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Abstract. Analysis of large continuous-time stochastic systems is a
computationally intensive task. In this work we focus on population mod-
els arising from chemical reaction networks (CRNs), which play a funda-
mental role in analysis and design of biochemical systems. Many relevant
CRNs are particularly challenging for existing techniques due to complex
dynamics including stochasticity, stiffness or multimodal population dis-
tributions. We propose a novel approach allowing not only to predict,
but also to explain both the transient and steady-state behaviour. It
focuses on qualitative description of the behaviour and aims at quanti-
tative precision only in orders of magnitude. First we build a compact
understandable model, which we then crudely analyse. As demonstrated
on complex CRNs from literature, our approach reproduces the known
results, but in contrast to the state-of-the-art methods, it runs with vir-
tually no computational cost and thus offers unprecedented scalability.

1 Introduction

Chemical Reaction Networks (CRNs) are a versatile language widely used for
modelling and analysis of biochemical systems [12] as well as for high-level pro-
gramming of molecular devices [8,40]. They provide a compact formalism equiv-
alent to Petri nets [37], Vector Addition Systems (VAS) [29] and distributed
population protocols [3]. Motivated by numerous potential applications ranging
from system biology to synthetic biology, various techniques allowing simulation
and formal analysis of CRNs have been proposed [2,9,21,24,39], and embodied
in the design process of biochemical systems [20,25,32]. The time-evolution of
CRNs is governed by the Chemical Master Equation (CME), which describes the
probability of the molecular counts of each chemical species. Many important
biochemical systems lead to complex dynamics that includes state space explo-
sion, stochasticity, stiffness, and multimodality of the population distributions
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[23,44], and that fundamentally limits the class of systems the existing techniques
can effectively handle. More importantly, biologist and engineers often seek for
plausible explanations why the system under study has or has not the required
behaviour. In many cases, a set of system simulations/trajectories or population
distributions is not sufficient and the ability to provide an accurate explanation
for the temporal or steady-state behaviour is another major challenge for the
existing techniques.

In order to cope with the computational complexity of the analysis and in
order to obtain explanations of the behaviour, we shift the focus from quanti-
tatively precise results to a more qualitative analysis, closer to how a human
would behold the system. Yet we insist on providing at least rough timing infor-
mation on the behaviour as well as rough classification of probability of differ-
ent behaviours at the extent of “very likely”, “few percent”, “barely possible”,
so that we can conclude on issues such as time to extinction or bimodality of
behaviour. This gives rise to our semi-quantitative approach. We stipulate that
analyses in this framework reflect quantities in orders of magnitude, both for
time duration and probabilities, but not more than that. This paradigm shift is
reflected on two levels: (1) We abstract systems into semi-quantitative models.
(2) We analyse systems in a semi-quantitative way. While each of the two can
be combined with a traditional abstraction/analysis, when combined together
they provide powerful means to understand systems’ behaviour with virtually
no computational cost.

Semi-quantitative Models. The states of the models contain information on
the current amount of objects of each species as an interval spanning often sev-
eral orders of magnitude, unless instructed otherwise. For instance, if an amount
of a certain species is to be closely monitored (as a part of the input speci-
fication/property of the system) then this abstraction can be finer. Similarly,
whenever the analysis of a previous version of the abstraction points to the lack
of precision in certain states, preventing us to conclude which of the possible
behaviours is prevalent, the corresponding refinement can take place. Further,
the rates of the transitions are also captured only with such imprecision. The
crucial point allowing for existence of such models that are small, yet faithful,
is our concept of acceleration. It captures certain sequences of transitions. It
eliminates most of the non-determinism that paralyses other types of abstrac-
tions, which are too over-approximative, unable to conclude anything, but safety
properties.

Semi-quantitative Analysis. Instead of performing exact transient or steady-
state analysis, we can consider most probable transitions and then carefully lift
this to most probable temporal behaviours. Technically, this is done by alter-
nating between transient and steady-state analysis where only some rates and
transitions are taken into account at different stages. In order to further facili-
tate the resulting insight of the human on the result of the analysis, we provide an
algorithm to perform this analysis with virtually no computation effort and thus
possibly manually. The trivial computations immediately pinpoint why certain
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behaviours occur. Moreover, less likely behaviours can also be identified easily,
to any desired degree of improbability (dozens of percent, promilles etc.).

To summarise, the first step yields tiny models, allowing for a synoptic obser-
vation of the model; due to their size these models can be either analysed easily
using standard means, or can be subject to the second step. The second step
provides an efficient approximative analysis, which is also very illustrative due
to the limited use of quantities. It can be applied to any system; however, it is
particularly interesting in connection with the models coming from the first step
since (i) no extra effort (size, computation) is wasted on overly precise treatment
that is ignored by the other step, and (ii) together they yield an understandable
explanation of the behaviour. An entertaining feature of this paradigm is that
the stiffer (with rates at hugely different time scales) the system is the easier it
is to analyse.

To demonstrate the capabilities of our approach, we consider three chal-
lenging and biologically relevant case studies that have been used in literature
to evaluate state-of-the-art methods for the CRN analysis. It has been shown
that many approaches fail, either due to time-outs or incapability to capture
differences in behaviours, and some tailored ones require considerable compu-
tational effort, e.g. an hour of computation. Our experiments clearly show that
the proposed approach can deliver results that yield qualitatively same informa-
tion, more understanding and can be computed in minutes by hand (or within
a fraction of a second by computer).

