
Learning User Preferences via
Reinforcement Learning with Spatial

Interface Valuing

Miguel Alonso Jr.(B)

School of Computing and Information Sciences,
Florida International University, Miami, FL 33199, USA

malonsoj@cs.fiu.edu

http://dsail.fiu.edu

Abstract. Interactive Machine Learning is concerned with creating sys-
tems that operate in environments alongside humans to achieve a task.
A typical use is to extend or amplify the capabilities of a human in
cognitive or physical ways, requiring the machine to adapt to the users’
intentions and preferences. Often, this takes the form of a human oper-
ator providing some type of feedback to the user, which can be explicit
feedback, implicit feedback, or a combination of both. Explicit feedback,
such as through a mouse click, carries a high cognitive load. The focus of
this study is to extend the current state of the art in interactive machine
learning by demonstrating that agents can learn a human user’s behav-
ior and adapt to preferences with a reduced amount of explicit human
feedback in a mixed feedback setting. The learning agent perceives a
value of its own behavior from hand gestures given via a spatial inter-
face. This feedback mechanism is termed Spatial Interface Valuing. This
method is evaluated experimentally in a simulated environment for a
grasping task using a robotic arm with variable grip settings. Prelimi-
nary results indicate that learning agents using spatial interface valuing
can learn a value function mapping spatial gestures to expected future
rewards much more quickly as compared to those same agents just receiv-
ing explicit feedback, demonstrating that an agent perceiving feedback
from a human user via a spatial interface can serve as an effective com-
plement to existing approaches.

Keywords: Human computer interaction ·
Interactive machine learning · Reinforcement learning ·
Artificial intelligence

1 Introduction

Reinforcement Learning (RL) is an area of machine learning that seeks to create
agents that learn what to do in uncertain, stochastic environments. That is,

Supported in part by Kynetic AI, LLC https://kynetic.ai.

c© Springer Nature Switzerland AG 2019
M. Antona and C. Stephanidis (Eds.): HCII 2019, LNCS 11573, pp. 403–418, 2019.
https://doi.org/10.1007/978-3-030-23563-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23563-5_32&domain=pdf
https://kynetic.ai
https://doi.org/10.1007/978-3-030-23563-5_32


404 M. Alonso Jr.

RL agents learn how to map situations to actions with the goal of maximizing
some type of reward [24]. A core tenant of RL that is touted as a key benefit
is that agents learn to do this autonomously, without human intervention, in
an unsupervised fashion. The typical engineering workflow in the design of RL
agents is (1) a reward function is designed, (2) input and output channels are
selected, and (3) an RL learning algorithm is designed [2]. And once the RL
pipeline has been designed and implemented, little if any human intervention is
needed during the learning process.

However, for real-world situations, where the high complexity of the world
cannot easily be modeled in simulation environments, autonomous learning is
often not feasible, primarily because of three key issues: the difficulty in specify-
ing reward functions [20], the constraints on exploration due to the presence of
potentially catastrophic outcomes for agents and humans alike [9], and difficulty
in communicating goals to RL agent so as to avoid being misinterpreted [3]. As
a result, many researchers have proposed introducing a human in the loop of
training RL agents, to varying degrees of success [1,2,12,13,17,18].

These examples not only have elements of machine learning, but also elements
of human-computer interaction (HCI). First coined in 1983 by Card et al. [5,6],
HCI as a discipline is concerned with the design, evaluation and implementation
of interactive computing systems for human use and with the study of major
phenomena surrounding them [10]. Similarly, there has been some work related
to having RL agents learn user preferences [7,26]. For example, Veeriah et al.
[26] demonstrated that an RL agent can learn a human user’s intent and prefer-
ences via ongoing interactions where the human user provides feedback through
facial expressions, as well as, through explicit negative rewards. Collectively, the
interface between machine learning and human computer interaction is referred
to as Interactive Machine Learning (iML). In this paper, I explore combining
Reinforcement Learning techniques with spatial interfaces to create agents that
learn a value function that relates a user’s body language, specifically a thumbs
up or thumbs down gesture, to expectations of future rewards.

