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Abstract. Stochastic multiplayer games (SMGs) have gained attention
in the field of strategy synthesis for multi-agent reactive systems. How-
ever, standard SMGs are limited to modeling systems where all agents
have full knowledge of the state of the game. In this paper, we intro-
duce delayed-action games (DAGs) formalism that simulates hidden-
information games (HIGs) as SMGs, where hidden information is cap-
tured by delaying a player’s actions. The elimination of private vari-
ables enables the usage of SMG off-the-shelf model checkers to implement
HIGs. Furthermore, we demonstrate how a DAG can be decomposed into
subgames that can be independently explored, utilizing parallel compu-
tation to reduce the model checking time, while alleviating the state
space explosion problem that SMGs are notorious for. In addition, we
propose a DAG-based framework for strategy synthesis and analysis.
Finally, we demonstrate applicability of the DAG-based synthesis frame-
work on a case study of a human-on-the-loop unmanned-aerial vehicle
system under stealthy attacks, where the proposed framework is used to
formally model, analyze and synthesize security-aware strategies for the
system.

1 Introduction

Stochastic multiplayer games (SMGs) are used to model reactive systems where
nondeterministic decisions are made by multiple players [4,13,23]. SMGs extend
probabilistic automata by assigning a player to each choice to be made in the
game. This extension enables modeling of complex systems where the behavior of
players is unknown at design time. The strategy synthesis problem aims to find a
winning strategy, i.e., a strategy that guarantees that a set of objectives (or win-
ning conditions) is satisfied [6,21]. Algorithms for synthesis include, for instance,
value iteration and strategy iteration techniques, where multiple reward-based
objectives are satisfied [2,9,17]. To tackle the state-space explosion problem,
[29] presents an assume-guarantee synthesis framework that relies on synthesiz-
ing strategies on the component level first, before composing them into a global
winning strategy. Mean-payoffs and ratio rewards are further investigated in [3]
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to synthesize ε-optimal strategies. Formal tools that support strategy synthesis
via SMGs include PRISM-games [7,19] and Uppaal Stratego [10].

SMGs are classified based on the number of players that can make choices
at each state. In concurrent games, more than one player is allowed to concur-
rently make choices at a given state. Conversely, turn-based games assign one
player at most to each state. Another classification considers the information
available to different players across the game [27]. Complete-information games
(also known as perfect-information games [5]) grant all players complete access
to the information within the game. In symmetric games, some information is
equally hidden from all players. On the contrary, asymmetric games allow some
players to have access to more information than the others [27].

This work is motivated by security-aware systems in which stealthy adversar-
ial actions are potentially hidden from the system, where the latter can proba-
bilistically and intermittently gain full knowledge about the current state. While
hidden-information games (HIGs) can be used to model such systems by using
private variables to capture hidden information [5], standard model checkers can
only synthesize strategies for (full-information) SMGs; thus, demanding for alter-
native representations. The equivalence between turn-based semi-perfect infor-
mation games and concurrent perfect-information games was shown [5]. Since
a player’s strategy mainly rely on full knowledge of the game state [9], using
SMGs for synthesis produces strategies that may violate synthesis specifica-
tions in cases where required information is hidden from the player. Partially-
observable stochastic games (POSGs) allow agents to have different belief states
by incorporating uncertainty about both the current state and adversarial plans
[15]. Techniques such as active sensing for online replanning [14] and grid-based
abstractions of belief spaces [24] were proposed to mitigate synthesis complex-
ity arising from partial observability. The notion of delaying actions has been
studied as means for gaining information about a game to improve future strate-
gies [18,30], but was not deployed as means for hiding information.

To this end, we introduce delayed-action games (DAGs)—a new class of
games that simulate HIGs, where information is hidden from one player by
delaying the actions of the others. The omission of private variables enables the
use of off-the-shelf tools to implement and analyze DAG-based models. We show
how DAGs (under some mild and practical assumptions) can be decomposed
into subgames that can be independently explored, reducing the time required
for synthesis by employing parallel computation. Moreover, we propose a DAG-
based framework for strategy synthesis and analysis of security-aware systems.
Finally, we demonstrate the framework’s applicability through a case study of
security-aware planning for an unmanned-aerial vehicle (UAV) system prone to
stealthy cyber attacks, where we develop a DAG-based system model and further
synthesize strategies with strong probabilistic security guarantees.

The paper is organized as follows. Section 2 presents SMGs, HIGs, and prob-
lem formulation. In Sect. 3, we introduce DAGs and show that they can sim-
ulate HIGs. Section 4 proposes a DAG-based synthesis framework, which we
use for security-aware planning for UAVs in Sect. 5, before concluding the paper
in Sect. 6.
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2 Stochastic Games

In this section, we present turn-based stochastic games, which assume that all
players have full information about the game state. We then introduce hidden-
information games and their private-variable semantics.

Notation. We use N0 to denote the set of non-negative integers. P(A) denotes
the powerset of A (i.e., 2A). A variable v has a set of valuations Ev (v), where
η (v) ∈ Ev (v) denotes one. We use Σ∗ to denote the set of all finite words over
alphabet Σ, including the empty word ε. The mapping Eff :Σ∗×Ev (v)→Ev (v)
indicates the effect of a finite word on η (v). Finally, for general indexing, we use
si or s(i), for i ∈ N0, while PLγ denotes Player γ.