Our contribution can be summarized as follows:

– We propose a novel semi-quantitative framework for analysis of CRN and
similar population models, focusing on explainability of the results and low
complexity, with quantitative precision limited to orders of magnitude.

– An algorithm for abstracting CRNs into semi-quantitative models based on
interval abstraction of the species population and on transition acceleration.

– An algorithm for semi-quantitative analysis that replaces exact numerical
computation by exploring the most probable transitions and alternating tran-
sient and steady-state analysis.

– We consider three challenging CRNs thoroughly studied in literature and
demonstrate that the semi-quantitative abstraction and analysis gives us a
unique tool that is able to accurately predict and explain both transient and
steady-state behaviour of complex CRNs in a fraction of a second.

Related Work

To the best of our knowledge, there does not exist any abstraction of CRNs
similar to the proposed approach. Indeed, there exist various abstraction and
approximation schemes for CRNs that improve the performance and scalability
of both the simulation-based and the numerical-based techniques. In the fol-
lowing paragraphs, we discuss the most relevant directions and the links to our
approach.
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Approximate Semantics for CRNs. For CRNs including large populations
of species, fluid (mean-field) approximation techniques can be applied [5] and
extended to approximate higher-order moments [15]: these deterministic approx-
imations lead to a set of ordinary differential equations (ODEs). An alternative
is to approximate the CME as a continuous-state stochastic process. The Linear
Noise Approximation (LNA) is a Gaussian process which has been derived as an
approximation of the CME [16,44] and describes the time evolution of expec-
tation and variance of the species in terms of ODEs. Recently, an aggregation
scheme over ODEs that aims at understanding the dynamics of large CRNs has
been proposed in [10]. In contrast to our approach, the deterministic approx-
imations cannot adequately capture the stochasticity of CRNs caused by low
population species.

To mitigate this drawback, various hybrid models have been proposed. The
common idea of these models is as follows: the dynamics of low population species
is described by the discrete stochastic process and the dynamics of large pop-
ulation species is approximated by a continuous process. The particular hybrid
models differ in the approximation of the large population species. In [27], a pure
deterministic semantics for large population species is used. The moment-based
description for medium/high-copy number species was used in [24]. The LNA
approximation and an adaptive partitioning of the species according to leap con-
ditions (that is more general than partitioning based on population thresholds)
was proposed in [9]. All hybrid models have to deal with interactions between
low and large population species. In particular, the dynamics of the stochastic
process describing the low-population species is conditioned by the continuous-
state describing the concentration of the large-population species. The numeri-
cal analysis of such conditioned stochastic process is typically a computationally
demanding task that limits the scalability.

In contrast, our approach does not explicitly partition the species, but rather
abstracts the concrete species population using an interval abstraction and tries
to effectively capture both the stochastic and the deterministic behaviour with
the help of the accelerated transitions. As we already emphasised, the proposed
abstraction and analysis avoids any numerical computation of precise quantities.

Reduction Techniques for Stochastic Models. A widely studied reduc-
tion method for Markov models is state aggregation based on lumping [6] or
(bi-)simulation equivalence [4], with the latter notion in its exact [33] or approx-
imate [13] form. Approximate notions of equivalence have led to new abstrac-
tion/refinement techniques for the numerical verification of Markov models over
finite [14] as well as uncountably-infinite state spaces [1,41,42]. Several approx-
imate aggregation schemes leveraging the structural properties of CRNs were
proposed [17,34,45]. Abate et al. proposed an adaptive aggregation that gives
formal guarantees on the approximation error, but typically provide lower state
space reductions [2]. Our approach shares the idea of abstracting the state space
by aggregating some states together. Similarly to [17,34,45], we partition the
state space based on the species population, i.e. we also introduce the popula-
tion levels. In contrast to the aforementioned aggregation schemes, we propose a
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novel abstraction of the transition relation based on the acceleration. It allows us
to avoid the numerical solution of the approximate CME and thus achieve a bet-
ter reduction while providing an accurate predication of the system behaviour.

Alternative methods to deal with large/infinite state spaces are based on a
state truncation trying to eliminate insignificant states, i.e., states reached only
with a negligible probability. These methods, including finite state projections
[36], sliding window abstractions [26], or fast adaptive uniformisation [35], are
able to quantify the total probability mass that is lost due to the truncation,
but typically cannot effectively handle systems involving a stiff behaviour and
multimodality [9].

Simulation-Based Analysis. Transient analysis of CRNs can be performed
using the Stochastic Simulation Algorithm (SSA) [21]. Note that the SSA
produces a single realisation of the stochastic process, whereas the stochastic
solution of CME gives the probability distribution of each species over time.
Although simulation-based analysis is generally faster than direct solution of the
stochastic process underlying the given CRN, obtaining good accuracy necessi-
tates potentially large numbers of simulations and can be very time consuming.

Various partitioning schemes for species and reactions have been proposed
for the purpose of speeding up the SSA in multi-scale systems [23,38,39]. For
instance, Yao et al. introduced the slow-scale SSA [7], where they distinguish
between fast and slow species. Fast species are then treated assuming they reach
equilibrium much faster than the slow ones. Adaptive partitioning of the species
has been considered in [19,28]. In contrast to the simulation-based analysis, our
approach (i) provides a compact explanation of the system behaviour in the form
of tiny models allowing for a synoptic observation and (ii) can easily reveal less
probable behaviours.

2 Chemical Reaction Networks

In this paper, we assume familiarity with standard verification of (continuous-
time) probabilistic systems, e.g. [4]. For more detail, see [11, Appendix].

