := y + c.

Definition 8 (weakest pre-condition of �G over updates).
Let up be an update.
For a constraint ϕ of the form x � c or c � x, we define wp(�ϕ, up) to be

respectively {up(x) � c} or {c � up(x)} if these resulting constraints are of the
form z � d or d � z with z ∈ X and d ≥ 0, otherwise wp(�ϕ, up) is empty.

For a constraint ϕ : x−y � c, we define wp(�ϕ, up) to be {up(x)−up(y) � c}
if this constraint is either a diagonal using different clocks, or it is of the form
z � d or d � z with d ≥ 0, otherwise wp(�ϕ, up) is empty.

For a set of guards G, we define wp(�G, up) :=
⋃

ϕ∈G wp(�ϕ, up).

Some examples: wp(x ≤ 5, x := x + 10) is empty, since up(x) is x + 10, and
the guard x+10 ≤ 5 is not satisfiable; wp(x ≤ 5, x := x− 10) is x ≤ 15, wp(x ≤
5, x := c) is empty, wp(x−y ≤ 5, 〈x := z1, y := z2+10〉) will be z1−(z2+10) ≤ 5,
giving the constraint z1 − z2 ≤ 15, wp(x − y ≤ 5, 〈x := z + c1, y := z + c2〉) is
empty, wp(x − y ≤ 5, 〈x := c1, y := z + c2〉) is c = c1 − 5− c2 ≤ z if c ≥ 0 and is
empty otherwise.

Definition 9 (State based guards). Let A = (Q,X, q0, T, F) be a UTA.
We associate a set of constraints G(q) for each state q ∈ Q, which is the least
set of constraints (for the coordinate-wise subset inclusion order) such that for

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 53

every transition (q, g, up, q1): the guard g and the set wp(�G(q1), up) are present
in G(q), and in addition constraints that allow the update to happen are also
present in G. The last condition is given by the weakest precondition of the set
of constraints {x ≥ 0 | x ∈ X}. Overall, {G(q)}q∈Q is the least solution to the
following set of equations, for each q ∈ Q:

G(q) =
⋃

(q,g,up,q1)∈T

({g} ∪ wp(�{x≥0|x∈X}, up) ∪ wp(�G(q1), up)
)

The least solution {G(q)}q∈Q is said to be finite if each G(q) is a finite set of
constraints.

In contrast to the simple reset case, the above set of equations may not have
a finite solution. Consider a self-looping transition: (q, x � c, x := x − 1, q). We
require x � c ∈ G(q). Now, wp(x � c, x := x − 1) is x � c + 1 which should be
in G(q) according to the above equation. Continuing this process, we need to
add x � d for every natural number d ≥ c. Indeed this is consistent with the
undecidability of reachability when subtraction updates are allowed. We deal
with the subject of finite solutions to the above equations later in this section.
On the other hand, when the above system does have a solution with finite G(q)
at every q, we can use the A simulation of Definition 5 and its approximation
�LU

A to get an algorithm.

Proposition 2. Let A = (Q,X, q0, T, F) be a UTA. Let {G(q)}q∈Q be the least
solution to the equations given in Definition 9. Then, the relation �A is a sim-
ulation on the configurations of A.

Lemma 7. For a UTA A, assume that the least solution {G(q)}q∈Q to the state-
based guards equations is finite. Then the relation �LU

A is a finite simulation on
the configurations of A.

Finite Solution to the State-Based Guards Equations. The least solution
to the equations of Definition 9 can be obtained by a standard Kleene iteration
for fixed points computation. For each i ≥ 0 and each state q, define:

G0(q) =
⋃

(q,g,up,q′)∈T

{g} ∪ wp(�{x≥0|x∈X}, up)

Gi+1(q) =
⋃

(q,g,up,q′)∈T

Gi(q) ∪ wp(�Gi(q′), up)

The iteration stabilizes when there exists a k satisfying Gk+1(q) = Gk(q) for all
q. At stabilization, the values Gk(q) satisfy the equations of Definition 9, and
give the required G(q). However, as we mentioned earlier, this iteration might
not stabilize at any k. We will now develop some observations that will help
detect after finitely many steps if the iteration will stabilize or not.

Suppose we colour the set Gi+1(q) to red if either there exists a diagonal
constraint x − y � c ∈ Gi+1(q) \ Gi(q) (a new diagonal is added) or there exists a

54 P. Gastin et al.

non-diagonal constraint x � c or c � x in Gi+1(q) \ Gi(q) such that the constant
c is strictly bigger than c′ for respectively every non-diagonal x � c′ or c′ � x
in Gi(q) (a non-diagonal with a bigger constant is added). If this condition is
not applicable, we colour the set Gi+1(q) green. The next observations say that
the iteration terminates iff we reach a stage where all sets are green. Intuitively,
once we reach green, the only constraints that can be added are non-diagonals
having smaller (non-negative) constants and hence the procedure terminates.