Turn-Based Stochastic Games (SMGs). SMGs can be used to model reac-
tive systems that undergo both stochastic and nondeterministic transitions from
one state to another. In a turn-based game,1 actions can be taken at any state
by at most one player. Formally, an SMG can be defined as follows [1,28,29].

Definition 1 (Turn-Based Stochastic Game). A turn-based game (SMG)
with players Γ = {I, II,©} is a tuple G = 〈S, (SI, SII, S©), A, s0, δ〉, where

– S is a finite set of states, partitioned into SI, SII and S©;
– A=AI ∪ AII ∪ {τ} is a finite set of actions where τ is an empty action;
– s0 ∈ SII is the initial state; and
– δ : S × A × S → [0, 1] is a transition function, such that δ(s, a, s′) ∈ {1, 0},

∀s ∈ SI ∪ SII, a ∈ A and s′ ∈ S, and δ(s, τ, s′) ∈ [0, 1] , ∀s ∈ S© and
s′ ∈ SI ∪ SII, where

∑
s′∈SI∪SII

δ(s, τ, s′) = 1 holds.

For all s∈ SI∪SII and a ∈ AI∪AII, we write s
a �� s′ if δ(s, a, s′)=1. Similarly, for

all s∈S© we write s
p
�� s′ if s′ is randomly sampled with probability p=δ(s, τ, s′).

Hidden-Information Games. SMGs assume that all players have full knowl-
edge of the current state, and hence provide perfect-information models [5]. In
many applications, however, this assumption may not hold. A great example
are security-aware models where stealthy adversarial actions can be hidden from
the system; e.g., the system may not even be aware that it is under attack.
On the other hand, hidden-information games (HIGs) refer to games where one
player does not have complete access to (or knowledge of) the current state.
The notion of hidden information can be formalized with the use of private vari-
ables (PVs) [5]. Specifically, a game state can be encoded using variables vT and
vB, representing the true information, which is only known to PLI, and PLII

belief, respectively.
1 The term turn-based indicates that at any state only one player can play an action.

It does not necessarily imply that players take fair turns.
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Definition 2 (Hidden-Information Game). A hidden-information stochas-
tic game (HIG) with players Γ = {I, II, ©} over a set of variables V = {vT , vB}
is a tuple GH = 〈S, (SI, SII, S©), A, s0, β, δ〉, where

– set of states S ⊆ Ev (vT )×Ev (vB)×P (Ev (vT ))×Γ , partitioned in SI, SII, S©;
– A=AI∪AII∪{τ, θ} is a finite set of actions, where τ denotes an empty action,

and θ is the action capturing PLII attempt to reveal the true value vT ;
– s0 ∈ SII is the initial state;
– β : AII → P(AI) is a function that defines the set of available PLI actions,

based on PLII action; and
– δ : S × A × S → [0, 1] is a transition function such that δ(sI, a, s©) =

δ(s©, a, sI) = 0, and δ(sII, θ, s©), δ(sII, a, sI), δ(sI, a, sII) ∈ {0, 1} for all
sI ∈ SI, sII ∈ SII, s© ∈ S© and a ∈ A, where

∑
s′∈SII

δ(s©, τ, s′)=1.

In the above definition, δ only allows transitions sI to sII, sII to sI or s©,
with sII to s© conditioned by action θ, and probabilistic transitions s© to sII.
A game state can be written as s = (t, u,Ω, γ), but to simplify notation we use
sγ (t, u,Ω) instead, where t ∈ Ev (vT ) is the true value of the game, u ∈ Ev (vB)
is PLII current belief, Ω ∈ P(Ev (vT )) \ {∅} is PLII belief space, and γ ∈ Γ is
the current player’s index. When the truth is hidden from PLII, the belief space
Ω is the information set [27], capturing PLII knowledge about the possible true
values.

A

C DB

Fig. 1. The UAV belief (solid square)
vs. the true value (solid diamond) of
its location.

Example 1 (Belief vs. True Value). Our
motivating example is a system that con-
sists of a UAV and a human operator. For
localization, the UAV mainly relies on a
GPS sensor that can be compromised to
effectively steer the UAV away from its
original path. While aggressive attacks can
be detected, some may remain stealthy by
introducing only bounded errors at each
step [16,20,22,26]. For example, Fig. 1 shows a UAV (PLII) occupying zone A
and flying north (N). An adversary (PLI) can launch a stealthy attack targeting
its GPS, introducing a bounded error (NE, NW) to remain stealthy. The set of
stealthy actions available to the attacker depends on the preceding UAV action,
which is captured by the function β, where β(N)={NE,N,NW}. Being unaware
of the attack, the UAV believes that it is entering zone C, while the true new
location is D due to the attack (NE). Initially, η (vT )=η (vB)=zA, and Ω={zA}
as the UAV is certain it is in zone zA. In s2, η (vB) = zC , yet η (vT ) = zD.
Although vT is hidden, PLII is aware that η (vT ) is in Ω={zB, zC , zD}.

HIG Semantics. GH semantics is described using the rules shown in Fig. 2,
where H2 and H3 capture PLII and PLI moves, respectively. The rule H4 specifies
that a PLII attempt θ to reveal the true value can succeed with probability pi

where PLII belief is updated (i.e., u′ = t), and remains unchanged otherwise.
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Fig. 2. Semantic rules for an HIG.