CRN Syntax. A chemical reaction network (CRN) N = (Λ,R) is a pair of finite
sets, where Λ is a set of species, |Λ| denotes its size, and R is a set of reactions.
Species in Λ interact according to the reactions in R. A reaction τ ∈ R is a
triple τ = (rτ , pτ , kτ ), where rτ ∈ N

|Λ| is the reactant complex, pτ ∈ N
|Λ| is the

product complex and kτ ∈ R>0 is the coefficient associated with the rate of the
reaction. rτ and pτ represent the stoichiometry of reactants and products. Given
a reaction τ1 = ([1, 1, 0], [0, 0, 2], k1), we often refer to it as τ1 : λ1 + λ2

k1−→ 2λ3.

CRN Semantics. Under the usual assumption of mass action kinetics, the
stochastic semantics of a CRN N is generally given in terms of a discrete-state,
continuous-time stochastic process X(t) = (X1(t),X2(t), . . . , X|Λ|(t), t ≥ 0) [16].
The state change associated to the reaction τ is defined by υτ = pτ − rτ , i.e. the
state X is changed to X′ = X + υτ , which we denote as X τ−→ X′. For example,
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for τ1 as above, we have υτ1 = [−1,−1, 2]. For a reaction to happen in a state X,
all reactants have to be in sufficient numbers. The reachable state space of X(t),
denoted as S, is the set of all states reachable by a sequence of reactions from
a given initial state X0. The set of reactions changing the state Xi to the state
Xj is denoted as reac(Xi,Xj) = {τ | Xi

τ−→ Xj}.
The behaviour of the stochastic system X(t) can be described by the (possi-

bly infinite) continuous-time Markov chain (CTMC) γ(N ) = (S,X0,R) where
the transition matrix R(i, j) gives the probability of a transition from Xi to Xj .
Formally,

R(i, j) =
∑

τ∈reac(Xi,Xj)

kτ · Cτ,i where Cτ,i =
N∏

�=1

(
Xi,�

r�

)
(R)

corresponds to the population dependent term of the propensity function where
Xi,� is �th component of the state Xi and r� is the stoichiometric coefficient of the
�-th reactant in the reaction τ . The CTMC γ(N ) is the accurate representation
of CRN N , but—even when finite—not scalable in practice because of the state
space explosion problem [25,31].

3 Semi-quantitative Abstraction

In this section, we describe our abstraction. We derive the desired CTMC con-
ceptually in several steps, which we describe explicitly, although we implement
the construction of the final system directly from the initial CRN.

3.1 Over-Approximation by Interval Abstraction and Acceleration

Given a CRN N = (Λ,R), we first consider an interval continuous-time Markov
decision process (interval CTMDP1), which is a finite abstraction of the infi-
nite γ(N ). Intuitively, abstract states are given by intervals on sizes of popu-
lations with an additional specific that the abstraction captures enabledness of
reactions. The transition structure follows the ideas of the standard may abstrac-
tion and of the three-valued abstraction of continuous-time systems [30]. A tech-
nical difference in the latter point is that we abstract rates into intervals instead
of uniformising the chain and then only abstracting transition probabilities into
intervals; this is necessary in later stages of the process. The main difference is
that we also treat certain sequences of actions, which we call acceleration.

Abstract Domains. The first step is to define the abstract domain for the
population sizes. For every species λ ∈ Λ, we define a finite partitioning Aλ of
N into intervals, reflecting the rough size of the population. Moreover, we want
the abstraction to reflect whether a reaction is enabled. Hence we require that
1 Interval CTMDP is a CTMDP with lower/upper bounds on rates. Since it serves only

as an intermediate formalism to ease the presentation, we refrain from formalising
it here.
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{0} ∈ Aλ for the case when the coefficients of this species as a reactant is always
0 or 1; in general, for every i < maxτ∈R rτ (λ) we require {i} ∈ Aλ.

The abstraction αλ(n) of a number n of a species λ is then the I ∈ Aλ for
which n ∈ I. The state space of α(N ) is the product

∏
λ∈Λ Aλ of the abstract

domains with the point-wise defined abstraction α(n)λ = αλ(nλ).
The abstract domain for the rates according to (R) is the set of all real

intervals.
Transitions from an abstract state are defined as the may abstraction as

follows. Since our abstraction reflect enabledness, the same set of action is
enabled in all concrete states of a given abstract state. The targets of the action
in the abstract setting are abstractions of all possible concrete successors, i.e.
succ(s, a) := {α(n) | m ∈ s,m

a−→ n}, in other words, the transitions enabled in
at least one of the respective concrete states. The abstract rate is the smallest
interval including all the concrete rates of the respective concrete transitions.
This can be easily computed by the corner-points abstraction (evaluating only
the extremum values for each species) since the stoichiometry of the rates is
monotone in the population sizes.

High-Level of Non-determinism. The (more or less) standard style of the
abstraction above has several drawbacks—mostly related to the high degree of
non-determinism for rates—which we will subsequently discuss.

Firstly, in connection with the abstract population sizes, transitions to dif-
ferent sizes only happen non-deterministically, leaving us unable to determine
which behaviour is probable. For example, consider the simple system given by
λ

d−→ ∅ with kd = 10−4 so the degradation happens on average each 104 seconds.
Assume population discretisation into [0], [1..5], [6..20], [21..∞) with abstraction
depicted in Fig. 1. While the original system obviously moves from [6..20] to
[1..5] very probably in less than 15 ·104 seconds, the abstraction cannot even say
that it happens, not to speak of estimating the time.