1.1 Interactive Machine Learning

Interactive Machine Learning (iML) is a subfield of Machine Learning that cre-
ates systems that operate in environments alongside human operators, where
the human and the machine collaborate to achieve a task and both the human
and ML system can be agents in the environment [11]. Many times, iML is used
to extend or amplify the capabilities of a human in cognitive or physical ways.
For this to be successful, the machine must adapt to the users’ intentions and
preferences, learning about their human counterparts’ behavior. In much of the
current research in iML, a user must convey feedback in some way to the iML
agent.

One popular method is directly, such as through the click of a mouse, or
through spoken word. This is known as explicit human feedback. Implicit human
feedback on the other hand, is a mechanism through which a human can guide
an iML agent’s learning process through subtle cues, such as body language.



Learning User Preferences via Reinforcement Learning with SIV 405

And yet a third type of feedback is known as mixed human feedback which
combines explicit and implicit feedback [4]. Although all three forms of feedback
impose some cognitive load on the human, explicit feedback carries the heaviest
cognitive burden, especially in real-world settings where humans have additional
cognitive loads due to the environment. The main objective of this work is to
extend the current state of the art in iML by demonstrating that a learning
agent can learn a human user’s behavior and adapt to the human’s preferences
with a reduced amount of explicit human feedback in a mixed feedback setting.

1.2 Related Work

With the growth of the machine learning field over the last decade, there has
been much effort in the community to create successful interactions between
humans and machine learning systems with the goal of increase performance
across a myriad of tasks. Many approaches to human-in-the-loop machine learn-
ing have focused primarily on agents learning from humans via explicit rewards.
For example, Thomaz and Breazel [25] used a simulated RL robot and had a
human teach the robot in real-time to perform a new task. They presented three
interesting findings: (1) humans use the reward channel for feedback, as well as
for future-directed guidance; (2) humans exhibited a positive bias to their feed-
back using the signal as a motivational channel; and (3) humans change their
behavior as they develop a mental model of the robotic learner.

More recently, Knox & Stone [14,15] introduced the TAMER framework
(Training an Agent Manually via Evaluative Reinforcement). TAMER’s system
for learning from human reward is novel in three key ways:

– TAMER addresses delays in human evaluation through credit assignment
– TAMER learns a predictive model of human reward
– and at each time step, TAMER chooses the action that is predicted to directly

elicit the most reward, disregarding consideration of the action’s effect on
future state (i.e., in reinforcement learning terms, TAMER myopically values
state-action pairs using a discount factor of 0).

According to Knox & Stone, “TAMER is built from the intuition that human
trainers can give feedback that constitutes a complete judgement on the long-
term desirability of recent behavior.” One drawback of this method, however, is
that when the user needs to modify the agent’s behavior, the model would need
to be changed, for example, via additional rewards from the user.

Another interesting approach is by Christiano et al. [7]. Here, the agent is
trained from a neural network known as the ‘reward predictor’, instead of the
classical RL approach of using the rewards it collects as it explores an environ-
ment. There are three processes running in parallel:

– A RL agent explores and interacts with its environment
– Periodically, a pair of 1–2 s clips of its behavior is sent to a human who is

then asked to select the best one indicating steps toward fulfilling the desired
goal



406 M. Alonso Jr.

– The human’s choice is used to train a reward predictor, which is then used
to train the agent

They showed that overtime, the agent learns to maximize the reward from the
predictor and improve its behavior according to the human’s preferences. How-
ever, this methodology introduces substantial lag between the human feedback
and the agent’s learning.

Another approach by Veeriah et al. [26] uses body language as one of the
drivers of learning. In contrast to the other approaches mentioned, this approach
is concerned with designing a general, scalable agent that would allow a human
user to change the agent’s behavior according to preferences with minimal human
feedback. In this work, they used facial expressions to provide the feedback, not
as a channel for control, but rather as a means of valuing the agent’s actions.

This work is an extension of the work by Veeriah et al. [26] to hand gestures
captured by a 3D spatial interface.

1.3 Problem Statement

There are many domains for which human and computing systems, enabled by
some form of machine learning, work collaboratively to achieve various tasks.
Once such domain of human computer interaction is in the realm of prosthe-
ses, whereby a human operator controls an electronic prosthetic limb [8,16].
Grip selection, for example, is one of the main tasks a human operating a pros-
thetic limb performs. Performing grasping of common objects with the prosthesis
requires choosing the correct grip from an array of various configurations. Most
systems cycle through grips via some feedback mechanism, typically a roll or
pronation/suprenation [21].

