
StreamLAB: Stream-based Monitoring
of Cyber-Physical Systems

Peter Faymonville, Bernd Finkbeiner,
Malte Schledjewski, Maximilian Schwenger(B),

Marvin Stenger, Leander Tentrup,
and Hazem Torfah

Reactive Systems Group, Saarland University,
Saarbrücken, Germany

{faymonville,finkbeiner,schledjewski,schwenger,
stenger,tentrup,torfah}@react.uni-saarland.de

Abstract. With ever increasing autonomy of cyber-physical systems,
monitoring becomes an integral part for ensuring the safety of the sys-
tem at runtime. StreamLAB is a monitoring framework with high degree
of expressibility and strong correctness guarantees. Specifications are
written in RTLola, a stream-based specification language with formal
semantics. StreamLAB provides an extensive analysis of the specifica-
tion, including the computation of memory consumption and run-time
guarantees. We demonstrate the applicability of StreamLAB on typical
monitoring tasks for cyber-physical systems, such as sensor validation
and system health checks.

1 Introduction

In stream-based monitoring, we translate input streams containing data col-
lected at runtime, such as sensor readings, into output streams containing aggre-
gate statistics, such as an average value, a counter, or the integral of a signal.
Trigger specifications define thresholds and other logical conditions on the val-
ues on these output streams, and raise an alarm or execute some other prede-
fined action if the condition becomes true. The advantage of this setup is great
expressiveness and easy-to-reuse, compositional specifications. Existing stream-
based languages like Lola [9,12] are based on the synchronous programming
paradigm, where all streams are synchronized via a global clock. In each step,
the new values of all output streams are computed in terms of the values of
the other streams at a previous time step or. This paradigm provides a sim-
ple and natural evaluation model that fits well with typical implementations on

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), and by the European Research Council (ERC) Grant OSARES
(No. 683300).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 421–431, 2019.
https://doi.org/10.1007/978-3-030-25540-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_24


422 P. Faymonville et al.

synchronous hardware. In real-time applications, however, the assumption that
all data arrives synchronously is often simply not true. Consider, for example,
an autonomous drone with several sensors, such as a GPS module, an inertia
measurement unit, and a laser distance meter. While a synchronous arrival of
all measured value would be desirable, some sensors’ measurement frequency
is higher than others. Moreover, the sensors do not necessarily operate on a
common clock, so their readings drift apart over time.

In this paper we present the monitoring framework StreamLAB. We lift the
synchronicity assumption to allow for monitoring asynchronous systems. Basis
for the framework is RTLola, an extension of the steam-based runtime verifica-
tion language Lola. RTLola introduces two new key concepts into Lola:

1. Variable-rate input streams: we consider input streams that extend at a-priori
unknown rates. The only assumption is that each new event has a real-valued
timestamp and that the events arrive in-order.

2. Sliding windows: A sliding window aggregates data over a real-time window
given in units of time. For example, we might integrate the readings of an
airspeed indicator.

As with any semantic extension, the challenge in the design of RTLola is to
maintain the efficiency of the monitoring. Obviously, not all RTLola specifica-
tions can be monitored with constant memory since the rates of the input streams
are unknown, an arbitrary number of events may occur in the span of a fixed
real-time unit. Thus, for aggregations such as the mean requiring to store the
whole sequence of value, no amount of constant memory will always suffice. We
can, nevertheless, again identify an efficiently monitorable fragment that covers
many specifications of practical interest. For the space-efficient aggregation over
real-time sliding windows, we partition the real-time axis into equally-sized inter-
vals. The size of the intervals is dictated by the rate of the output streams. For
certain common types of aggregations, such as the sum or the number of entries,
the values within each interval can be pre-aggregated and then only stored in this
summarized form. In a static analysis of the specification, we identify parts of the
specification with unbounded memory consumption, and compute bounds for all
other parts of the specification. In this way, we can determine early, whether a
particular specification can be executed on a system with limited memory.