[0] [1..5] [6..20] [21,∞)
d, 104 d, 6 · 104 d, 21 · 104

d, [2 · 104, 5 · 104] d, [7 · 104, 20 · 104] d, [22 · 104,∞)

[0] [1..5] [6..20] [21,∞)
d, .44 · 104 d, [.76 · 104, 6 · 104] d, (0, 21 · 104

Fig. 1. Above: Interval CTMDP abstraction with intervals on rates and non-
determinism. Below: Interval CTMC abstraction arising from acceleration.

Acceleration. To address this issue, we drop the non-deterministic self-loops
and transitions to higher/lower populations in the abstract system.2 Instead,
2 One can also preserve the non-determinism for the special case when one of the

transitions leads to a state where some action ceases to be enabled. While this adds
more precision, the non-determinism in the abstraction makes it less convenient to
handle.
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we “accelerate” their effect: We consider sequences of these actions that in the
concrete system have the effect of changing the population level. In our example
above, we need to take the transition 1 to 13 times from [6..20] with various
rates depending on the current concrete population, in order to get to [1..5].
This makes the precise timing more complicated to compute. Nevertheless, the
expected time can be approximated easily: here it ranges from 1

6 ·104 = 0.17 ·104

(for population 6) to roughly ( 1
20 + 1

19 +· · ·+ 1
6 )·104 = 1.3·104 (for population 20).

This results in an interval CTMC.3

Concurrency in Acceleration. The accelerated transitions can due to higher
number of occurrences be considered continuous or deterministic, as opposed to
discrete stochastic changes as distinguished in the hybrid approach. The usual
differential equation approach would also take into account other reactions that
are modelled deterministically and would combine their effect into one equation.
In order to simplify the exposition and computation and—as we see later—
without much loss of precision, we can consider only the fastest change (or
non-deterministically more of them if their rates are similar).4

3.2 Operational Semantics: Concretisation to a Representative

The next disadvantage of classical abstraction philosophy, manifested in the
interval CTMC above is that the precise-valued intervals on rates imply high
computational effort during the analysis. Although the system is smaller, stan-
dard transient analysis is still quite expensive.

Concretisation. In order to deal with this issue, the interval can be approxi-
mated roughly by the expected time it would take for an average population in
the considered range, in our example the “average” representative is 13. Then
the first transition occurs with rate 13 · 10−4 = 10−3 and needs to happen 7
times, yielding expected time 7/13 · 104 = 0.5 · 104 (ignoring even the precise
slow downs in the rates as the population decreases). Already this very rough
computation yields relative precision with factor 3 for all the populations in this
interval, thus yielding the correct order of magnitude with virtually no effort.
We lift the concretisation naturally to states and denote the concretisation of
abstract state s by γ(s). The complete procedure is depicted in Algorithm 1.

The concretisation is one of the main points where we deliberately drop a
lot of quantitative information, while still preserving some to conclude on big
quantitative differences. Of course, the precision improves with more precise
abstract domains and also with higher differences on the original rates.

3 The waiting times are not distributed according to the rates in the intervals. It is only
the expected waiting time (reciprocal of the rate) that is preserved. Nevertheless, for
ease of exposition, instead of labelling the transitions with expected waiting times
we stick to the CTMC style with the reciprocals and formally treat it as if the label
was a real rate.

4 Typically the classical concurrency diamond appears and the effect of the other
accelerated reactions happen just after the first one.
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Algorithm 1. Semi-quantitative abstraction CTMC α(N )
1: A ← ∏

λ∈Λ Aλ � States

2: for a ∈ A do � Transitions
3: c ← γ(a) � Concrete representative

4: for each τ enabled in c do
5: r ←rate of τ in c � According to (R)

6: a′ ← α(c + υτ ) � Successor

7: set a
τ−→ a′ with rate r

8: for self-loop a
τ−→ a do � Accelerate self-loops

9: nτ ← min{n | α(c + n · υτ ) �= a} � the number of τ to change the abstract state

10: a′ ← α(c + nτ · υτ ) � Acceleration successor

11: instead of the self-loop with rate r, set a
τ−→ a′ with rate nτ · r

It remains to determine the representative for the unbounded interval. In
order to avoid infinity, we require an additional input for the analysis, which are
deemed upper bounds on possible population of each species. In cases when any
upper bound is hard to assume, we can analyse the system with a random one
and see if the last interval is reachable with significant probability. If yes, then
we need to use this upper bound as a new point in the interval partitioning and
try a higher upper bound next time. In general, such conditions can be checked
in the abstraction and their violation implies a recommendation to refine the
abstract domains accordingly.

Orders-of-Magnitude Abstraction. Such an approximation is thus sufficient
to determine most of the time whether the acceleration (sequence of actions)
happens sooner or later than e.g. another reaction with rate 10−6 or 10−2. Note
that this decision gets more precise not only as we refine the population levels,
but also as the system gets stiffer (the concrete values of the rates differ more),
which are normally harder to analyse. For the ease of presentation in our case
studies, we shall depict only the magnitude of the rates, i.e. the decadic logarithm
rounded to an integer.