Thus, a grip selection task environment was created in order to evaluate
the machine learning system. This problem is taken from the real-world task of
selecting an appropriate grip pattern for grasping a given object by a user that
is operating a prosthetic arm, as mentioned above. Typically for most prosthetic
arms, there are a set of n discrete grips and depending on the type of object or
situation, the correct grip is defined according to the user’s preference. These
preferences are normally setup by a clinician and must be periodically revisited
as the user gains experience with the prosthesis [21]. For this experiment, the
agent must select the correct grip for a random object presented, move forward,
and grasp the object. The episode ends when the agent successfully grasps the
object. In this way, the agent learns the user’s gripping preferences in an ongoing
and online fashion, reducing the need for multiple clinical visits.

2 Reinforcement Learning Algorithm Background

Reinforcement Learning is a branch of Machine Learning that allows agents
to decide what to do, that is, how to map situations to actions with the goal
of maximizing a numerical reward signal. RL agents typically interact with an



Learning User Preferences via Reinforcement Learning with SIV 407

environment, either real-world or simulated, gaining experience with each inter-
action, and improving their performance, as measured by the reward signal.
Mathematically, Markov Decision Processes (MDPs) are used to describe RL
problems. There are several algorithms that solve MDPs, many in optimal ways.
The RL learning algorithm that was investigated for the grip selection task was
SARSA(λ), which is an on-policy temporal difference (TD) control algorithm for
MDPs [24].

2.1 Markov Decision Processes

A Markov Decision Process is a tuple (S,A, Psa, γ,R), where:

– S is a set of states, S ∈ {s0, s1, . . . sm}
– A is a set of actions, A ∈ {a0, a1, . . . am}
– Psa are the state transition probabilities
– γ ∈ [0, 1) is the discount factor, and controls the influence of future rewards

in the present
– R : S × A �→ R is the reward function, which returns a real value every time

the agent moves from one state to the other due to an action

For each state s ∈ S and action a ∈ A, Psa is a probability distribution over the
state space and gives the distribution over what states the system will transition
to if action a is taken when the system is in state s. Starting from an initial
state, s, the agent can choose to take an action a ∈ A. The state of the MDP
then randomly transitions to a successor state s′. The successor state is drawn
according to s′ ∼ Psa. In MDPs, the transition model depends on the current
state, the next state, and the action of the agent. This process happens sequen-
tially over time, with each new action, generating a new successive state, which
leads to further actions.

The reward function, R(s, a), is the primer driver of RL algorithms. Having
the correct R(s, a) can make or break RL algorithms in that the reward function
is essentially the “teacher” in the learning algorithm. It indicates to the RL
algorithm which state-action pairs are more desirable than others by assigning
values. For example, one methodology is to assign positive value to state-action
pairs that are desirable and a zero or negative values to those that don’t matter
or are not as desirable.

Thus, the goal in reinforcement learning is to maximize the reward over time,
choosing states via actions that increase the return over time, and avoiding states
that decrease the return over time. If we start at time t in state st and choose an
action at, where si and ai are states and actions in a sequence, and t = 0, 1, 2, . . . ,
we can represent the the MDP as follows:

st
at−→ st+1

at+1−−−→ st+2
at+2−−−→ st+3 . . . (1)



408 M. Alonso Jr.

Thus, the total reward at time t if we take a0, a1, . . . actions and visit
s0, s1, . . . states over time t + 1, t + 2, t + 3, . . . is given by:

Rt(s, a) = Rt+1(st, at) + γRt+2(st+1, at+1) + γ2Rt+3(st+2, at+2) + · · ·

Rt(s, a) =
∞∑

i=1

γi−1Rt+i(si−1, ai−1) (2)

Thus, the goal would be to maximize the expected value of the total reward:

E[Rt(s, a)] (3)

The solution to this problem is to find a policy, π, which returns the action
that will yield the highest reward for each state. A policy is any function that
maps states to actions: π : S �→ A. When we execute a policy π when in a state
s, the agent takes action a′ = π(s, a). There can potentially be many policies to
choose from, but only one can be considered an optimal policy, which is denoted
by π∗ and yields the highest expected reward over time, which is call the action
value function. Thus, an action value function for a policy π is:

qπ(s, a) = E[Rt|St = s,At = a, π] (4)

where qπ(s, a) is the expected sum of discounted rewards when starting in state
s and taking action a according to policy π.