Related Work. There is a rich body of work on monitoring real-time proper-
ties. Many monitoring approaches are based on real-time variants of temporal
logics [3,11,16–18,24]. Maler and Nickovic present a monitoring algorithm for
properties written in signal temporal logic (STL) by reducing STL formulas via
a boolean abstraction to formulas in the real-time logic MITL [21]. Building
on these ideas, Donze et al. present an algorithm for the monitoring of STL
properties over continuous signals [10]. The algorithm computes the robustness
degree in which a piecewise-continuous signal satisfies or violates an STL for-
mula. Towards more practical approaches, Basin et al. extend metric logics with
parameterization [8]. A monitoring algorithm for the extension is implemented
in the tool MonPoly [5]. MonPoly was introduced as a tool for monitoring usage-
control policies. Another extension to metric dynamic logic was implemented in



StreamLAB: Monitoring Cyber-Physical Systems 423

Inputs Sliding
Windows

Outputs
+

Triggers
s1

s2

s3

Ctrl

Fig. 1. Illustration of the decoupled input and output using aggregations.

the tool Aerial [7]. However, most monitors generated from temporal logics are
limited to Boolean verdicts.

StreamLAB uses the stream-based language RTLola as its core specification
language. RTLola builds upon Lola [9,12], which is a stream-based language
originally developed for monitoring synchronous hardware circuits, by adding the
concepts discussed above. Stream-based monitoring languages are significantly
more expressive than temporal logics. Other prominent stream-based monitoring
approaches are the Copilot framework [23] and the tool BeepBeep 3 [15]. Copilot
is a dataflow language based on several declarative stream processing languages
[9,14]. From a specification in Copilot, constant space and constant time C
programs implementing embedded monitors are generated. The BeepBeep 3 tool
uses an SQL-like language that is defined over streams of events. In addition to
stream-processing, it contains operators such as slicing, where inputs can be
separated into several different traces, and windowing where aggregations over a
sliding window can be computed. Unlike RTLola, BeepBeep and Copilot assume
a synchronous computation model, where all events arrive at a fixed rate. Two
asynchronous real-time monitoring approaches are TeSSLa [19] and Striver [13].
TeSSLa allows for monitoring piece-wise constant signals where streams can emit
events at different speeds with arbitrary latencies. Neither language provides
the language feature of sliding windows and the definition of fixed-rate output
streams. The efficient evaluation of aggregations on sliding windows [20] has
previously been studied in the context of temporal logic [4]. Basin et al. present
an algorithm for combining the elements of subsequences of a sliding window
with an associative operator, which reuses the results of the subsequences in the
evaluation of the next window [6].

2 Real-Time Lola

RTLola extends the stream-based specification languages Lola [12] with real-time
features. In the stream-based processing paradigm, sensor readings are viewed
as input streams to a stream processing engine that computes outputs in form
of streams on top of the values of the input streams. For example, the RTLola
specification
input altitude : Float32

output tooLow := altitude < 200.0



424 P. Faymonville et al.

checks whether a drone flies with an altitude less than 200 feet. For each reading
of the velocity sensor, a new value for the output stream tooLow is computed.
Streams marked with the “trigger”-keyword alert the user when the value of
the trigger is true. In the following example, the user is warned when the drone
flies below the allowed altitude.
trigger tooLow "flying below minimum altitude"

Output streams in RTLola are computed from values of the input streams, other
output streams and their own past values. If we want to count the number of
times the drone dives below 200 feet we can specify the stream
output count := (if tooLow then 1 else 0)

+ count.offset(by:-1).defaults(to:0)

Here, the stream count computes its new values by increasing its latest value by
1 in case the drone currently flies below the permitted altitude. The expres-
sion count.offset(by:-1) represents the last value of the stream. We call
such expressions “lookup expressions”. The default operator e.defaults(to:0)
returns the value 0 in case the value of e is not defined. This can happen when
a stream is evaluated the first time and looks up its last value.