Non-determinism and Refinement. If two rates are close to each other, say
of the same magnitude (or difference 1), such a rough computation (and rough
population discretisation) is not precise enough to determine which of the reac-
tions happens with high probability sooner. Both may be happening roughly at
the same pace, or with more information we could conclude one of them is con-
siderably faster. This introduces an uncertainty, showing different behaviours are
possible depending on the exact quantities. This indicates points where refine-
ment might be needed if more precise results are required. For instance, with
rates of magnitudes 2 and 3, the latter should be happing most of the time, the
former only with a few percent chance. If we want to know whether it is rather
tens of percent or tenths of percent, we should refine the abstraction.
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4 Semi-quantitative Analysis

In this section, we present an approximative analysis technique that describes
the most probable transient and steady-state behaviour of the system (also with
rough timing) and on demand also the (one or more orders of magnitude) less
probable behaviours. As such it is robust in the sense that it is well suited to work
with imprecise rates and populations. It is computationally easy (can be done
in hand in time required for a computer by other methods), while still yielding
significant quantitative results (“in orders of magnitude”). It does not provide
exact error guarantees since computing them would be almost as expensive as
the classical analysis. It only features trivial limit-style bounds: if the population
abstraction gets more and more refined, the probabilities converge to those of the
original system; further, the higher the separation between the rate magnitudes,
the more precise the approximation is since the other factors (and thus the
incurred imprecisions) play less significant role.

Intuitively, the main idea—similar to some multi-rate simulation techniques
for stiff systems—is to “simulate” “fast” reactions until the steady state and
then examine which slower reactions take place. However, “fast” does not mean
faster than some constant, but faster than other transitions in a given state.
In other words, we are not distinguishing fast and slow reactions, but tailor
this to each state separately. Further, “simulation” is not really a stochastic
simulation, but a deterministic choice of the fastest available transition. If a
transition is significantly faster than others then this yields what a simulation
would yield. When there are transitions with similar rates, e.g. with at most one
order of magnitude difference, then both are taken into account as described in
the following definition.

Pruned System. Consider the underlying graph of the given CTMC. If we keep
only the outgoing transitions with the maximum rate in each state, we call the
result pruned. If there is always (at most) one transition then the graph consists
of several paths leading to cycles. In general when more transitions are kept, it
has bottom strongly connected components (bottom SCCs, BSCCs) and some
transient parts.

We generalise this concept to n-pruning that preserves all transitions with
a rate that is not more than n orders of magnitude smaller than the maximum
rate in the state. Then the pruning above is 0-pruning, 1-pruning preserves also
transitions happening up to 10 times slower, which can thus still happen with
dozens of percent, 2-pruning is relevant for analysis where behaviour occurring
with units of percent is also tracked etc.

Algorithm Idea. Here we explain the idea of Algorithm 2. The transient parts
of the pruned system describe the most probable behaviour from each state until
the point where visited states start to repeat a lot (steady state of the pruned
system). In the original system, the usual behaviour is then to stay in this SCC
C until one of the pruned (slower) reactions occurs, say from state s to state t.
This may bring us to a different component of the pruned graph and the analysis
process repeats. However, t may also bring us back into C, in which case we stay
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in the steady-state, which is basically the same as without the transition from
s to t. Further, t might be in the transient part leading to C, in which case
these states are added to C and the steady state changes a bit, spreading the
distribution slightly also to the previously transient states. Finally, t might be
leading us into a component D where this run was previous to visiting C. In
that case, the steady-state distribution spreads over all the components visited
between D and C, putting a probability mass to each with a different order of
magnitude depending on all the (magnitudes of) sojourn times in the transient
and steady-state phases on the way.

Using the macros defined in the algorithm, the correctness of the compu-
tations can be shown as follows. For the time spent in the transient phase
(line 16), we consider the slowest sojourn time on the way times the number
of such transitions; this is accurate since the other times are by order(s) of mag-
nitude shorter, hence negligible. The steady-state distribution on a BSCC of the

Algorithm 2. Semi-quantitative analysis
1: W ← ∅ � worklist of SCCs to process

2: add {initial state} to W and assign iteration 0 to it � artificial SCC to start the process

3: while W �= ∅ do

4: C ←pop W

� Compute and output steady state or its approximation

5: steady-state of C is approximately minStayingRate/(m · stayingRate(·))
6: if C has no exits then continue � definitely bottom SCC, final steady state

� Compute and output exiting transitions and the time spent in C

7: exitStates ← arg minC(stayingRate(·)/exitingRate(·)) � Probable exit points

8: minStayingRate ←minimum rate in C, m ←#occurrences there

9: timeToExit ← stayingRate(s) · m/(|exitStates| · minStayingRate · exitingRate(s))

for (arbitrary) s ∈ exitStates

10: for all s ∈ exitsStates do � Transient analysis

11: t ←target of the exiting transition

12: T ←SCCs reachable in the pruned graph from t

13: thereby newly reached transitions get assigned iteration of C + 1

14: for D ∈ T do

� Compute and output time to get from t to D

15: minRate ←minimum rate on the way from t to D, m ←#occurrences there

16: transTime ← m/minRate

� Determine the new SCC

17: if D = C then � back to the current SCC

18: add to W the union of C and the new transient path τ from t to C

19: in later steady-state computation, the states of τ will have probability

smaller by a factor of stayingRate(s)/exitingRate(s)
20: else if D was previously visited then � alternating between different SCCs

21: add to W the merge of all SCCs visited between D and C (inclusively)