Example 2 (HIG Semantics). Continuing Example 1, let us assume that the set
of actions AI = AII = {N,S,E,W,NE,NW,SE,SW}, and that θ=GT is a geolo-
cation task that attempts to reveal the true value of the game.2 Now, consider
the scenario illustrated in Fig. 3. At the initial state s0, the UAV attempts to
move north (N), progressing the game to the state s1, where the adversary takes
her turn by selecting an action from the set β(N) = {NE,N,NW}. The players
take turns until the UAV performs a geolocation task GT, moving from the state
s4 to s5. With probability p = δ(s5, τ, s6), the UAV detects its true location
and updates its belief accordingly (i.e., to s6). Otherwise, the belief remains the
same (i.e., equal to s4).

N

0-1 1

0

-1

1

2

WNE NW pGT

Fig. 3. An example of the UAV motion in a 2D-grid map, modeled as an HIG. Solid
squares represent the UAV belief, while solid diamonds represent the ground truth.
The UAV action GT denotes performing a geolocation task.

Problem Formulation. Following the system described in Example 2, we
now consider the composed HIG GH = Madv‖Muav‖Mas shown in Fig. 4; the
HIG-based model incorporates standard models of a UAV (Muav), an adver-
sary (Madv), and a geolocation-task advisory system (Mas) (e.g., as introduced
in [11,12]). Here, the probability of a successful detection p(vT , vB) is a function
of both the location the UAV believes to be its current location (vB) as well

2 A geolocation task is an attempt to localize the UAV by examining its camera feed.
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as the ground truth location that the UAV actually occupies (vT ). Reasoning
about the flight plan using such model becomes problematic since the ground
truth vT is inherently unknown to the UAV (i.e., PLII), and thus so is p(vT , vB).
Furthermore, such representation, where some information is hidden, is not sup-
ported by off-the-shelf SMG model checkers. Consequently, for such HIGs, our
goal is to find an alternative representation that is suitable for strategy synthesis
using off-the-shelf SMG model-checkers.

fly

idle

locate

fail

geo
task

a ack

Fig. 4. An example of an HIG-based system model comprised of the UAV (Muav), the
adversary (Madv), and the AS (Mas). Framed information is hidden from the UAV-AS.

3 Delayed-Action Games

In this section, we provide an alternative representation of HIGs that eliminates
the use of private variables—we introduce Delayed-Action Games (DAGs) that
exploit the notion of delayed actions. Furthermore, we show that for any HIG,
a DAG that simulates the former can be constructed.

Delayed Actions. Informally, a DAG reconstructs an HIG such that actions
of PLI (the player with access to perfect information) follow the actions of PLII,
i.e., PLI actions are delayed. This rearrangement of the players’ actions provides
a means to hide information from PLII without the use of private variables,
since in this case, at PLII states, PLI actions have not occurred yet. In this
way, PLII can act as though she has complete information at the moment she
makes her decision, as the future state has not yet happened and so cannot
be known. In essence, the formalism can be seen as a partial ordering of the
players’ actions, exploiting the (partial) superposition property that a wide class
of physical systems exhibit. To demonstrate this notion, let us consider DAG
modeling on our running example.

Example 3 (Delaying Actions). Figure 5 depicts the (HIG-based) scenario from
Fig. 3, but in the corresponding DAG, where the UAV actions are performed first
(in ŝ0, ŝ1, ŝ2), followed by the adversary delayed actions (in ŝ3, ŝ4). Note that,
in the DAG model, at the time the UAV executed its actions (ŝ0, ŝ1, ŝ2) the
adversary actions had not occurred (yet). Moreover, ŝ0 and ŝ6 (Fig. 5) share
the same belief and true values as s0 and s6 (Fig. 3), respectively, though the
transient states do not exactly match. This will be used to show the relationship
between the games.
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N W GT pNE NW

0-1 1

0

-1

1

2 p

1-p

1-p

1-p

Fig. 5. The same scenario as in Fig. 3, modeled as a DAG. Solid squares represent UAV
belief, while solid diamonds represent the ground truth. The UAV action GT denotes
performing a geolocation task.

The advantage of this approach is twofold. First, the elimination of private
variables enables simulation of an HIG using a full-information game. Thus,
the formulation of the strategy synthesis problem using off-the-shelf SMG-based
tools becomes feasible. In particular, a PLII synthesized strategy becomes depen-
dent on the knowledge of PLI behavior (possible actions), rather than the specific
(hidden) actions. We formalize a DAG as follows.

Definition 3 (Delayed-Action Game). A DAG of an HIG GH = 〈S, (SI,
SII, S©), A, s0, β, δ〉, with players Γ = {I, II,©} over a set of variables V =
{vT , vB} is a tuple GD = 〈Ŝ, (ŜI, ŜII, Ŝ©), A, ŝ0, β, δ̂〉 where

– Ŝ ⊆ Ev (vT ) × Ev (vB) × A∗
II × N0 × Γ is the set of states, partitioned into

ŜI, ŜII and Ŝ©;
– ŝ0 ∈ ŜII is the initial state; and
– δ̂ : Ŝ × A × Ŝ → [0, 1] is a transition function such that δ̂(ŝII, a, ŝ©) =

δ̂(ŝI, a, ŝII) = δ̂(ŝ©, a, ŝI) = 0, and δ̂(ŝII, a, ŝII) ∈ {0, 1}, δ̂(ŝII, θ, ŝI) ∈ {0, 1},
δ̂(ŝI, a, ŝI) ∈ {0, 1}, δ̂(ŝI, a, ŝ©) ∈ {0, 1}, for all ŝI ∈ ŜI, ŝII ∈ ŜII, ŝ© ∈ Ŝ©
and a ∈ A, where

∑
ŝ′∈ŜII

δ(ŝ©, a, ŝ′)=1.