The goal is to find an optimal policy, π∗ that maximizes the action value
function:

π∗
(s,a) = argmax

π
qπ(s, a) (5)

For most practical applications of RL, qπ(s, a) is not known and must be
learned by interacting with the environment. This type of RL agent, one that
learns the action-value function not from a transition model for the environment,
but rather from direct interaction with the environment, is called a model-free
RL agent.

2.2 SARSA(λ)

In RL, rewards are viewed as short-term signals of the quality of an action,
where as the action value function, Qπ(s, a) represents the long-term value of
a state-action pair. Temporal difference (TD) learning is a class of model-free
methods that estimates Qπ as the agent interacts with the environment. The
agent samples transitions and then updates the estimate of Qπ using observed
and the estimate of the values of the next action. Typically, the agent makes
these observations and updates the action value function at every time step,
according to the following update rule:

Q(St, At) ←− Q(St, At) + αδt (6)



Learning User Preferences via Reinforcement Learning with SIV 409

where Q is an estimate of qπ, α is the step size, and δt is the TD error. SARSA
is a TD learning algorithm that samples states and actions using an ε-greedy
policy and then updates the Q values using Eq. 6 and a δt as follows:

δt = Rt+1 + γQ(St+1, At+1) − Q(St, At) (7)

The term Rt+1 + γQ(St+1, At+1) is called the target. It consists of the reward
plus the discounted value of the next state and next action.

SARSA is known as an on-policy method which arises from the fact that the
behavior policy u is the same as the target policy π. That is, the TD target in
SARSA consists of Q(St+1, At+1), where At+1 is sampled using μ. The target
policy π, is used to compute the TD target. Although On-policy methods may
result sub-optimal policies in certain instances, it has been shown that policies
learned in on-policy methods tend to be safer when the risks are greater because
SARSA takes the action selection into account [24].

Eligibility traces, a method of including information about not just the cur-
rent time step, but information from multiple time steps, are a key mechanisms
in reinforcement learning. For example, in TD(λ) algorithm, the λ refers to the
use of an eligibility trace. Almost any TD method, such as SARSA, can be com-
bined with eligibility traces to obtain a more general method that may learn
more efficiently [24]. In this study, SARSA(λ) is used to improve efficiency of
the learning agent.

2.3 Function Approximation Using Tile Coding

In order to implement Eqs. 6 and 7, an estimate of Q must be maintained and
updated. Since there is no analytical way of expressing Q as a function, a method
of funciton approximation is often used. Formally, function approximation is a
technique for “representing the value function concisely at infinitely many points
and generalizing value estimates to unseen regions of the state- action space”
[23]. Tile coding is a linear function approximation method that is flexible and
computationally efficient. In tile coding, the variable space, which is typically
composed of states and actions, is partitioned into tiles, with each partition
called a tiling. The method uses several overlapping tilings and for each tiling,
maintains the weights of its tiles. The approximate value of an input is found by
summing the weights of the tiles, one per tiling, in which it is contained. Given
a training example, the method adjusts the weights of the involved tiles by the
same amount to reduce the error on the example [23].

2.4 Action Selection Policy

As the action-value function is being learned via a function approximation
method such as Tile Coding, the agent needs a method to select an action from
the current set of actions whose action-value is known. Equation 5 always chooses
the action that yields the largest action value. This is known as greedy action
selection. But since the agent learns this function through experience, there may



410 M. Alonso Jr.

be other actions that the agent may never see that will yield better values. In
order to remedy this, three popular action selection strategies are often used:
ε-greedy, ε-soft, and soft-max [24].

ε-greedy. In ε-greedy, the action with the highest value is chosen most of the
time. However, every so often, an action is selected at random with ε proba-
bility. The action is selected uniformly, independent of the action values. This
guarantees that every action will be explored sufficiently to find the optimal
policy. Larger values of ε favor more exploration of actions, while smaller values
favor exploitation of the greediest action. This is known as the exploration vs
exploitation trade-off.

ε-soft. ε-soft action selection is similar to ε-greedy, except that the best action
is selected with probability 1 − ε and a random action is selected the rest of the
time.