22: in later steady-state computation, reflect all timeToExit and transTime

between D and C

23: else � new SCC

24: add D to W

MACROS:

stayingRate(s) is the rate of transitions from s in the pruned graph

exitingRate(s) is the maximum rate of transitions from s not in the pruned graph
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pruned graph can be approximated by the minStayingRate/(m · stayingRate(·))
on line 5. Indeed, it corresponds to the steady-state distribution if the BSCC is a
cycle and the minStayingRate significantly larger than other rates in the BSCC
since then the return time for the states is approximately m/minStayingRate
and the sojourn time 1/stayingRate(·). The component is exited from s with
the proportion given by its steady-state distribution times the probability to
take the exit during that time. The former is approximated above; the latter
can be approximated by the density in 0, i.e. by exitingRate(s), since the stay-
ing rate is significantly faster. Hence the candidates for exiting are maximising
exitingRate(·)/stayingRate(·) as on line 7. There are |exitStates| candidates for
exit and the time to exit the component by a particular candidate s is the
expected number of visits before exit, i.e. stayingRate(s) · exitingRate(s) times
the return time m · minStayingRate, hence the expression on line 9.

s0 s1 s2 s3t u
11 10 10

1001 1

100

1 10

Fig. 2. Alternating transient and steady-state analysis.

For example, consider the system in Fig. 2. Iteration 1 reveals the part
with solid lines with two (temporary) BSCCs {t} and {s1, s2, s3}. The for-
mer turns out definitely bottom. The latter has a steady state proportional to
(10−1, 10−1, 100−1). Its most probable exits are the dashed ones, identified in the
subsequent iteration 2, probable proportionally to (1/10,10/100); the expected
time to take them is 10 · 2/(2 · 10 · 1) = 1 = 100 · 2/(2 · 10 · 10). The latter leads
back to the current SCC and does not change the set of BSCCs (hence in our
examples below we often either skip or merge such iterations for the sake of read-
ability). In contrast, the former leads to a previous SCC; thereafter {s1, s2, s3} is
no more a bottom SCC and consequently the third exit to u is not even analysed.
Nevertheless, it could still happen with minor probability, which can be seen if
we consider 1-pruning instead.

5 Experimental Evaluation and Discussion

In order to demonstrate the applicability and accuracy of our approach, we
selected the following three biologically relevant case studies. (1) stochastic
model of gene expression [22,24], (2) Goutsias’s model [23] describing transcrip-
tion regulation of a repressor protein in bacteriophage λ and (3) viral infection
model [43].

Although the underlying CRNs are quite small (up to 5 species and 10 reac-
tion), their analysis is very challenging: (i) the stochasticity has a strong impact



Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 487

on the dynamics of these systems and thus purely deterministic approximations
via ODEs are not accurate, (ii) the systems include species with low, medium,
and high populations and thus the resulting state space of the stochastic process
is prohibitively large to perform precise numerical analysis and existing reduc-
tion/approximation techniques are not sufficient (they are either too imprecise
or do not provide sufficient reduction factors), and (iii) the system dynamics
leads to bi-modal distributions and/or is affected by stiff reactions.

These models thus represent perfect candidates for evaluating advanced
approximation methods including various hybrid approaches [9,24,27]. Although
these approaches can handle the models, they typically require tens of minutes
or hours of computation time. Similarly simulation-based methods are very time
consuming especially in case of very stiff CRN, represented by the viral infection
model. We demonstrate that our approach provides accurate predications of the
system behaviour and is feasible even when performed manually by a human.

Recall that the algorithm that builds the abstract model of the given CRN
takes as input two vectors representing the population discretisation and pop-
ulation bounds. We generally assume that these inputs are provided by users
who have a priori knowledge about the system (e.g. in which orders the species
population occurs) and that the inputs also reflect the level of details the users
are interested in. In the following case studies, we, however, set the inputs only
based on the rate orders of the reactions affecting the particular species (unless
mentioned otherwise).

5.1 Gene Expression Model

The CRN underlying the gene expression model is described in Table 1. As dis-
cussed in [24] and experimentally observed in [18], the system oscillates between
two phases characterised by the Don state and the Doff state, respectively. Biol-
ogists are interested in how the distribution of the Don and Doff states is aligned
with the distribution of RNA and proteins P, and how the correlation among
the distributions depends on the DNA switching rates.

The state vector of the underlying CTMC is given as [P, RNA, Doff, Don]. We
use very relaxed bounds on the maximal populations, namely the bound 1000
for P and 100 for RNA. Note the DNA invariant Don + Doff = 1. As in [24], the
initial state is given as [10,4,1,0].

We first consider the slow switching rates that lead to a more compli-
cated dynamics including bimodal distributions. In order to demonstrate the
refinement step and its effect on the accuracy of the model, we start with a
very coarse abstraction. It distinguishes only the zero population and the non-
zero populations and thus it is not able to adequately capture the relationship
between the DNA state and RNA/P population. The pruned abstract model
obtained using Algorithm 1 and 2 is depicted in Fig. 3 (left). The full one before
pruning is shown in Fig. 6 [11, Appendix].

The proposed analysis of the model identifies the key trends in the system
dynamic. The red transitions, representing iterations 1–3, capture the most prob-
able paths in the system. The green component includes states with DNA on
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Table 1. Gene expression. For slow DNA switching, r1 = r2 = 0.05. For fast DNA
switching, r1 = r2 = 1. The rates are in h−1.

Fig. 3. Pruned abstraction for the gene expression model using the coarse population
discretisation (left) and after the refinement (right). The state vector is [P, RNA, Doff,
Don].

(i.e. Don = 1) where the system oscillates. The component is reached via the
blue state with Doff and no RNAs/P. The blue state is promptly reached from
the initial state and then the system waits (roughly 100 h according our rate
abstraction) for the next DNA activation. The oscillation is left via a deactiva-
tion in the iteration 4 (the blue dotted transition)5. The estimation of the exit
time computed using Algorithm 2 is also 100 h. The deactivation is then followed
by fast red transitions leading to the blue state, where the system waits for the
next activation. Therefore, we obtain an oscillation between the blue state and
the green component, representing the expected oscillation between the Don and
Doff states.