Note that, in contrast to transition function δ in HIG GH, δ̂ in DAG GD only
allows transitions ŝII to ŝII or ŝI, as well as ŝI to ŝI or ŝ©, and probabilistic
transitions ŝ© to ŝII; also note that ŝII to ŝI is conditioned by the action θ.

DAG Semantics. A DAG state is a tuple ŝ=
(
t̂, û, w, j, γ

)
, which for simplicity

we shorthand as ŝγ

(
t̂, û, w, j

)
, where t̂ ∈ Ev (vT ) is the last known true value,

û ∈ Ev (vB) is PLII belief, w ∈ A∗
II captures PLII actions taken since the last

known true value, j ∈ N0 is an index on w, and γ ∈ Γ is the current player
index. The game transitions are defined using the semantic rules from Fig. 6.
Note that PLII can execute multiple moves (i.e., actions) before executing θ to
attempt to reveal the true value (D2), moving to a PLI state where PLI executes
all her delayed actions before reaching a ‘revealing’ state ŝ© (D3). Finally, the
revealing attempt can succeed with probability pi where PLII belief is updated
(i.e., û′ = t̂ ), or otherwise remains unchanged (D4).
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Fig. 6. Semantic rules for DAGs.

In both GH and GD, we label states where all players have full knowledge of
the current state as proper. We also say that two states are similar if they agree
on the belief, and equivalent if they agree on both the belief and ground truth.

Definition 4 (States). Let sγ(t, u,Ω) ∈ S and ŝγ̂(t̂, û, w, j) ∈ Ŝ. We say:

– sγ is proper iff Ω = {t}, denoted by sγ ∈ Prop(GH).
– ŝγ̂ is proper iff w = ε, denoted by ŝγ̂ ∈ Prop(GD).
– sγ and ŝγ̂ are similar iff û = u, t̂ ∈ Ω, and γ = γ̂, denoted by sγ ∼ ŝγ̂ .
– sγ , ŝγ̂ are equivalent iff t = t̂, u = û, w = ε, and γ = γ̂, denoted by sγ 
 ŝγ̂ .

From the above definition, we have that s 
 ŝ =⇒ s ∈ Prop(GH), ŝ ∈ Prop(GD).
We now define execution fragments, possible progressions from a state to another.

Definition 5 (Execution Fragment). An execution fragment (of either an
SMG, DAG or HIG) is a finite sequence of states, actions and probabilities


 = s0a1p1s1a2p2s2 . . . anpnsn such that (si

ai+1
�� si+1)∨(si

〈pi+1〉
�� si+1),∀i ≥ 0.3

We use first(
) and last(
) to refer to the first and last states of 
, respectively. If
both states are proper, we say that 
 is proper as well, denoted by 
 ∈ Prop(GH).4

Moreover, 
 is deterministic if no probabilities appear in the sequence.

Definition 6 (Move). A move mγ of an execution 
 from state s ∈ 
, denoted
by moveγ(s, 
), is a sequence of actions a1a2 . . . ai ∈ A∗

γ that player γ performs
in 
 starting from s.

By omitting the player index we refer to the moves of all players. To simplify
notation, we use move(
) as a short notation for move(first(
), 
). We write
(m)(first(
)) = last(
) to denote that the execution of move m from the first(
)
leads to the last(
). This allows us to now define the delay operator as follows.

3 For deterministic transitions, p = 1, hence omitted from � for readability.
4 An execution fragment lives in the transition system (TS), i.e., � ∈ Prop(TS(G)).

We omit TS for readability.
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Definition 7 (Delay Operator). For an GH, let m = move(
) =
a1b1 . . . anbnθ be a move for some deterministic 
 ∈ TS(GH), where a1...an ∈
A∗

II, b1...bn ∈ A∗
I . The delay operator, denoted by m, is defined by the rule

m = a1 . . . anθb1 . . . bn.

Intuitively, the delay operator shifts PLI actions to the right of PLII actions up
until the next probabilistic state. For example,

if ρ = s
(0)
II

a1 �� s
(1)
I

b2 �� s
(2)
II

θ �� s
(3)
©

p3 �� s
(4)
II

a4 �� s
(5)
I

b5 �� s
(6)
II

a6 �� s
(7)
I

b7 �� s
(8)
II

then m = a1 b2 θ τ a4 b5 a6 b7,

and m = a1 θ b2 τ a4 a6 b5 b7.

Simulation Relation. Given an HIG GH, we first define the corresponding
DAG GD.

Definition 8 (Correspondence). Given an HIG GH, a corresponding DAG
GD = D[GH] is a DAG that follows the semantic rules displayed in Fig. 7.

Fig. 7. Semantic rules for HIG-to-DAG transformation.

For the rest of this section, we consider GD = D[GH], and use 
 ∈ TS(GH) and

̂ ∈ TS(GD) to denote two execution fragments of the HIG and DAG, respec-
tively. We say that 
 and 
̂ are similar, denoted by 
 ∼ 
̂, iff first(
) 
 first(
̂),
last(
) ∼ last(
̂), and move(
) = move(
̂).

Definition 9 (Game Proper Simulation). A game GD properly simulates
GH, denoted by GD � GH, iff ∀
 ∈ Prop(GH), ∃
̂ ∈ Prop(GD) such that 
 ∼ 
̂.

Before proving the existence of the simulation relation, we first show that if a
move is executed on two equivalent states, then the terminal states are similar.