Softmax. A limitation of ε-greedy and ε-soft is when selecting random actions,
they are selected uniformly. The worst action to take is selected with equal
probability to the best action to take. Enter softmax. In softmax action selection,
first, a rank or weight is assigned to each of the actions, according to their action-
value estimate. Then, a random action is selected with regards to the weight
associated with each action. This means that as the action-value function is
learned, poor actions would be less likely to be chosen. This is useful, particularly
the worst actions have unfavorable consequences.

For this study, an ε-greedy action selection strategy was used for its simplicity.

3 System Design and Experimental Setup

While having a working prosthetic to develop a solution for learning grip pref-
erences using reinforcement is desirable, prosthetic devices are both expensive
and challenging to configure and interface with. Thus, in order to carry out the
agent design and experimentation in a low-cost way that would be accessible
by other researchers or iML practioners, a simulation environment was created.
The simulation consisted of a grip selection task with object grasping and was
created using two popular and well supported open source projects, Pybullet
and OpenAI gym.

3.1 Simulation Environment

The grip selection task was simulated using the Bullet physics simulator1 and
the OpenAI gym interface2. A robotic arm with three degrees of freedom was
modeled and imported into the Bullet environment. The robotic arm consists of
two grippers, each with one degree of freedom, and the arm portion with one
degree of freedom. The arm is attached to a table on which objects of variable

1 https://pybullet.org/wordpress/.
2 https://gym.openai.com/.

https://pybullet.org/wordpress/
https://gym.openai.com/


Learning User Preferences via Reinforcement Learning with SIV 411

size are placed, one at a time. Figure 1 shows different scenarios that are possible
in the simulation.

Although the Bullet environment offers an API that can be used to control
the environment to do things such as restart an episode, control the arm, or
add an object of random size, the OpenAI gym interface provides a consistent,
common API that can be used to develop agents that can operate in multiple
environments, as opposed to developing environment specific agents. Thus, the
OpenAI gym interface was used to abstract the specific environment details
of the grasping environment away from the agent. This allows for de-coupling
of the agent development from the environment development and allows other
researchers to use the grasping environment with their own custom agents. By
using the Bullet physics engine along with the OpenAI gym environment, several
experiments were carried out with little effort.

(a) Correct grip selection (b) Incorrect grip selection

(c) Correct grip moving to grasp (d) Episode completion

Fig. 1. Simulation environment in pybullet using the OpenAI gym interface. In (a), the
arm is in the starting position called the “grip changing station”. It has selected the
correct grip for the object size. In (b), the incorrect grip has been selected, although
the arm still remains in the grip chaning station. In (c), the correct grip for the object
size as been enabled and the arm is moving forward to grasp the object. Finally, (d)
illustrates the completion of an episode.



412 M. Alonso Jr.

3.2 Spatial Interface Valuing

In order to have an agent learn from a human, some form of feedback is required.
In this work, a learning agent perceives a value of its own behavior from human
hand gestures given via a spatial interface, which I term Spatial Interface Valuing
(SIV). In order to capture hand gestures, a Leap Motion Controller3 (LMC) is
used as the spatial interface device. The LMC provides tracking information for
the left and right hands, as well as simple gesture recognition. The gestures of
interest for this study are a thumbs up or thumbs down. Unfortunately, that is
not one of the stock gestures implemented. Instead, the roll (ρ) of the right hand
was used to determine whether the user was indicating a thumbs up or thumbs
down. A simple piece-wise function was used to determine the state of the hand:
thumbs up (1.0), thumbs down (−1.0).

hand state(ρ) =

{
1.0 if − 45 < ρ < −135
−1.0 otherwise

(8)

Fig. 2. Overview of the SIV agent setup

3.3 Experimental Setup

The experimental setup consists of a user observing the simulated grip-selection
task and assisting the agent during the training process by (1) signaling a thumbs
3 https://www.leapmotion.com/.

https://www.leapmotion.com/


Learning User Preferences via Reinforcement Learning with SIV 413

up or thumbs down via the spatial interface to signal approval or disapproval
of the agents behavior and (2) pushing the space bar on the keyboard when
the agent was not behaving as expected, giving the agent a negative reward.
A SARSA(λ) agent both with and without SIV, as well as baseline agent was
evaluated, each for 3 runs with 15 episodes per run. All of the experiments were
carried out without the user knowing which of the three agents was currently
being evaluated, i.e. in a blind setting. Additionally, the order in which the
experiments were carried out was randomly selected over the combination of
runs, episodes, grips, object sizes, and agent. Figure 2 shows an overview of the
experimental setup, with the only difference between agent the SIV/No SIV
agents is the feedback from the hand state.