In RTLola, we do not impose any assumption on the arrival frequency of
input streams. Each stream can produce new values individually and at arbi-
trary points in time. This can lead to problems when a burst of new input values
occur in a short amount of time. Subsequently, the monitor needs to evaluate
all output streams, exerting a lot of pressure on the system. To prevent that,
RTLola distinguishes between two kinds of outputs. Event-based outputs are
computed whenever new input values arrive and should thus only contain inex-
pensive operations. All streams discussed above where event-based. In contrast
to that, there are periodic outputs such as the following:
output freqDev @5Hz := altitude.aggregate(over : 200ms ,

using: count) < 5

Here, freqDev will be evaluated every 200ms as indicated by the “@ 5 Hz”
label, independently of arriving input values. The stream freqDev does not access
the event-based input altitude directly, but uses a sliding window expression to
count the number of times a new value for altitude occurred within the last
200ms. The value of freqDev represents the number of measurements the monitor
received from the altimeter. Comparing this value against the expected number
of readings allows for detecting deviations and thus a potentially damaged sensor.

Sliding windows allow for decoupling event-based and periodic streams, as
illustrated in Fig. 1. Since the specifier has no control over the frequency of event-
based streams, these streams should be quickly evaluatable. More expensive
operations, such as sliding windows, may only be used in periodic streams to
increase the monitor’s robustness.



StreamLAB: Monitoring Cyber-Physical Systems 425

2.1 Examples

In the following, we will present several interesting properties showcasing
RTLola’s expressivity. The specifications are simplified for illustration and thus
not immediately applicable to the real-world.

Sensor Validation. When a sensor starts to deteriorate, it can misbehave and
drop single measurements. To verify that a GPS sensor produces values at its
specified frequency, in this example 10Hz, we count the number of sensor values
in a continuous window and compare it against the expected amount of events
in this time frame.
input lat: Float32 , lon : Float32

output gps_freq@10Hz :=

lat.aggregate(over: =1s, using: count).defaults(to:9)

trigger gps_freq < 9 "GPS sensor frequency < 9 Hz"

Assuming that we have another sensor measuring the true air speed, we
can check whether the measured data matches the GPS data using RTLola’s
computation primitives. For this, we first compute the difference in longitude
and latitude between the current and last measurement. The Euclidean distance
provides the length of the movement vector, which can be derived discretely by
dividing by the amount of time that has passed between two GPS measurements.
input velo : Float32

output δlon := lon - lon.offset(by:-1).defaults(to:lon)

output δlat := lat - lat.offset(by:-1).defaults(to:lat)

output gps_dist := sqrt(δlon * δlon + δlat * δlat)
output gps_velo := gps_dist

/ (time - time.offset(by:-1).defaults(to:0.0))

trigger abs(gps_velo - velo) > 0.1 "Deviating velocity"

When the pathfinding algorithm of the mission planner takes longer than
expected, the system remains in a state without target location and thus hovers
in place. Such a hover period can be detected by computing the covered distance
in the last seconds. For this, we integrate the assumed velocity. We also exclude
a strong headwind as a culprit for the low change in position.
input wnd_dir: Float32 , wnd_spd : Float32

output dir := arctan(lat/lon)

output headwind := abs(wnd_dir - dir) < 0.2

∧ wnd_spd > 10.0

output hovering @ 1Hz := velo.aggregate(over: 5s, using:
∫
)

.defaults(to:0.5) < 0.5 ∧ ¬headwind.hold().defaults(to:⊥)

trigger hovering "Long hover phase"



426 P. Faymonville et al.

3 Performance Guarantees via Static Analysis

3.1 Type System

RTLola is a strongly-typed specification language. Every expression has two
orthogonal types: a value type and a stream type. The value type is Bool, String,
Int, or Float. It indicates the usual semantics of a value or expression and
the amount of memory required to store the value. The stream type indicates
when a value is evaluated. For periodic streams, the stream type defines the
frequency in which it is computed. Event-based streams do not have a pre-
determined period. The stream type for an event-based stream identifies a set
of input streams, indicating that the event-based stream is extended whenever
there is, synchronously, an event on all input streams. Event-based streams may
also depend on input streams not listed in the type; in such cases, the type
system requires an explicit use of the 0-order sample&hold operator.

