
Modeling Human Eye Movement Using
Adaptive Neuro-Fuzzy Inference Systems

Pedro Ponce1, Troy McDaniel2(&), Arturo Molina1, and Omar Mata1

1 Tecnologico de Monterrey, 14380 Mexico City, Mexico
{pedro.ponce,armolina,omar.mata}@tec.mx

2 School of Computing, Informatics and Decision Systems Engineering,
Arizona State University, Tempe, AZ 85281, USA

troy.mcdaniel@asu.edu

Abstract. The eye’s muscles are difficult to model to build an eye prototype or
an interface between the eye’s movements and computers; they require complex
mechanical equations for describing their movements and the generated voltage
signals from the eye are not always adequate for classification. However, they
are very important for developing human machine interfaces based on eye
movements. Previously, these interfaces have been developed for people with
disabilities or they have been used for teaching the anatomy and movements of
the eye’s muscles. However, the eye’s electrical signals have low amplitude and
sometimes high levels of noise. Hence, artificial neural networks and fuzzy logic
systems are implemented using an ANFIS topology to perform this classifica-
tion. This paper shows how the eye’s muscles can be modeled and implemented
in a concept prototype using an ANFIS topology that is trained using experi-
mental signals from an end user of the eye prototype. The results show excellent
performance for prototype when the ANFIS topology is deployed.

Keywords: Human eye movement � Eye muscles � Artificial neural networks �
Fuzzy logic

1 Introduction

Movement of the human eye is caused by the action of six extra ocular muscles.
Because of the eye’s geometry and nature of movement, its mechanical analysis is
complex and difficult to model. Similarly, understanding how these movements occur
is challenging. In 1975, David A. Robinson wrote about the mechanics of ocular
movement, describing the joint action of the extra ocular muscles [1]. Robinson used
the mechanical properties of the extra ocular muscles to describe movement using
force-balancing mechanical equations. Using this method, it’s possible to describe how
the force is distributed between the different muscles to reach the horizontal, vertical,
and torsion movements depending on the length and innervations of each muscle.
A physical model that can fully reproduce the ocular movements still does not exist;
virtual simulations are instead used by specialists to gain a better comprehension of
how ocular movements occur [2]. Artificial intelligence techniques exist that allow
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linguistic rules to be transformed into an adequate control that leads to the creation of
an approximated model close to reality. In this work, we propose a model for
describing the human eye’s movement to allow a clear understanding of the joint action
of the muscles involved in ocular movement with didactic purposes in areas such as
medicine and ophthalmology.

2 General Aspects

2.1 Description of the Human Eye’s Movements

The human eye is our vision organ, and it is located in the orbital cavities. These
cavities are bone structures which contain the eyeballs, the extra ocular muscles,
nerves, blood vessels, fat, and most of the lacrimal apparatus. The eyeball covers one
third of this cavity and consists of five sixths spherical segments, one comprising the
fifth posterior parts and one comprising the sixth fore part. Ocular movement is mainly
due to the conjunct action of six extra ocular muscles mentioned below: superior rectus,
inferior rectus, medial rectus, lateral rectus, and superior and inferior oblique. All these
muscles except for the inferior oblique have their origin at a common point called the
Annulus of Zinn.

These muscles come in pairs, and therefore every pair has a common plane. This
plane is formed by joining the midpoints of the origin of the muscles to the midpoints
in the insertions of the eyeball tendons. The plane of the medial rectus and the lateral
rectus muscles is a horizontal plane which divides the eye in two parts. The plane of the
superior rectus and inferior rectus is a vertical plane that has a 23° angle with the
fixation line when the eyes are looking to the front, as shown in Fig. 1. The oblique
muscles have a plane that has a 51° angle with the fixation line when the eye is looking
in the same position as mentioned [2].

Fig. 1. Superior and inferior rectus angle with the plane
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Ocular movement occurs on three axes (X, Y, Z) better known as Fick’s axes [3] as
shown in Fig. 2. The movements generated by the extra ocular muscles are purely
rotational due to the action of the ligaments that attach the orbital cavity with the eye.
Translational movements are very limited, avoiding the eye to get out of position.
Nevertheless, it is considered that the center of rotation is always inside a zone called
the centroid. In an adult eye, the center of rotation is located approximately 13.5 mm
behind the cornea and 1.6 mm from the eye’s nasal side [4].