As expected, this abstraction does not clearly predict the bimodal distri-
bution on the RNA/P populations as the trivial population levels do not bear
any information beside reaction enabledness. In order to obtain a more accurate
analysis of the system, we refine the population discretisation using a single level
threshold for P and DNA, that is equal to 100 and 10, respectively (the rates in
the CRN indicate that the population of P reaches higher values).

Figure 3 (right) depicts the pruned abstract model with the new discretisa-
tion (the full model is depicted in Fig. 7 [11, Appendix]. We again obtain the
oscillation between the green component representing DNAon states and the
blue DNAoff state. The states in the green component more accurately predicts

5 In Fig. 3, the dotted transitions denote exit transitions representing the deactiva-
tions.
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that in the DNAon states the populations of RNA and P are high and drop
to zero only for short time periods. The figure also shows orange transitions
within the iteration 2 that extend the green component by two states. Note that
the system promptly returns from these states back to the green component.
After the deactivation in the iteration 4, the system takes (within the same
iteration) the fast transitions (solid blue) leading to the blue component where
system waits for another activation and where the mRNA/protein populations
decrease. The expected time spent in states on blue solid transitions is small and
thus we can reliably predict the bimodal distribution of the mRNA/P popula-
tions and its correlation with the DNA state. The refined abstraction also reveals
that the switching time from the DNAon mode to the DNAoff mode is lower.
These predications are in accordance with the results obtained in [24]. See Fig. 8
[11, Appendix] that is adopted from [24] and illustrates these results.

To further test the accuracy of our approach, we consider the fast switching
between the DNA states. We follow the study in [24] and increase the rates by
two orders of magnitude. We use the refined population discretisation and obtain
a very similar abstraction as in Fig. 3 (right). We again obtain the oscillation
between the green component (DNAon states and nonzero RNA/protein popu-
lations) and the blue state (DNAoff and zero RNA/protein populations). The
only difference is in fact the transition rates corresponding to the activation and
deactivation causing that the switching rate between the components is much
faster. As a consequence, the system spends a longer period in the blue transient
states with Doff and nonzero RNA/protein populations. The time spent in these
states decreases the correlation between the DNA state and the RNA/protein
populations as well as the bimodality in the population distribution. This is
again in the accordance with [24].

To conclude this case study, we observe a very aligned agreement between the
results obtained using our approach and results in [24] obtained via advanced
and time consuming numerical methods. We would like to emphasise that our
abstraction and its solution is obtained within a fraction of a second while the
numerical methods have to approximate solutions of equations describing high-
order conditional moments of the population distributions. As [24] does not
report the runtime of the analysis and the implementation of their methods is
not publicly available, we cannot directly compare the time complexity.

5.2 Goutsias’s Model

Goutsias’s model illustrated in Table 2 is widely used for evaluation of various
numerical and simulation based techniques. As showed e.g. in [23], the system
has with a high probability the following transient behaviour. In the first phase,
the system switches with a high rate between the non-active DNA (denoted
DNA) and the active DNA (DNA.D). During this phase the population of RNA,
monomers (M) and dimers (D) gradually increase (with only negligible oscilla-
tions). After around 15 min, the DNA is blocked (DNA.2D) and the population
of RNA decreases while the population of M and D is relatively stable. After
all RNA degrades (around another 15 min) the system switches to the third
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Table 2. Goutsias’ Model. The rates are in s−1

Fig. 4. Pruned abstraction for the Goutsias’ model. The state vector is [M + D, RNA,
DNA, DNA.D, DNA.2D]

phase where the population of M and D slowly decreases. Further, there is a
non-negligible probability that the DNA is blocked at the beginning while the
population of RNA is still small and the system promptly dies out.

Although the system is quite suitable for the hybrid approaches (there is
no strong bimodality and only a limited stiffness), the analysis still takes 10
to 50 min depending on the required precision [27]. We demonstrate that our
approach is able to accurately predict the main transient behaviour as well as
the non-negligible probability that the system promptly dies out.

The state vector is given as [M, D, RNA, DNA, DNA.D, DNA.2D] and the
initial state is set to [2, 6, 0, 1, 0, 0] as in [27]. We start our analysis with a
coarse population discretisation with a single threshold 100 for M and D and a
single threshold 10 for RNA. We relax the bounds, in particular, 1000 for M and
D, and 100 for RNA. Note that these numbers were selected solely based on the
rate orders of the relevant reactions. Note the DNA invariant DNA + DNA.D
+ DNA.2D = 1.

Figure 4 illustrates the pruned abstract model we obtained (the full model
is depicted in Fig. 9 [11, Appendix]. For a better visualisation, we merged the
state components corresponding to M and D into one component with M + D.
As there is the fast reversible dimerisation, the actual distributions between the
population of M and D does not affect the transient behaviour we are inter-
ested in.

The analysis of the model shows the following transient behaviour. The pur-
ple dotted loop in the iteration i1 represents (de-)activation of the DNA. The
expected exit time of this loop is 100 s. According to our abstraction, there are
two options (with the same probability) to exit the loop: (1) the path a rep-
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resents the DNA blocking followed by the quick extinction and (2) the path b
corresponds to the production of RNA and its followed by the red loop in the
i2 that again represents (de-)activation of the DNA. Note that according our
abstraction, this loop contains states with the populations of M/D as well as
RNA up to 100 and 10, respectively.