The type system provides runtime guarantees for the monitor: Independently
of the arrival of input data, it is guaranteed that all required data is available
whenever a stream is extended. Either the data was just received as input event,
was computed as output stream value, or the specifier provided a default value.
The type system can, thus, eliminate classes of specification problems like unin-
tentionally accessing a slower stream from a faster stream. Whenever possible,
the tool provides automatic type inference.

3.2 Sliding Windows

We use two techniques to ensure that we only need a bounded amount of memory
to compute sliding windows. Meertens [22] classifies an aggregations γ : A∗ → B
as list homomorphism if it can be split into a mapping function m : A → T , an
associative reduction function r : T × T → T , a finalization function f : T → B,
and a neutral element ε ∈ T with ∀t ∈ T : r(t, ε) = r(ε, t) = t. For these
functions, rather than aggregating the whole list at once, one can apply m to
each element, reduce the intermediate results with an arbitrary precedence, and
finalize the result to get the same value. The second technique by Li et al. [20]
divides a time interval into panes of equal size. For each pane, we aggregate all
inputs and store only the fix amount of intermediate values. The type system
ensures that sliding windows only occur in periodic streams so by choosing the
pane size as the inverse of the frequency, paning does not change the result. In
StreamLAB there are several pre-defined aggregation functions such as count,
integration, summation, product, mini-, and maximization available.

3.3 Memory Analysis

StreamLAB computes the worst-case memory consumption of the specification.
For this, an annotated dependency graph (ADG) is constructed where each
stream s constitutes a node vs and whenever s accesses s′, there is an edge
from vs to vs′ . Edges are annotated according to the type of access: if s accesses



StreamLAB: Monitoring Cyber-Physical Systems 427

s′ discretely with offset n or with a sliding window aggregation of duration d
and aggregation function γ, then the edge e = (vs, vs′) is labeled with λ(e) = n
or λ(e) = (d, γ), respectively. Nodes of periodic streams are now annotated with
their periodicity, if stream s has period 200ms then the node is labeled with
π(vs) = 5Hz. Memory bounds for discrete-time offsets can be computed as for
Lola [9]. We extend this algorithm with new computational rules to determine
the memory bounds for real-time expressions. For each edge e = (v, v′) in the
ADG we can determine how many events of v′ must be stored for the computa-
tion of v using the rules in Fig. 2. Here, only γ is a list homomorphism. The strict
upper bound on required memory is now the sum of the memory requirement
of each individual stream. This, however, is only the amount of memory needed
for storing values and does not take book-keeping data structures and the inter-
nal representation of the specification into account. Assuming reasonably small
expressions (depth ≤ 64), this additional memory can be bounded with 1 kB per
stream plus a flat 10 kB for working memory.

π(v) π(v′) λ(e) = (d, γ) λ(e) = (d, γ∗)
var var unbounded zd
xHz var unbounded min(zd, xd)
var yHz yd min(zd, yd)
xHz yHz min(xd, yd) min(xd, yd)

Fig. 2. Computation of memory bound
over the dependency graph.

EM TM

Ack

Time Update

input

Working
Queue Eval

Fig. 3. Illustration of the data flow. The
EM manages input events, TM schedules
periodic tasks, and Eval manages the eval-
uation of streams.

4 Processing Engine

The processing engine consists of three components: The EventManager (EM)
reads events from an input such Standard In or a CSV file and translates string
values into the internal representation. The values are mapped to the correspond-
ing input streams in the specification. Using a multiple-sender-single-receiver
channel, the EM pushes the event on a working queue. The TimeManager (TM)
schedules the evaluation of periodic streams. The TM computes the hyper-period
of all streams and groups them by equal deadlines. Whenever a deadline is
due, the corresponding streams are pushed into the working queue using the
same channel as the EM. This ensures that event-based and periodic evaluation
cycles occur in the correct order even under high pressure. Lastly, the Evaluator
(Eval) manages the evaluation of streams and storage of computed values. The
Eval repeatedly pops items off the working queue and evaluates the respective
streams.