Lemma 1 (Terminal States Similarity). For any s0 
 ŝ0 and a determin-
istic 
∈TS(GH) where first(
)= s0, last(
) ∈ SII, then last(
)∼

(
move(
)

)
(ŝ0)

holds.
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Proof. Let last(
i) = s
(i)
γi (ti, ui, Ωi) and

(
move(
i)

)
(ŝ0) = ŝ

(i)
γ̂i

(t̂i, ûi, wi, ji),

where move(
i) = a1b1...aibiθ. We then write move(
) = a1...aiθb1...bi. We use
induction over i as follows:

– Base (i=0): 
0=s0 =⇒ s(0) 
 ŝ(0) where u0 = û0 and t0= t̂0.
– Induction (i > 0): Assume that the claim holds for move(
i−1) = a1

b1...ai−1bi−1θ, i.e., ui−1 = ûi−1 and t̂i−1 ∈ Ωi−1. For 
i we have that
ui = Eff(ai, ui−1) and ûi = Eff(ai, ûi−1). Also, ti = Eff(bi, ti−1) ∈ Ωi and
t̂i = Eff

(
bi, t̂i−1

)
. Hence, ui = ûi, t̂i ∈ Ωi and γ̂i = γi = ©. Thus, s(i) ∼ ŝ(i)

holds. The same can be shown for move(
) = a1b1...aibi where no θ
occurs. ��

Theorem 1 (Probabilistic Simulation). For any s0 
 ŝ0 and 
 ∈ Prop(GH)
where first(
) = s0, it holds that

Pr [last(
) = s′] = Pr
[(

move(
)
)

(ŝ0) = ŝ′
]

∀s′, ŝ′ s.t. s′ 
 ŝ′.

Proof. We can rewrite 
 as 
 = 
0
p1 �� 
1 · · · 
n−1

pn �� s
(n)
II , where 
0, 
1, . . . , 
n−1

are deterministic. Let first(
i) = s
(i)
II (ti, ui, Ωi), last(
i) = s

(i)
© (t′i, u

′
i, Ω

′
i), and

(
move(
)

)
(ŝ0)= ŝ(n)(t̂n, ûn, wn, jn). We use induction over n as follows:

– Base (n=0): for 
 to be deterministic and proper, 
=
0=s(0) holds.
– Case (n = 1): p1 = p(t′0, u

′
0). From Lemma 1, û1 = u1 and t̂1 = t1. Hence,

Pr
[
last(
)=s

(1)
II

]
= Pr

[(
move(
)

)
(ŝ0)= ŝ

(1)
II

]
=p(t′0, u

′
0) and s

(1)
II 
 ŝ

(1)
II .

– Induction (n>1): It is straightforward to infer that pn =p
(
t′n−1, u

′
n−1

)
, hence

Pr
[
last(
)=s

(n)
II

]
= Pr

[(
move(
)

)(
ŝ(0)

)
= ŝ(n)

]
= P , and s

(n)
II 
 ŝ

(n)
II . ��

Note that in case of multiple θ attempts, the above probability P satisfies

P =
n∏

i=1

mi∑

j=1

pi

(
t′i−1, u

′
i−1

) (
1 − pi−1

(
t′i−1, u

′
i−1

))(j−1)
,

where mi is the number of θ attempts at stage i. Finally, since Theorem 1 imposes
no constraints on move(
), a DAG can simulate all proper executions that exist
in the corresponding HIG.

Theorem 2 (DAG-HIG Simulation). For any HIG GH there exists a DAG
GD = D[GH] such that GD � GH (as defined in Definition 9).

4 Properties of DAG and DAG-based Synthesis

We here discuss DAG features, including how it can be decomposed into sub-
games by restricting the simulation to finite executions, and the preservation of
safety properties, before proposing a DAG-based synthesis framework.
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Transitions. In DAGs, nondeterministic actions of different players under-
line different semantics. Specifically, PLI nondeterminism captures what is
known about the adversarial behavior, rather than exact actions, where PLI

actions are constrained by the earlier PLII action. Conversely, PLII nondeter-
minism abstracts the player’s decisions. This distinction reflects how DAGs can
be used for strategy synthesis under hidden information. To illustrate this, sup-
pose that a strategy πII is to be obtained based on a worst-case scenario. In that
case, the game is explored for all possible adversarial behaviors. Yet, if a strat-
egy πI is known about PLI, a counter strategy πII can be found by constructing
GπI
D .

Probabilistic behaviors in DAGs are captured by PL©, which is character-
ized by the transition function δ̂ : Ŝ© × ŜII → [0, 1]. The specific definition
of δ̂ depends on the modeled system. For instance, if the transition function
(i.e., the probability) is state-independent, i.e., δ̂(ŝ©, ŝII) = c, c ∈ [0, 1], the
obtained model becomes trivial. Yet, with a state-dependent transition func-
tion, i.e., δ̂(ŝ©, ŝII) = p(t̂, û), the probability that PLII successfully reveals the
true value depends on both the belief and the true value, and the transition
function can then be realized since ŝ© holds both t̂ and û.