Lemma 8. Let i > 0. If Gi(q) is green for all q, then Gi+1(q) is green for all q.

Lemma 9. Let K = 1+ |Q| · |X| · (|X|+1). If there is a state p such that GK(p)
is red, then there is no i such that Gi(q) is green for all q.

As to why the bound K = 1+ |Q| · |X| · (|X|+ 1) in the lemma above: a red
state at stage i arises due to the addition of a constraint ϕi at state pi, which in
turn depends on a state pi−1 marked red at stage i−1 due to constraint ϕi−1. If
we iterate sufficiently long, we will hit a state p, a sequence of transitions from
p to p and a constraint ϕ such that computing the weakest precondition over
this loop will give a new constraint with the same set of clocks as ϕ but with a
different constant. This part can be iterated infinitely often.

Proposition 3. The least solution of the local constraint equations for a UTA
is finite iff GK(q) is green for all q and where K = 1 + |Q| · |X| · (|X| + 1).

Theorem 4. Let A be a UTA. It is decidable whether the equations in Defini-
tion 9 have a finite solution. When these equations do have a finite solution, zone
graph enumeration using �LU

A is a sound, complete and terminating procedure
for the reachability problem.

All decidable classes of [12] can be shown decidable with our approach, by
showing stabilization of the G(q) computation.

Lemma 10. Reachability is decidable in UTA where: guards are non-diagonals
and updates are of the form x := c, x := y, x := y + c where c ≥ 0 or, guards
include diagonal constraints and updates are of the form x := c, x := y.

6 Experiments

We have implemented the reachability algorithm for timed automata with diag-
onal constraints (and only resets as updates) based on the simulation approach
(p. xx) using the �LU

A simulation (Definition 7) for pruning zones. The algorithm
for Z �LU

G Z ′ comes from Sect. 4. Experiments are reported in Table 1. We take
model Cex from [8,30] and Fischer from [30]. We are not aware of any other
“standard” benchmarks containing diagonal constraints. In addition to these two
models, we introduce a new benchmark. This is an extension of the job-shop
scheduling using (diagonal-free) timed automata [1]. Here the tasks within a
job were logically independent. We add some timing dependency between them

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 55

Table 1. Experiments: the column #D gives the number of diagonal constraints. Four
methods have been reported in the table. First two methods, TChecker with our sim-
ulation relation �LU

G and UPPAAL engine for diagonals, have been run on A, the
automata containing diagonal constraints. Whereas, the third and fourth methods are
running diagonal-free engines of UPPAAL and TChecker on Adf , a diagonal-free equiv-
alent of A. Experiments were run on macOS X with 2.3 GHz Intel core i5 processor,
and 8 GB RAM. Time is reported in seconds. We set a timeout of 15 min.

Model #D A: contains diagonals Adf : diagonal-free equivalent of A
TChecker + �LU

G UPPAAL UPPAAL TChecker

Time Nodes count Time Nodes count Time Nodes count Time Nodes count

Cex 2 4 0.047 241 0.026 2180 0.005 1039 0.067 1039

Cex 3 6 7.399 7111 111.168 182394 1.028 60982 40.092 60982

Cex 4 8 857.662 185209 Timeout - 734.543 3447119 Timeout -

Fischer 4 4 0.032 452 307.836 357687 0.009 1815 0.100 1815

Fischer 5 5 0.257 1842 Timeout - 0.116 12511 1.856 12511

Fischer 7 7 15.032 26812 Timeout - 174.560 693603 Timeout -

Job Shop 3 12 0.420 278 23.093 31711 0.003 845 0.312 845

Job Shop 5 20 285.421 10592 Timeout - 4.633 179607 150.811 179607

which gets naturally modeled using diagonal constraints. Each model considered
above is a product of a number of k timed automata. In the table we write the
name of the model and the number k of automata involved in the product. We
also report the number of diagonal constraints in each of them.

Experimental Results. We report the results of four methods of handling diago-
nal constraints, as mentioned in the caption of Table 1. Under each method, we
report on the number of zones enumerated and the time taken. The first method
gives a huge gain over the second one (upto four orders of magnitude in the
number of nodes, and even better for time) and gives a less marked, but still sig-
nificant, gain over the third and fourth methods. We provide a brief explanation
of this phenomenon. The performance of the reachability algorithm is dependent
on three factors:

– parameters of extrapolation or simulation: M -simulations which use the max-
imum constant appearing in the guards, versus the LU -simulations which
make a distinction between lower bound guards c � x and upper bound
guards x � c (refer to [5] for the exact definitions of extrapolations based
on these parameters, and [23] for simulations based on these parameters);
LU -simulations are superior to M -simulations.