Note: Three distinct simulation environments were created for this study, a base-
line environment for comparison, one environment with SIV feedback, and one
environment without SIV. The experimental setup (excluding the SIV module)
is the same, with the only difference being the inclusion (or exclusion) of the
SIV module. For both simulation environments, the agent makes observations
of the state space every one-tenth of a second and must take an action at every
time step.

Table 1. State spaces for each agent under test: SIV vs no SIV

Agent type State space variables

Baseline current grip size, current object size, bias

With SIV current grip size, hand state, bias

Without SIV current grip size, bias

State Space. As mentioned above, three SARSA(λ) [22,24] agents, a baseline,
one with SIV and one without SIV, were implemented to determine how well the
agents learned a user’s preferences for the grip selection task. Table 1 describes
the state space design for all three agents. The SARSA(λ) baseline agent uses
the size of the object and the current grip, along with a bias term as the state
space vector φ(s):

φ(s) = [current grip size, current object size, bias] (9)

This state space was chosen in order to allow the agent to learn the best grip
for each object, since both values are known form within the simulation, they
can be observed and are used to establish a baseline level of performance with
which to compare the SIV an No SIV enabled agents. The maximum grip size,
maximum object size, number of grips, and number of objects are all parameters
that can be configured prior to running each episode.

For the agent enabled with SIV, which is ideally for deployment in a real
prosthetic device, the grip size is known to the agent, but for real-world grasping



414 M. Alonso Jr.

tasks, object size is not known. This is where SIV steps in. Having knowledge
of the user’s gesture takes the place of exact knowledge of the object size (as in
the baseline agent). Thus, the state vector for the SIV agent is:

φSIV (s) = [current grip size, hand state, bias] (10)

And lastly, the state space for the agent that does not use SIV as a feedback
channel, only has knowledge of the current grip.

φNoSIV (s) = [current grip size, bias] (11)

Action Space. Modeled after the grip selection task in [26], the complete action
space for the agents consists of the following:

Acomplete(s) = {grip1, grip2, . . . gripn,←,→} (12)

where the first 1 . . . n actions are grip selections amongst the n grips. The remain-
ing actions {←,→}, when taken, move the arm one step closer to the object (←)
or one step closer to the grip changing station (→). However, the actions that
are available to the agent depending on the position of the arm relative to the
grip changing station, the object, and the reward. When the arm is in the grip
changing station, the actions available are:

Agrip change(s) = {grip1, grip2, . . . gripn,←} (13)

Once the grip has been selected and the agent moves forward one step towards
the object, the actions available are:

Amove(s) = {←,→} (14)

And lastly, if the agent receives an explicit negative reward from the human
user, the only available action is to return to the grip changing station:

Areturn(s) = {→} (15)

Table 2. Hyperparameters for SARSA(λ) agents

Parameter Value

λ 0.0

step size 0.5

γ 1.0

ε 0.1



Learning User Preferences via Reinforcement Learning with SIV 415

4 Experiments

4.1 Two Objects with Four Grips

In order to validate SIV as an RL method that can effectively learn a user’s
preference during grip selection, several trials of a grip selection task were carried
out with a user in a blind setting, as mentioned in Sect. 3.3. At the beginning
of each episode, the environments were setup to randomly select one of two
object sizes: a small object, much smaller than the largest grip size, and a large
object, approximately the size of the largest grip. The number of grips for the
grip selection task was set to four for all episodes, requiring that the agent learn
the users grip preference in two distinct grasping situations. The experiments
were formulated as an episodic MDP with 0 discount (γ = 1.0), 0 reward at
every time step and a 0 reward for completing the episode. The hyperameters
for SARSA(λ) agents are show in Table 2.