428 P. Faymonville et al.

When monitoring a system online, the TM uses the internal system clock for
scheduling tasks. When monitoring offline, however, this is no longer possible
because the point in time when a stream is due to be evaluated depends on
the input event. Thus, before the EM pushes an event on the working queue, it
transmits the latest timestamp to the TM. The TM then decides whether some
periodic streams need to be evaluated. If so, it effectively goes back in time
by pushing the respective task on the working queue before acknowledging the
TM. Only upon receiving the acknowledgement, the TM sends the event to the
working queue. Figure 3 illustrates the information flow between the components.

5 Experiments

StreamLAB1 is implemented in Rust. A major benefit of a Rust implementation
is the connection to LLVM, which allows a compilation to a large variety of
platforms. Moreover, the requirements to the runtime environment are as low as
for C programs. This allows StreamLAB to be widely applicable.

The specifications presented in Sect. 2.1 have been tested on traces generated
with the state-of-the-art flight simulator Ardupilot2. Each trace is the result
of a drone flying one or more round-trips over Saarland University and provides
sensor information for longitude and latitude, true air velocity, wind direction
and speed, as well as the number of available GPS satellites. The longest trace
consists of slightly less than 433,000 events. StreamLAB successfully detected
a variety of errors such as delayed sensor readings, GPS module failures, and
phases without significant movement. For an online runtime verification, the
monitor reads an event of the simulator’s output, processes the input data and
pauses until the next event is available. Whenever necessary, periodic streams
are evaluated. Online monitoring of a simulation did not allow us to exhaust the
capabilities of StreamLAB because the generation of events took significantly
longer than processing them. The offline monitoring function of StreamLAB
allows the user to specify a delay in which consecutive events are read from a
file. By gradually decreasing the delay between events until the pressure was
too high, we could determine a maximum input frequency of 647.2 kHz. When
disabling the delay and running the monitor at maximum speed, StreamLAB
processes a trace of length 432,961 in 0.67 s, so each event takes 1545 ns to
process while three threads utilized 146% of CPU. In terms of memory, the
maximum resident set size amounted to 16MB. This includes bookkeeping data
structures, the specification, evaluator code, and parts of the C standard library.
While the evaluation does not require any heap allocation after the setup phase,
the average stack size amounts to less than 1kB. The experiment was conducted
on 3.3GHz Intel Core i7 processor with 16GB2133MHz LPDDR3 RAM.

1 www.stream-lab.org.
2 ardupilot.org.

www.stream-lab.org
http://ardupilot.org


StreamLAB: Monitoring Cyber-Physical Systems 429

6 Outlook

The stream-based monitoring framework StreamLAB demonstrates the appli-
cability of stream monitoring for cyber-physical systems. Previous versions of
Lola have successfully been applied to networks and unmanned aircraft systems
in cooperation the with German Aerospace Center DLR [1,2,12]. StreamLAB
provides a modular, easy-to-understand specification language and design-time
feedback for specifiers. This helps to improve the development process for cyber-
physical systems. Coupled with the promising experimental results, this lays the
foundation for further applications of the framework on real-world systems.

References

1. Adolf, F.-M., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream run-
time monitoring on UAS. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548,
pp. 33–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 3

2. Adolf, F., Faymonville, P., Finkbeiner, B., Schirmer, S., Torens, C.: Stream runtime
monitoring on UAS. CoRR arXiv:abs/1804.04487 (2018). http://arxiv.org/abs/
1804.04487

3. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. In:
[1990] Proceedingsof the Fifth Annual IEEE Symposium on Logic in Computer
Science, pp. 390–401, June 1990. https://doi.org/10.1109/LICS.1990.113764