2.2 Vector Analysis of the Human Eye

h Horizontal component of ocular rotation
/ Vertical component of ocular rotation
w Ocular torsion component
O Origin of each muscle
R Insertion point of each muscle in the eyeball

O
!

Vector that goes from the center of the eyeball (C) to the origin (O)
r! Vector that goes from the center of the eyeball (C) to the insertion point (R)
~F Force vector
T Point where the force acts
~m Action unit vector

As shown in the Fig. 3, vector ~F begins to act from T, which is a muscular
trajectory which goes from the insertion point to the separation of itself; therefore, the
force is acting completely on the muscle. In order to solve this model, there are two
main problems: the first problem is the innervations which consider the assumption that
the eye is normal and when a new position is given it is necessary to find the six
muscular innervations to keep it in that position. The second problem is when the
innervations are known but the eye is abnormal. Therefore, it is necessary to find the
deviation of the eye position.

Fig. 2. Fick’s axes
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If the eye is moving in a horizontal position with an angle h, in a vertical position
with an angle /, and with a torsion w, the eye will remain in this position as long as the
sum of forces acting on it are zero. For determining the forces or moments, it is
necessary to consider the insertion and origin points of each muscle; these follow a path
through the eyeball’s surface ending at T. The exerted force of the muscle is directed
from T to O. Therefore, the moment created by this force is a vector perpendicular to
the plane formed by C, T, and O with its direction following the right-hand rule. Vector
~m is directed in the same direction of this axis and it is extremely important because its
components mx; myymz indicate the relative quantities of force distribution needed for
acting on the eyeball vertically, horizontally and in torsion.

Vector ~m indicates the direction of the moment which has a magnitude F. Thus, the
moment created by each muscle is F~m. There are seven moments in total, one for each
extra ocular muscle and a passive moment ~P created for considering the muscular
tissues that act for returning the eye to a neutral position close to the primary position.
The force equilibrium equation results in the following:

~PþF1 m1
�!þF2 m2

�!þ . . .þF6 m6
�! ¼ 0 ð1Þ

As mentioned, the force on each muscle in a stationary state depends only on its
length L and its innervation I, so it can be expressed as F (L, I). Robinson [1] describes
how this relationship is measured experimentally (Fig. 4):

Fig. 3. Vector analysis of the eye movements

Fig. 4. Length-tension plot for different innervation levels
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The experimental results show how the length-tension curves change for different
innervation levels. This plot shows the average of the obtained data in which the curves
were normalized allowing validity for all the extra ocular muscles.

It is possible to measure innervation by the force created if a fixed length is chosen,
in this case the primary position length Lp. The length-tension curves are determined by
some change in Lp expressed as a percentage and defined as Dl. The resistance of a
muscle is proportional to its cross-sectional area and it is defined as k. Therefore, the
force equilibrium equation can be rewritten as follows:

~Pþ
X6

i¼1
kiF Dli;DIið Þmi

!¼ 0 ð2Þ

2.3 Artificial Intelligence Systems

The problem with modeling human eye movement is that it requires expressing many
equations that could not be understandable by a field expert, like an ophthalmologist, for
validation. Hence, we cannot obtain detailed information about the real eye movements
or most of the times a precise model may not exist or is very difficult to model. For this,
we use artificial intelligence because it facilitates the translation of a series of equations
to linguistic rules that are given by the expert on the field whose knowledge and
experience can explain the model [5]. In this work, we used a combination of fuzzy logic
and neural networks to make an ANFIS system (Adaptative-Network-Based Fuzzy
Inference System) because the complexity of most of the biological systems makes
traditional quantitative approaches of analysis difficult [5].