The expected exit time of this loop is again 100 s and there are two options
how to leave the loop: (1) the path within the iteration i3 (taken with roughly
90%) represents again the DNA blocking and it is followed by the extension of
RNA and consequently by the extension of M/D in about 1000 s and (2) the
path within the iteration 5 (shown in the full graph in Fig. 9 [11, Appendix])
taken with roughly 10% represents the series of protein productions and leads
to the states with a high number of proteins (above 100 in our population dis-
cretisation). Afterwards, there is again a series of DNA (de-)activations followed
by the DNA blocking and the extinction of RNA. As before, this leads to the
extinction of M/D in about 1000 s.

Although this abstraction already shows the transient behaviour leading
to the extinction in about 30 min, it introduces the following inaccuracy with
respect to the known behaviour: (1) the probability of the fast extinction is
higher and (2) we do not observe the clear bell-shape pattern on the RNA (i.e.
the level 2 for the RNA is not reached in the abstraction). As in the previous
case study, the problem is that the population discretisation is too coarse. It
causes that the total rate of the DNA blocking (affected by the M/D population
via the mass action kinetics) is too high in the states with the M/D population
level 1. This can be directly seen in the interval CTMC representation where
the rate spans many orders of magnitude, incurring too much imprecision. The
refinement of the M/D population discretisation eliminates the first inaccuracy.
To obtain the clear bell-shape patter on RNA, one has to refine also the RNA
population discretisation.

5.3 Viral Infection

The viral infection model described in Table 3 represents the most challenging
system we consider. It is highly stochastic, extremely stiff, with all species pre-
senting high variance and some also very high molecular populations. Moreover,
there is a bimodal distribution on the RNA population. As a consequence, the
solution of the full CME, even using advanced reduction and aggregation tech-
niques, is prohibitive due to state-space explosion and stochastic simulation are
very time consuming. State-of-the-art hybrid approaches integrating the LNA
and an adaptive population partitioning [9] can handle this system but also
need a very long execution time. For example, a transient analysis up to time
t = 50 requires around 20 min and up to t = 200 more than an hour.

To evaluate the accuracy of our approach on this challenging model, we also
focus on the same transient analysis, namely, we are interested in the distribution
of RNA at time t = 200. The analysis in [9] predicts a bimodal distribution where,
the probability that RNA is zero in around 20% and the remaining probability
has Gaussian distribution with mean around 17 and the probability that there
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Table 3. Viral Infection. The rates are day−1

Fig. 5. Pruned abstraction for the viral infection model. The state vector is [P, RNA,
DNA].

is more than 30 RNAs is close to zero. This is confirmed by simulation-based
analysis in [23] showing also the gradual growth of the RNA population. The
simulation-based analysis in [43], however, estimates a lower probability (around
3%) that RNA is 0 and higher mean of the remaining Gaussian distribution
(around 23). Recall that obtaining accurate results using simulations is extremely
time consuming due to very stiff reactions (a single simulation for t = 200 takes
around 20 s).

In the final experiments, we analyse the distribution of RNA at time t = 200
using our approach. The state vector is given as [P, RNA, DNA] and we start
with the concrete state [0, 1, 0]. To sufficiently reason about the RNA population
and to handle the very high population of the proteins, we use the following
population discretisation: thresholds {10, 1000} for P, {10, 30} for RNA, and
{10, 100} for DNA. As before, we use very relaxed bounds 10000, 100, and 1000
for P, RNA, and D, respectively. Note that we ignore the population of the virus
V as it does not affect the dynamics of the other species. This simplification
makes the visualisation of our approach more readable and has no effect on the
complexity of the analysis.

Figure 5 illustrates the obtained abstract model enabling the following tran-
sient analysis (the full model is depicted in Fig. 10 [11, Appendix]. In a few days
the system reaches from the initial state the loop (depicted by the purple dashed
ellipse) within the iteration i1. The loop includes states where RNA has level 1,
DNA has level 2 and P oscillates between the levels 2 and 3. Before entering
the loop, there is a non-negligible probability (orders of percent) that the RNA
drops to 0 via the full black branch that returns to transient part of the loop
in i1. In this branch the system can also die out (not shown in this figure, see
the full model) with probability in the order of tenths of percent.
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The average exit time of the loop in i1 is in the order of 10 days and the
system goes to the yellow loop within the iteration i2, where the DNA level is
increased to 3 (RNA level is unchanged and P again oscillates between the levels
2 and 3). The average exit time of the loop in i2 is again in the order of 10
days and systems goes to the dotted red loop within iteration i3. The transition
represents the sequence of RNA synthesis that leads to RNA level 2. P oscillates
as before. Finally, the system leaves the loop in i3 (this takes another dozen
days) and reaches RNA level 3 in iterations i4 and i5 where the DNA level
remains at the level 3 and P oscillates. The iteration i4 and i5 thus roughly
correspond to the examined transient time t = 200.

The analysis clearly demonstrates that our approach leads to the behaviour
that is well aligned with the previous experiments. We observed growth of the
RNA population with a non-negligible probability of its extinction. The concrete
quantities (i.e. the probability of the extinction and the mean RNA population)
are closer to the analysis in [43]. The quantities are indeed affected by the popu-
lation discretisation and can be further refined. We would like to emphasise that
in contrast to the methods presented in [9,23,43] requiring hours of intensive
numerical computation, our approach can be done even manually on the paper.
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