4. Basin, D., Bhatt, B.N., Traytel, D.: Almost event-rate independent monitoring
of metric temporal logic. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 94–112. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5 6

5. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-
control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
360–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 27

6. Basin, D., Klaedtke, F., Zălinescu, E.: Greedily computing associative aggregations
on sliding windows. Inf. Process. Lett. 115(2), 186–192 (2015). https://doi.org/10.
1016/j.ipl.2014.09.009

7. Basin, D., Traytel, D., Krstić, S.: Aerial: almost event-rate independent algo-
rithms for monitoring metric regular properties (2017). https://www21.in.tum.de/
∼traytel/papers/rvcubes17-aerial tool/index.html

8. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

9. D’Angelo, B., et al.: Lola: Runtime monitoring of synchronous systems. In: TIME
2005, pp. 166–174. IEEE Computer Society Press, June 2005

10. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

11. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol.
6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15297-9 9. http://dl.acm.org/citation.cfm?id=1885174.1885183

https://doi.org/10.1007/978-3-319-67531-2_3
http://arxiv.org/abs/1804.04487
http://arxiv.org/abs/1804.04487
http://arxiv.org/abs/1804.04487
https://doi.org/10.1109/LICS.1990.113764
https://doi.org/10.1007/978-3-662-54580-5_6
https://doi.org/10.1007/978-3-662-54580-5_6
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1016/j.ipl.2014.09.009
https://doi.org/10.1016/j.ipl.2014.09.009
https://www21.in.tum.de/~traytel/papers/rvcubes17-aerial_tool/index.html
https://www21.in.tum.de/~traytel/papers/rvcubes17-aerial_tool/index.html
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
http://dl.acm.org/citation.cfm?id=1885174.1885183


430 P. Faymonville et al.

12. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based speci-
fication language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV
2016. LNCS, vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46982-9 10

13. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-
streams. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–
298. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 16

14. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language lustre. In: Proceedings of the IEEE, pp. 1305–1320 (1991)

15. Hallé, S.: When RV meets CEP. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS,
vol. 10012, pp. 68–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9 6

16. Harel, E., Lichtenstein, O., Pnueli, A.: Explicit clock temporal logic. In: LICS 1990,
pp. 402–413. IEEE Computer Society (1990). https://doi.org/10.1109/LICS.1990.
113765

17. Jahanian, F., Mok, A.K.L.: Safety analysis of timing properties in real-time sys-
tems. IEEE Trans. Softw. Eng. SE-12(9), 890–904 (1986). https://doi.org/10.
1109/TSE.1986.6313045

18. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

19. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: Tessla: runtime
verification of non-synchronized real-time streams. In: Haddad, H.M., Wainwright,
R.L., Chbeir, R. (eds.) PSAC 2018, pp. 1925–1933. ACM (2018). https://doi.org/
10.1145/3167132.3167338

20. Li, J., Maier, D., Tufte, K., Papadimos, V., Tucker, P.A.: No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Rec. 34(1),
39–44 (2005). https://doi.org/10.1145/1058150.1058158

21. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

22. Meertens, L.: Algorithmics: towards programming as a mathematical activity
(1986)

23. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime
monitor. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 26

24. Raskin, J.-F., Schobbens, P.-Y.: Real-time logics: fictitious clock as an abstraction
of dense time. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 165–182.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035387

https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1109/LICS.1990.113765
https://doi.org/10.1109/LICS.1990.113765
https://doi.org/10.1109/TSE.1986.6313045
https://doi.org/10.1109/TSE.1986.6313045
https://doi.org/10.1007/BF01995674
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/BFb0035387


StreamLAB: Monitoring Cyber-Physical Systems 431

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	StreamLAB: Stream-based Monitoring of Cyber-Physical Systems
	1 Introduction
	2 Real-Time Lola
	2.1 Examples

	3 Performance Guarantees via Static Analysis
	3.1 Type System
	3.2 Sliding Windows
	3.3 Memory Analysis

	4 Processing Engine
	5 Experiments
	6 Outlook
	References