Decomposition. Consider an execution 
̂∗ = ŝ0a1ŝ1a2ŝ2 . . . that describes a
scenario where PLII performs infinitely many actions with no attempt to reveal
the true value. To simulate 
̂∗, the word w needs to infinitely grow. Since we
are interested in finite executions, we impose stopping criteria on the DAG,
such that the game is trapped whenever |w| = hmax is true, where hmax ∈ N

is an upper horizon. We formalize the stopping criteria as a deterministic finite
automaton (DFA) that, when composed with the DAG, traps the game whenever
the stopping criteria hold. Note that imposing an upper horizon by itself is not a
sufficient criterion for a DAG to be considered a stopping game [8]. Conversely,
consider a proper (and hence finite) execution 
̂ = ŝ0a1 . . . ŝ′, where ŝ0, ŝ

′ ∈
Prop(GD). From Definition 9, it follows that a DAG initial state is strictly proper,
i.e., ŝ0 ∈ Prop(GD). Hence, when ŝ′ is reached, the game can be seen as if it is
repeated with a new initial state ŝ′. Consequently, a DAG game (complemented
with stopping criteria) can be decomposed into a (possibly infinite) countable
set of subgames that have the same structure yet different initial states.

Definition 10 (DAG Subgames). The subgames of a GD are defined by the
set

{
Ĝi

∣
∣
∣ Ĝi =

〈
Ŝ(i), (Ŝ(i)

I , Ŝ
(i)
II , Ŝ

(i)
© ), A, ŝ

(i)
0 , δ̂(i)

〉
, i ∈ N0

}
, where Ŝ =

⋃
i Ŝ(i);

Ŝγ =
⋃

i Ŝ
(i)
γ ∀γ ∈ Γ ; and ŝ

(i)
0 = ŝ

(i)
II s.t. ŝ

(i)
II ∈ Prop(G(i)

D ) , ŝ
(i)
II �= ŝ

(j)
II ∀i, j ∈ N0.

Intuitively, each subgame either reaches a proper state (representing the ini-
tial state of another subgame) or terminates by an upper horizon. This decompo-
sition allows for the independent (and parallel) analysis of individual subgames,
drastically reducing both the time required for synthesis and the explored state
space, and hence improving scalability. An example of this decompositional app-
roach is provided in Sect. 5.
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Preservation of Safety Properties. In DAGs, the action θ denotes a transi-
tion from PLII to PLI states and thus the execution of any delayed actions. While
this action can simply describe a revealing attempt, it can also serve as a what-if
analysis of how the true value may evolve at stage i of a subgame. We refer to an
execution of the second type as a hypothetical branch, where Hyp(
̂, h) denotes
the set of hypothetical branches from 
̂ at stage h ∈ {1, . . . , n}. Let Lsafe(s) be
a labeling function denoting if a state is safe. The formula Φsafe := [G safe] is
satisfied by an execution 
 in HIG iff all s(t, u,Ω) ∈ 
 are safe.

Now, consider 
̂ of the DAG, with 
̂ ∼ 
. We identify the following three cases:

(a) Lsafe(s) depends only on the belief u, then 
 |= Φsafe iff all ŝII ∈ 
̂ are safe;
(b) Lsafe(s) depends only on the true value t, then 
 |= Φsafe iff all ŝI ∈ Hyp(
̂, n)

are safe; and
(c) Lsafe(s) depends on both the true value t and belief u, then 
 |=

Φsafe iff last(
̂h) is safe for all 
̂h ∈ Hyp(
̂, h), h ∈ {1, ..., n}, where n is
the number of PLII actions.

Taking into account such relations, both safety (e.g., never encounter a hazard)
and distance-based requirements (e.g., never exceed a subgame horizon) can be
specified when using DAGs for synthesis, to ensure their satisfaction in the orig-
inal model. This can be generalized to other reward-based synthesis objectives,
which will be part of our future efforts that we discuss in Sect. 6.

Synthesis Framework. We here propose a framework for strategy synthe-
sis using DAGs, which is summarized in Fig. 8. We start by formulating the
automata MI, MII and M©, representing PLI, PLII and PL© abstract behav-
iors, respectively. Next, a FIFO memory stack (mi)n

i=1 ∈ An
II is implemented

using two automata Mmrd and Mmwr to perform reading and writing opera-
tions, respectively.5 The DAG GD is constructed by following Algorithm 1. The
game starts with PLII moves until she executes a revealing attempt θ, allowing
PLI to play her delayed actions. Once an end criterion is met, the game ter-
minates, resembling conditions such as ‘running out of fuel’ or ‘reaching map
boundaries’.

Model Refinement

Primary Components

Auxiliary Components
DAG Construc on

(Algorithm 1)

Strategy Synthesis

(Model Checker, )

Composi on Strategy Analysis
(Model Checker, )

Fig. 8. Synthesis and analysis framework based on the use of DAGs.

5 Specific implementation details are described in Sect. 5.
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Algorithm 1. Procedure for DAG construction
Input: Components MI, MII, M©, Mmwr, Mmrd; initial state ŝ0
Result: DAG GD

1 while ¬(end criterion) do
2 while a �= θ do � PLII plays until a revealing attempt
3 MII.vB ← Eff(a, vB), Mmwr.write(a, ++wr)

4 while rd � wr do � PLI plays all delayed actions
5 Mmrd.read(a, ++rd), MI.vT ← Eff(β(a), vT )

6 if draw x ∼ Brn(p(vT , vB)) then � PL© plays successful attempt
7 MII.vB ← MI.vT , wr ← 0, rd ← 0
8 else rd ← 0 � Unsuccessful attempt, forget PLI actions

Algorithm 2 describes the procedure for strategy synthesis based on the
DAG GD, and an rPATL [6] synthesis query φsyn that captures, for example,
a safety requirement. Starting with the initial location, the procedure checks
whether φsyn is satisfied if action θ is performed at stage h, and updates the set
of feasible strategies Πi for subgame Ĝi until hmax is reached or φsyn is not satis-
fied.6 Next, the set Πi is used to update the list of reachable end locations � with
new initial locations of reachable subgames that should be explored. Finally, the
composition of both GH and Π∗

II resolves PLII nondeterminism, where the result-
ing model GΠ∗

II
H is a Markov Decision Process (MDP) of complete information

that can be easily used for further analysis.