Fuzzy Logic
Conventional mathematics tools, like differential equations, are not adequate for mod-
eling systems that are not well defined or are with uncertainty. For this reason, fuzzy logic
is useful for modeling systems using if-then rules because they can model qualitative
aspects of reasoning and human knowledge without the need of quantitative analysis.
Two approaches were created for fuzzy systems, the Mamdani and the Takagi-Sugeno.
These models were explored systematically by Takagi and Sugeno, who found many
applications in control, prediction, and inference. The Mamdani model is a fuzzy lin-
guistic model that is focused on the interpretability, resulting in a fuzzy set. The Takagi-
Sugeno model focuses on accuracy, resulting in crisp values [6].

There is no standard method to transform the human knowledge and experience into
rules and databases of an inference system. There is also no completely effective method
to tune the membership functions and minimize the output error or maximize its per-
formance index. A fuzzy inference system is formed by five functional blocks [7, 8]:

• A rule base which contains several if-then rules.
• A database that defines the membership functions of the fuzzy sets used in the fuzzy

rules.
• A decision-making unit which performs the inference operations on the rules.
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• A fuzzification interface which transform the crisp inputs into degrees of match with
the linguistic values.

• A defuzzification interface which transforms the fuzzy results of the inference into a
crisp output.

Artificial Neural Networks
The theory and model of neural networks was inspired by the structure and function of
the human nervous system where the neuron is the fundamental element. The neurons
of the nervous system communicate to each other using signals. These signals are
received by the dendrites and the cellular body, in which they are combined and
emitted as output signals. The information is distributed by the axon to the axon’s
terminals to be transmitted again to a new set of neurons. A similarity is created
between biological neurons and artificial neurons is which the signals that enter the
synapses are the inputs of the neuron, which are weighted depending on the strength of
each synapse and can be attenuated or simplified through a parameter called synapse
associated weight. The signals that pass through the synapses can be excitatory or
inhibitory. The neuron is excited with a positive weight and inhibited with a negative
weight; if the weight is zero, the synapse is lost.

Neural Networks have big advantages in the creation of intelligent systems. Their
resemblance to the human brain allows them to learn from experience, generalize from
previous cases, abstract essential characteristics, among others. Below are some of their
advantages [9]:

• Adaptive Learning. The capacity to learn to complete tasks based on training or
initial experience. The weights of the interconnections are adjusted to obtain the
desired results. Learning continues after initial training. An adequate structure and
learning algorithm should be chosen to achieve the desired capabilities.

• Auto organization. Through adaptive learning, networks classify the information
they receive and subsequently modify their own organization during learning. This
capability provides the faculty to react to information or situations not previously
seen.

• Failure Tolerance. When there is a failure in the network, the network should be
resilient and immediately begin reorganizing to recover; much like the human brain
rewires and builds new pathways.

• Real-Time operation. Neural networks can be run in parallel for efficiency; there-
fore, machines are often designed with special hardware in mind for efficiency.

• Easy implementation with existing technology. The ease of training, testing, and
verification allow neural networks to be implemented with low cost hardware.

ANFIS Systems
ANFIS systems, or Adaptive-Network-Based Fuzzy Inference Systems, combine the
use of Artificial Neural Networks with Fuzzy Logic techniques to make an artificial
inference system. Adaptive networks, as its name implies, are neural network structures
that contain nodes that can be adapted. The adaptability relies on the fact that the output
depends on parameters that belong to that specific node that change depending on the
rule of learning, minimizing the error. Thus, an adaptive network is a multilayer
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network with forward connection in which each node carries out a function in the input
signal and on the parameters.

Inside the network, the adaptive nodes are represented by squares. Circular nodes do
not have parameters because they are not adaptive; their values are fixed. The set of
parameters in an adaptive network is the union of all parameters in each node. To
obtain the desired output in response to the input, the parameters are updated depending
on the training data. The architecture is functionally equivalent to a fuzzy rule base of
type Sugeno allowing it to tune the existing rules with a learning algorithm based on
the collection of data from the training, optimizing the rule base and adapting to its
environment. ANFIS systems use neural networks to optimize the coefficients of the
membership functions instead of modifying the weights of the matrix W of the neural
network [10, 11].