4.2 Experimental Results

The results for the experiment are shown in Fig. 3. Overall, the baseline agent
performs the best when considering the average steps per episode (Fig. 3(a)).
This is to be expected, because once the baseline agent learns the user prefer-
ence, it can execute those preferences directly because the baseline agent has
knowledge of both the object size and current grip and has learned the action
value function and thus, the optimal policy. Once trained, it does not need to
rely on the human for any form of input. However, observing the performance
of the agent using SIV, although on average it took more steps to complete an
episode than the baseline, it out performed the agent without SIV on two of the
three runs. This may be due to the human user themselves getting accustomed
to providing the feedback to all of the agents.

Another interesting finding is that both the baseline agent and the agent
with SIV learned with approximately the same number of average reward button
pushes, where as the agent learning the grip selection task without SIV needed
many more button pushes to successfully complete the runs. This indicates that
the agent with SIV learns as quickly as the baseline agent, while the agent
without SIV takes longer to learn the user’s preference. This is likely because
the agent without SIV only has the reward channel to try to learn the human
users preference. This is shown in Fig. 3(b) and (e). Similarly, the amount of
total reward needed and total number of button pushes needed (Fig. 3(d) and
(e)) for the baseline and SIV agents is approximately half what is needed for the
agent without SIV.



416 M. Alonso Jr.

(a) Average steps per run (b) Average pushes per run

(c) Total steps per method (d) Total reward per method

(e) Total pushes per method

Fig. 3. Results from evaluating agents using SIV against a Baseline agent with full
knowledge of the current grip and object size, and an agent not using SIV with knowl-
edge of only the current grip.

5 Conclusions and Discussion

This study introduces a new approach called Spatial Interface Valuing that uses
a 3D spatial interface device to adapt an agent to a user’s preferences. I showed
that SIV can produce substantial performance improvements over an agent that
does not use SIV. Through SIV, the agent learns to adapt its own performance



Learning User Preferences via Reinforcement Learning with SIV 417

and learn user preferences through gestures, reducing the amount of explicit
feedback required. SIV delivers implicit feedback from a user’s hand gestures
to an agent, allowing the agent to learn much more quickly and require less
explicit human generated reward. The SIV agent learned to map hand gestures
to user satisfaction, codifying satisfaction as a action value function using tem-
poral methods for Reinforcement Learning. This technique is task agnostic and I
believe it will easily extend to other settings, tasks, and forms of body language.

6 Future Work

The current results are encouraging, however, more work can be done on sev-
eral fronts. This study was limited to studying the SARSA(λ) RL algorithm,
an on-policy agent that uses tile coding, a function approximation technique, to
estimate the action value function and learn a policy that encodes user prefer-
ences. It may be useful to study other types of agents such as off-policy agents
using Q-learning, for example. Additionally, deep learning techniques such as
Deep Q Networks [19] and DeepSARSA [27] may perform better. Addition-
ally, simply extending the size of the experiment by conducting more runs with
more users, different hyper-parameters and random seeds, and different object
size/grip number combinations in a randomized control experiment will allow
for a more robust statistical analysis of the performance.

References

1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the Twenty-First International Conference on Machine Learning.
ICML 2004. ACM, New York (2004)

2. Abel, D., Salvatier, J., Stuhlmüller, A., Evans, O.: Agent-agnostic human-in-the-
loop reinforcement learning. In: NIPS Workshop on the Future of Interactive Learn-
ing Machines 2016, January 2017

3. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. arXiv:1606.06565 [cs], June 2016

4. Boukhelifa, N., Bezerianos, A., Lutton, E.: Evaluation of interactive machine learn-
ing systems. arXiv:1801.07964 [cs], January 2018

5. Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user perfor-
mance time with interactive systems. Commun. ACM 23(7), 396–410 (1980)

6. Card, S.K., Newell, A., Moran, T.P.: The Psychology of Human-Computer Inter-
action. L. Erlbaum Associates Inc., Hillsdale (1983)

7. Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei, D.: Deep
reinforcement learning from human preferences. arXiv:1706.03741 [cs, stat], June
2017

8. Edwards, A.L., et al.: Application of real-time machine learning to myoelectric
prosthesis control: a case series in adaptive switching. Prosthet. Orthot. Int. 40(5),
573–581 (2016)

9. Garćıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16, 1437–1480 (2015)

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1801.07964
http://arxiv.org/abs/1706.03741