5 Case Study

In this section, we consider a case study where a human operator supervises
a UAV prone to stealthy attacks on its GPS sensor. The UAV mission is to
visit a number of targets after being airborne from a known base (initial state),
while avoiding hazard zones that are known a priori. Moreover, the presence
of adversarial stealthy attacks via GPS spoofing is assumed. We use the DAG
framework to synthesize strategies for both the UAV and an operator advisory
system (AS) that schedules geolocation tasks for the operator.

Modeling. We model the system as a delayed-action game GD, where PLI and
PLII represent the adversary and the UAV-AS coalition, respectively. Figure 9
shows the model primary and auxiliary components. In the UAV model Muav,
xB =(xB, yB) encodes the UAV belief, and Auav = {N,S,E,W,NE,NW,SE,SW}
is the set of available movements. The AS can trigger the action activate
to initiate a geolocation task, attempting to confirm the current location.
The adversary behavior is abstracted by Madv where xT = (xT , yT ) encodes
the UAV true location. The adversarial actions are limited to one directional
6 Failing to find a strategy at stage i implies the same for all horizons of size j > i.
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Algorithm 2. Procedure for strategy synthesis
Input: Initial location (x0, y0), synthesis query φsyn

Output: PLII strategies Π∗
II

1 � ← [(x0, y0)] , i ← 0
2 while i < |�| do � Explore all reachable subgames
3 ŝ0 ← (�[i], �[i], ε, 0, II), h ← 1, stop ← ⊥ � Construct initial state
4 while h � hmax ∧ ¬stop do � Explore subgame till upper horizon

5 (πII, ϕ) ← Synth
(
Ĝπh

ŝ0
, φsyn

)
� Synthesize strategy for horizon h

6 if πII �= ∅ then
7 Πi ← Πi ∪ (πII, πh, ϕ), h++ � Save synthesized strategy
8 else stop ← 

9 Prune (Πt), Π∗

II ← Π∗
II ∪ Πt � Prune subgame strategies

10 � ← � · (Reachable (Πt) \ �), i++ � update reachability

load a ack

locate

fail

geo
taskidle

fly save

Fig. 9. Primary DAG components: UAV (Muav), adversary (Madv), and AS (Mas).
Auxiliary DAG components: memory write (Mmwr) and memory read (Mmrd) mod-
els, capturing the DAG representation. At stage i, the next memory location to
write/read is mi.

increment at most.7 If, for example, the UAV is heading N, then the adver-
sary set of actions is β(N)={N,NE,NW}. The auxiliary components Mmwr and
Mmrd manage a FIFO memory stack (mi)n−1

i=0 ∈ An
uav. The last UAV move-

ment is saved in mi by synchronizing Mmwr with Muav via write, while Mmrd

synchronizes with Madv via read to read the next UAV action from mj . The
subgame terminates whenever action write is attempted and Mmwr is at state
n (i.e., out of memory).

The goal is to find strategies for the UAV-AS coalition based on the following:

– Target reachability. To overcome cases where targets are unreachable due to
hazard zones, the label reach is assigned to the set of states with acceptable
checkpoint locations (including the target) to render the objective incremen-

7 To detect aggressive attacks, techniques from literature (e.g., [16,25,26]) can be
used.
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tally feasible. The objective for all encountered subgames is then formalized
as Prmax [F reach] � pmin for some bound pmin.

– Hazard Avoidance. Similar to target reachability, the label hazard is assigned
to states corresponding to hazard zones. The objective Prmax [G ¬hazard ] �
pmin is then specified for all encountered subgames.

By refining the aforementioned objectives, synthesis queries are used for both
the subgames and the supergame. Specifically, the query

φsyn(k) :=〈〈uav〉〉Prmax=?

[¬hazard U�k (locate ∧ reach)
]

(1)

is specified for each encountered subgame Ĝi, where locate indicates a successful
geolocation task. By following Algorithm 2 for a q number of reachable subgames,
the supergame is reduced to an MDP G{πi}q

i=1
D (whose states are the reachable

subgames), which is checked against the query

φana(n) :=〈〈adv〉〉Prmin,max=?

[
F�n target

]
(2)

to find the bounds on the probability that the target is reached under a maximum
number of geolocation tasks n.

Experimental Results. Figure 10(a) shows the map setting used for imple-
mentation. The UAV’s ability to actively detect an attack depends on both its
belief and the ground truth. Specifically, the probability of success in a geolo-
cation task mainly relies on the disparity between the belief and true locations,
captured by fdis : Ev (xB) × Ev (xT ) → [0, 1], obtained by assigning probabili-
ties for each pair of locations according to their features (e.g., landmarks) and
smoothed using a Gaussian 2D filter. A thorough experimental analysis where
probabilities are extracted from experiments with human operators is described
in [11]. The set of hazard zones include the map boundaries to prevent the UAV
from reaching boundary values. Also, the adversary is prohibited from launching
attacks for at least the first step, a practical assumption to prevent the UAV
model from infinitely bouncing around the target location.

