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Abstract. We present the implementation details of a scalable spectral
clustering algorithm with cosine similarity (ICPR 2018, Beijing, China),
which are based on simple, efficient matrix operations. The sensitivity of
its parameters is also discussed.

1 Introduction

In our recent work [1] we introduced a scalable implementation of various spectral
clustering algorithms, such as the Ng-Jordan-Weiss (NJW) algorithm [3], Nor-
malized Cut (NCut) [4], and Diffusion Maps (DM) [2], in the special setting of
cosine similarity by exploiting the product form of the weight matrix. We showed
that if the data X ∈ R

n×d is large in size (n) but has some sort of low dimensional
structure – either of low dimension (d) or being sparse (e.g. as a document-term
matrix), then one can perform spectral clustering with cosine similarity solely
based on three kinds of efficient operations on the data matrix: elementwise
manipulation, matrix-vector multiplication, and low-rank SVD, before the final
k-means step. As a result, the algorithm enjoys a linear complexity in the size of
the data. We present the main steps of the algorithm in Algorithm 1 and refer
the reader to the paper [1] for more details.

Remark 1. The outliers detected by the algorithm may be classified back to
the main part of the data set by simple classifiers such as the nearest centroid
classifier, or the k nearest neighbors (kNN) classifier.

2 Implementation Details

We implemented Algorithm 1 and conducted all the experiments in MATLAB.
Note that the Statistics and Machine Learning Toolbox is needed because of the
k-means function used in the final step (the rest of the steps consist of very basic
linear algebra operations). If unavailable, the toolbox may be avoided if one uses
a freely-available substitute k-means function such as litekmeans.1

1 Available at http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html.
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Algorithm 1. Scalable Spectral Clustering with Cosine Similarity
Input: Data matrix X ∈ R

n×d (sparse or of moderate dimension, with L2-normalized
rows), #clusters k, clustering method (NJW, Ncut, or DM), fraction of outliers α

Output: Clusters C1, . . . , Ck and a set of outliers C0

1: Calculate the degree matrix D = diag(X(XT1) − 1) and remove the bottom
(100α)% of the input data that have the lowest degrees as outliers (stored in C0).

2: For the remaining data, normalize them by ˜X = D−1/2X and find its top k singular
values λ1, . . . , λk and corresponding left singular vectors ũ1, . . . , ũk by rank-k SVD.
Let Λ = diag(λ1, . . . , λk) ∈ R

k×k and ˜U = [ũ1 . . . ũk] ∈ R
n×k.

3: Form the matrix Y ∈ R
n×k dependent on the clustering method (the rows of Y

are regarded as an embedding of the input data):

– NJW: Y = ˜U;
– NCut: Y = D−1/2

˜U
– DM: Y = D−1/2

˜UΛt, where t is a positive integer representing the number of
diffusion steps.

4: Normalize the rows of Y to have unit �2 norm and apply the k-means algorithm
to find k clusters C1, . . . , Ck.

To promote the simplicity and efficiency of the implementation, we did the
following things:

– We extended the value of the parameter t (hidden in DM) to include the
other two clustering methods: NCut (t = 0) and NJW (t = −1).

– When the input data matrix X is sparse (e.g., as a document-term matrix),
we take advantage of the sparse matrix operations in MATLAB.

– Diagonal matrices are always stored as vectors.
– All the multiplications between a matrix and a diagonal matrix (such as

D−1/2X and D−1/2
˜UΛ), are implemented as element-wise binary operations

through the bsxfun function in MATLAB. Additionally, the matrix-vector
product XT1 is implemented through transpose(sum(X, 1)) in MATLAB.

– The svds function is used to find only the top k singular values and associated
singular vectors of ˜X.

– The k-means clustering is initialized with the default plus option, and uses
10 restarts.

– We implemented the nearest centroid classifier for assigning the outliers back
into the clusters due to its faster speed than k-NN.

The software, as well as the data sets used in [1] and this paper, has been
published at https://github.com/glsjsu/rprr2018.

3 Parameter Setting

The algorithm has only one parameter α that needs to be specified. It indi-
cates the fraction of input data to be removed and treated as outliers.

https://github.com/glsjsu/rprr2018
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Fig. 1. Clustering accuracy rates of the three scalable methods on both versions of 20
newsgroups data corresponding to different α values.

Experiments conducted in [1] showed that the parameter α was not sensitive
in the scalable NJW algorithm, as long as it is set bigger than zero.2 Here, we
further test the sensitivity of the α parameter in all three scalable methods on
the same two versions of 20 newsgroups data [1] and report the accuracy results
in Fig. 1.
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Fig. 2. Clustering accuracy of Algorithm 1 with DM and each value of t = −1 : 15
obtained on the top 30 categories of the TDT2 data set [1] (α = .01 is always fixed).
Note that the two special values t = −1, 0 correspond to the NJW and NCut options.

There is another parameter t in the code that needs to be specified, which
in the case of DM represents the number of steps taken by a random walker.
2 This is actually a necessary condition for the algorithm to work; see [1, Section III.B].

The value zero was included to verify the necessity of the condition.
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In general, its optimal value is data-dependent. We have observed that DM with
t = 1 often gives better accuracy than NCut (corresponding to t = 0); see Fig. 2
for an example.

4 Conclusions

We presented the MATLAB implementation details of a scalable spectral clus-
tering algorithm with cosine similarity. The code consists of a few lines of simple
linear algebra operations and is very efficient and fast. There are two parameters
associated to the algorithm – α and t – but they are easy to tune: for the former,
it is insensitive and we observed that the value α = .01 often works adequately
well; for the latter, it is truly a parameter when DM is used and in that case,
setting it to t = 1 seems to achieve good accuracy in most cases. Lastly, all steps
except the last step of k-means clustering in Algorithm 1 are deterministic and
thus for fixed data and parameter values, the code yields very consistent results
(any inconsistency is caused by the k-means clustering step).
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