418 M. Alonso Jr.

10. Hewett, T.T., et al.: ACM SIGCHI curricula for human-computer interaction.
Technical report. ACM, New York (1992)

11. Holzinger, A.: Interactive machine learning for health informatics: when do we need
the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016)

12. Knox, W.B., Setapen, A., Stone, P.: Reinforcement learning with human feedback
in mountain car. In: AAAI Spring Symposium: Help Me Help You: Bridging the
Gaps in Human-Agent Collaboration (2011)

13. Knox, W.B., Stone, P.: Augmenting reinforcement learning with human feedback.
In: ICML Workshop on New Developments in Imitation Learning, p. 8 (2011)

14. Knox, W.B., Stone, P.: Framing reinforcement learning from human reward. Artif.
Intell. 225(C), 24–50 (2015)

15. Knox, W.B., Stone, P., Breazeal, C.: Teaching agents with human feedback: a
demonstration of the TAMER framework. In: Proceedings of the Companion Pub-
lication of the 2013 International Conference on Intelligent User Interfaces Com-
panion, pp. 65–66 Companion. ACM, New York (2013)

16. Li, C., Ren, J., Huang, H., Wang, B., Zhu, Y., Hu, H.: PCA and deep learning
based myoelectric grasping control of a prosthetic hand. BioMedical Eng. OnLine
17, 107 (2018)

17. Liu, F., Su, J.B.: Reinforcement learning based on human-computer interaction.
In: Proceedings. International Conference on Machine Learning and Cybernetics,
vol. 2, pp. 623–627, November 2002

18. Mathewson, K., Pilarski, P.M.: Simultaneous control and human feedback in the
training of a robotic agent with actor-critic reinforcement learning. In: Interactive
Machine Learning Workshop at IJCAI 2016, p. 7 (2016)

19. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

20. Ng, A.Y., Russell, S.J.: algorithms for inverse reinforcement learning. In: Proceed-
ings of the Seventeenth International Conference on Machine Learning, ICML 2000,
pp. 663–670. Morgan Kaufmann Publishers Inc., San Francisco (2000)

21. Resnik, L., Meucci, M.R., Lieberman-Klinger, S., Fantini, C., Kelty, D.L., Disla,
R., Sasson, N.: Advanced upper limb prosthetic devices: implications for upper
limb prosthetic rehabilitation. Arch. Phys. Med. Rehabil. 93(4), 710–717 (2012)

22. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems.
Cambridge University Engineering Department, Technical report (1994)

23. Sherstov, A.A., Stone, P.: Function approximation via tile coding: automating
parameter choice. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI),
vol. 3607, pp. 194–205. Springer, Heidelberg (2005). https://doi.org/10.1007/
11527862 14

24. Sutton, R.S., Barto, A.G., Bach, F.: Reinforcement Learning: An Introduction,
2nd edn. A Bradford Book, Cambridge (2018)

25. Thomaz, A.L., Breazeal, C.: Teachable robots: understanding human teaching
behavior to build more effective robot learners. Artif. Intell. 172(6–7), 716–737
(2008)

26. Veeriah, V., Pilarski, P.M., Sutton, R.S.: Face valuing: training user interfaces with
facial expressions and reinforcement learning. CoRR abs/1606.02807 (2016)

27. Zhao, D., Wang, H., Shao, K., Zhu, Y.: Deep reinforcement learning with experi-
ence replay based on SARSA. In: 2016 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 1–6, Decemner 2016

https://doi.org/10.1007/11527862_14
https://doi.org/10.1007/11527862_14

	Learning User Preferences via Reinforcement Learning with Spatial Interface Valuing
	1 Introduction
	1.1 Interactive Machine Learning
	1.2 Related Work
	1.3 Problem Statement

	2 Reinforcement Learning Algorithm Background
	2.1 Markov Decision Processes
	2.2 SARSA()
	2.3 Function Approximation Using Tile Coding
	2.4 Action Selection Policy

	3 System Design and Experimental Setup
	3.1 Simulation Environment
	3.2 Spatial Interface Valuing
	3.3 Experimental Setup

	4 Experiments
	4.1 Two Objects with Four Grips
	4.2 Experimental Results

	5 Conclusions and Discussion
	6 Future Work
	References