– computation of the parameters: global parameters which associate a bound
to each clock versus the more local state based parameters as in Definition 4
which associate a set of bounds functions to each state [4]; local bounds are
superior to global bounds.

– when diagonal constraints are present, whether zones get split or not: each
time a zone gets split, new enumerations start from each of the new nodes;
clearly, a no-splitting-of-zones approach is superior to zone splitting.

56 P. Gastin et al.

Algorithm of column 1 uses the superior heuristic in all the three optimiza-
tions above. The no-splitting-of-zones was possible thanks to our simulation app-
roach, which temporarily splits zones for checking Z �LU

G Z ′, but never starts a
new exploration from any of the split nodes. The algorithm of column 2, which is
implemented in the current version UPPAAL 4.1 uses the inferior heuristic in all
the three above. In particular, it is not clear how the extrapolation approach can
avoid the zone splitting in an efficient manner. The superiority of our approach
gets amplified (by multiplicative factors) when we consider bigger products with
many more diagonals. In the third and fourth methods, we give a diagonal free
equivalent of the original model (c.f. Theorem 1) and use the UPPAAL and
TChecker engines respectively, for diagonal free timed automata. The UPPAAL
diagonal free engine is highly optimized, and makes use of the superior heuristics
in the first two optimizations mentioned above (the third heuristic is not appli-
cable now as it is a diagonal free automaton). The third and fourth methods
can be considered as a good approximation of the zone splitting approach to
diagonal constraints using LU -abstractions and local guards.

The second and the third methods are the only possibilities of verifying timed
models coming with diagonal constraints in UPPAAL. Both these approaches
are in principle prone to a 2#D blowup compared to the first approach, where
#D gives the number of diagonal constraints. The table shows that a good
extent of this blowup indeed happens. The UPPAAL diagonal free engine uses
“minimal constraint systems” [6] for representing zones, whereas TChecker uses
DBMs [15]. This explains why even with the same number of nodes visited,
UPPAAL performs better in terms of time. We have not included in the table
the comparison with two other works dealing with the same problem: the refined
diagonal free conversion [30] and the extension of LU simulation for diagonals
[18]. However, our results are better than the tables reported in these papers.

7 Conclusion

We have proposed a new algorithm for handling diagonal constraints in timed
automata, and extended it to automata with general updates. Our approach
is based on a simulation relation between zones. From our preliminary exper-
iments, we can infer that the use of simulations is indispensable in the pres-
ence of diagonal constraints as zone-splitting can be avoided. Moreover, the fact
that the simulation approach stores the actual zones (as opposed to abstracted
zones in the extrapolation approach) has enabled optimizations for diagonal-free
automata that work with dynamically changing simulation parameters (LU -
bounds), which are learnt as and when the zones are expanded [22]. Working
with actual zones is also convenient for finding cost-optimal paths in priced timed
automata [11]. Investigating these in the presence of diagonal constraints is part
of future work. Currently, we have not implemented our approach for updateable
timed automata. This will also be part of our future work.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 57

Working directly with a model containing diagonal constraints could be con-
venient (both during modeling, and during extraction of diagnostic traces) and
can also potentially give a smaller automaton to begin with. We believe that our
experiments provide hope that diagonal constraints can indeed be used.

References

1. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor.
Comput. Sci. 354(2), 272–300 (2006). https://doi.org/10.1016/j.tcs.2005.11.018

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

3. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES b— a tool
for modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46002-0_32

4. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 254–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X_18

5. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006). https://
doi.org/10.1007/s10009-005-0190-0

6. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

7. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36(2,3),
145–182 (1998). https://doi.org/10.3233/FI-1998-36233

8. Bouyer, P.: Untameable timed automata!. In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36494-3_54

9. Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods Syst.
Des. 24(3), 281–320 (2004). https://doi.org/10.1023/B:FORM.0000026093.21513.
31

10. Bouyer, P., Chevalier, F.: On conciseness of extensions of timed automata. J.
Autom. Lang. Comb. 10(4), 393–405 (2005). https://doi.org/10.25596/jalc-2005-
393

11. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779,
pp. 513–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-
4_28

12. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor.
Comput. Sci. 321(2–3), 291–345 (2004). https://doi.org/10.1016/j.tcs.2004.04.003

13. Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed
automata: forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.) FOR-
MATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005). https://
doi.org/10.1007/11603009_10

14. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

https://doi.org/10.1016/j.tcs.2005.11.018
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-46002-0_32
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.3233/FI-1998-36233
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1023/B:FORM.0000026093.21513.31
https://doi.org/10.1023/B:FORM.0000026093.21513.31
https://doi.org/10.25596/jalc-2005-393
https://doi.org/10.25596/jalc-2005-393
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/BFb0054180