We implemented the model in PRISM-games [7,19] and performed the exper-
iments on an Intel Core i7 4.0 GHz CPU, with 10 GB RAM dedicated to the tool.
Figure 10(b) shows the supergame obtained by following the procedure in Algo-
rithm 2. A vertex Ĝxy represents a subgame (composed with its strategy) that
starts at location (x, y), while the outgoing edges points to subgames reachable
from the current one. Note that each edge represents a probabilistic transition.
Subgames with more than one outgoing transition imply nondeterminism that
is resolved by the adversary actions. Hence, the directed graph depicts an MDP.

The synthesized strategy for (hadv = 2, h = 4) is demonstrated in Fig. 10(c).
For the initial subgame, Fig. 11(a) shows the maximum probability of a suc-
cessful geolocation task if performed at stage h, and the remaining distance to
target. Assuming the adversary can launch attacks after stage hadv = 2, the
detection probability is maximized by performing the geolocation task at step 4,
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target

landmark

hazard

UAV
seascape

landscape

urban

(a) Environment setup. (b) Supergame GD.

Subgame ini al loca on
Path plan
Geoloca on task

(c) Protocols.

Fig. 10. (a) The environment setup used for the case study; (b) the induced supergame
MDP, where the subgames form its states; and (c) the synthesized protocols.

and hazard areas can still be avoided up till h = 6. For hadv = 1, however,
h = 3 has the highest probability of success, which diminishes at h = 6 as
no possible flight plan exists without encountering a hazard zone. The effect of
the maximum number of geolocation tasks (n) on target reachability is studied
by analyzing the supergame against φana as shown in Fig. 11(b). The minimum
number of geolocation tasks to guarantee a non-zero probability of reaching the
target (regardless of the adversary strategy) is 3 with probability bounds of
(33.7%, 94.4%).

0 1 2 3 4 5 6 7
0

2

4

6

8

10

(a) Geolocation task at stage h

D
is
ta
nc

e
to

ta
rg
et

hadv=2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b.

of
su
cc
es
s

φ
sy

n

hadv=2
hadv=1

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

(b) Max. no. of geolocation tasks n

R
ea
ch
ab

ili
ty

bo
un

ds
φ
an

a

φana,max

φana,min

Δφana,min

Δφana,max

Fig. 11. Analysis results for (a) subgame Ĝ51 and (b) supergame GD.

The experimental data obtained for this case study are listed in Table 1. For
the same grid size, more complex maps require more time for synthesis while the
state space size remains unaffected. The state space grows exponentially with
the explored horizon size, i.e., O (

(|Auav||Aadv|)h
)
, and is typically slowed by,

e.g., the presence of hazard areas, since the branches of the game transitions
are trimmed upon encountering such areas. Interestingly, for h = 6 and h = 7,
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while the model construction time (size) for hadv = 1 is almost twice (quadruple)
as those for hadv = 2, the time for checking φsyn declines in comparison. This
reflects the fact that, in case of hadv = 1 compared to hadv = 2, the UAV has
higher chances to reach a hazard zone for the same k, leading to a shorter time
for model checking.

Table 1. Results for strategy synthesis using queries φsyn and φana.

Subgame Ĝ51 Model size Time (sec)

Map tadv k States Transitions Choices Model φsyn φana

8 × 8 1 4 11,608 17,397 15,950 2.810 0.072 –

5 57,129 87,865 83,267 14.729 0.602 –

6 236,714 366,749 359,234 62.582 1.293 –

7 876,550 1,365,478 1,355,932 231.741 6.021 –

2 4 6,678 9,230 8,394 2.381 0.042 –

5 33,904 48,545 45,354 10.251 0.367 –

6 141,622 204,551 198,640 37.192 1.839 –

7 524,942 763,144 754,984 145.407 8.850 –

Supergame GD 6,212 8,306 6,660 2.216 – 2.490

6 Discussion and Conclusion

In this paper, we introduced DAGs and showed how they can simulate HIGs
by delaying players’ actions. We also derived a DAG-based framework for strat-
egy synthesis and analysis using off-the-shelf SMG model checkers. Under some
practical assumptions, we showed that DAGs can be decomposed into indepen-
dent subgames, utilizing parallel computation to reduce the time needed for
model analysis, as well as the size of the state space. We further demonstrated
the applicability of the proposed framework on a case study focused on synthe-
sis and analysis of active attack detection strategies for UAVs prone to cyber
attacks.

DAGs come at the cost of increasing the total state space size as Mmrd and
Mmwr are introduced. This does not present a significant limitation due to the
compositional approach towards strategy synthesis using subgames. However,
the synthesis is still limited to model sizes that off-the-shelf tools can handle.

The concept of delaying actions implicitly assumes that the adversary knows
the UAV actions a priori. This does not present a concern in the presented
case study as an abstract (i.e., nondeterministic) adversary model is analogous
to synthesizing against the worst-case attacking scenario. Nevertheless, strate-
gies synthesized using DAGs (and SMGs in general) are inherently conservative.
Depending on the considered system, this can easily lead to no feasible solution.
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The proposed synthesis framework ensures preservation of safety properties.
Yet, general reward-based strategy synthesis is to be approached with care. For
example, rewards dependent on the belief can appear in any state, and exploring
hypothetical branches is not required. However, rewards dependent on a state’s
true value should only appear in proper states, and all hypothetical branches are
to be explored. A detailed investigation of how various properties are preserved
by DAGs, along with multi-objective synthesis, is a direction for future work.
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