58 P. Gastin et al.

15. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8_17

16. Ferrère, T.: The compound interest in relaxing punctuality. In: Havelund, K.,
Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 147–164.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_9

17. Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes:
schedulability and decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-46002-0_6

18. Gastin, P., Mukherjee, S., Srivathsan, B.: Reachability in timed automata with
diagonal constraints. In: Schewe, S., Zhang, L. (eds.) CONCUR 2018. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 118, pp. 28:1–28:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://
doi.org/10.4230/LIPIcs.CONCUR.2018.28

19. Gastin, P., Mukherjee, S., Srivathsan, B.: Fast algorithms for handling diagonal
constraints in timed automata. CoRR abs/1904.08590 (2019). http://arxiv.org/
abs/1904.08590

20. Hatvani, L., David, A., Seceleanu, C., Pettersson, P.: Adaptive task automata
with earliest-deadline-first scheduling. In: Proceedings of the 14th International
Workshop on Automated Verification of Critical Systems (AVoCS 2014), vol. 70.
Electronic Communications of the EASST (2014). https://doi.org/10.14279/tuj.
eceasst.70.975

21. Herbreteau, F., Point, G.: TChecker, April 2019 https://github.com/fredher/
tchecker (v02)

22. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed
automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
990–1005. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8_71

23. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. Inf. Comput. 251, 67–90 (2016). https://doi.org/10.1016/j.ic.2016.07.
004

24. Herbreteau, F., Tran, T.-T.: Improving search order for reachability testing in
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 124–139. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1_9

25. Ho, H.: Revisiting timed logics with automata modalities. In: Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Con-
trol, HSCC 2019, pp. 67–76. ACM, New York (2019). https://doi.org/10.1145/
3302504.3311818

26. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_61

27. Krčál, P., Yi, W.: Decidable and undecidable problems in schedulability analysis
using timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 236–250. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24730-2_20

28. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997). https://doi.org/10.1007/s100090050010

https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-319-95582-7_9
https://doi.org/10.1007/3-540-46002-0_6
https://doi.org/10.1007/3-540-46002-0_6
https://doi.org/10.4230/LIPIcs.CONCUR.2018.28
https://doi.org/10.4230/LIPIcs.CONCUR.2018.28
http://arxiv.org/abs/1904.08590
http://arxiv.org/abs/1904.08590
https://doi.org/10.14279/tuj.eceasst.70.975
https://doi.org/10.14279/tuj.eceasst.70.975
https://github.com/fredher/tchecker
https://github.com/fredher/tchecker
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1007/978-3-319-22975-1_9
https://doi.org/10.1007/978-3-319-22975-1_9
https://doi.org/10.1145/3302504.3311818
https://doi.org/10.1145/3302504.3311818
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-540-24730-2_20
https://doi.org/10.1007/978-3-540-24730-2_20
https://doi.org/10.1007/s100090050010

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 59

29. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of
timed service protocols. ACM Trans. Softw. Eng. Methodol. 19(4), 11:1–11:38
(2010). https://doi.org/10.1145/1734229.1734230

30. Reynier, P.A.: Diagonal constraints handled efficiently in UPPAAL. In: Research
report LSV-07-02. Laboratoire Spécification et Vérification, ENS Cachan, France
(2007)

31. Wang, F.: Efficient verification of timed automata with BDD-like data structures.
Int. J. Softw. Tools Technol. Transf. 6(1), 77–97 (2004). https://doi.org/10.1007/
s10009-003-0135-4

32. Yovine, S.: Kronos: a verification tool for real-time systems. (Kronos user’s manual
release 2.2). STTT 1, 123–133 (1997). https://doi.org/10.1007/s100090050009

33. Zhao, J., Li, X., Zheng, G.: A quadratic-time dbm-based successor algorithm for
checking timed automata. Inf. Process. Lett. 96(3), 101–105 (2005). https://doi.
org/10.1016/j.ipl.2005.05.027

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/1734229.1734230
https://doi.org/10.1007/s10009-003-0135-4
https://doi.org/10.1007/s10009-003-0135-4
https://doi.org/10.1007/s100090050009
https://doi.org/10.1016/j.ipl.2005.05.027
https://doi.org/10.1016/j.ipl.2005.05.027
http://creativecommons.org/licenses/by/4.0/

	Fast Algorithms for Handling Diagonal Constraints in Timed Automata
	1 Introduction
	2 Preliminaries
	3 A New Simulation Relation
	4 Algorithm for Z GZ'
	5 Simulations for Updatable Timed Automata
	6 Experiments
	7 Conclusion
	References