Unlike using only an artificial neural network to generate a solid knowledge base,
ANFIS can construct an input-output mapping based on human knowledge and stip-
ulated input-output data pairs. As ANFIS uses linguistic rules to generate its knowl-
edge, its behavior becomes clearer, so it stops being a “black-box” [8].

3 Implementation

3.1 LabVIEW

The system used for this project is an ANFIS with two inputs and one output. The
inputs are coordinates in the X and Y axes in which the eye moves. Three triangular
membership functions where used for each axis. To train the system, we researched the
percentage of elongation of each muscle for each movement. From these facts, we
chose to normalize the minimum value that represents the maximum contraction and
maximum values to represent the maximum elongation of each muscle fixing the
biggest value as the unity value. With the use of the Anfiseditor library from Matlab
software, an ANFIS network was created fixing the number and form of the mem-
bership functions. The method used was backpropagation with a maximum of 5% error
allowed. The results show nine rules with equal number of output functions of Sin-
gleton type, where using the mass center equation, we obtained a crisp output value.
The system was programmed in National Instruments LabVIEW software due to its
easy connection to acquisition cards and its graphical programming language.

Fig. 5. Block diagram of the ANFIS system

306 P. Ponce et al.



The layer 1 from Fig. 5 shows the membership functions, which are adaptable. Layer
2 and 3 have the suggested rules to obtain the minimummembership as well as its proper
normalization, obtain the respective weights. In Layer 4, we have the adaptable output
functions that allow its sum to give us the function of the desired muscle. In Layer 5, the
functions are summed, making its behavior as a Sugeno type system.

In the first block of Fig. 6, the position in degrees is obtained; X ranges from −30°
to 30°, and Y from 0° to 30°. The next block includes the programming for each
muscle. The next step is a block that outputs a crisp value for each muscle. In the last
block, the outputs are merged and sent to the acquisition card where 0 volts indicates
completely closed and 5 volts completely opened.

Fig. 6. Block diagram of the general program for the right eye

Fig. 7. Software block of the artificial muscular elongation
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In the Fig. 7 the first block shows the square which receives position values. The
second block shows the membership functions, three for X and three for Y. In the third
block, a fuzzy numerical value is generated according to the belonging of the degree of
membership in each of the membership functions. In the fourth block, the mass center
is calculated by adding and multiplying the constant values generated by Matlab during
the training phase using the following equations:

O2;i ¼ wi ¼ lAi xð Þ � lBi yð Þ ð3Þ

where i = 1, 2, and

O5;1 ¼
P

i wifiP
i wi

ð4Þ

where wi is the degree of membership generated in the membership functions and fi is
the constant output function used. In the fifth block, the numerical output which
represents the muscular elongation is shown. Next, in Fig. 8. the programming of the
triangular membership functions used are described. The triangular functions are cre-
ated by the values a, b, and c, generated by Matlab’s ANFIS.

The first block obtains the desired position which needs the membership value. The
second block shows the activation logic, which activates each of the equations to
calculate the triangular function. The third block returns a 0 when the value is less than
the values of a and c. Both functions in the middle calculate their positive and negative
slope. In the fourth block, the membership degrees are compared by choosing the
higher degree resulting in the fuzzy value. All membership functions were generated in
the same way, changing only the values of a, b, and c according to each function.

Fig. 8. Control of a triangular membership function
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3.2 Physical Implementation

A model of the right eye with a 5:1 scale was built using a white acrylic sphere of
120 mm diameter for the eye and a transparent resin box for the structure for simulating
the eye cavity, as shown in Fig. 9. To make the muscles of the eye, an air muscle was
made; when these muscles are filled with air they expand and when the air is removed,
they contract. To move the muscles, we used proportional air valves from Dynalloy
which are based on Flexinol. These valves can gradually open or close the stem caps to
produce proportionally controlled air flow. While heated with internal resistance, the
Flexinol contracts and opens the cap; however, as it opens, air begins to flow through
and cool the same wire. The equilibrium between the electrical input and the mass of
air entering the valve determines the aperture size and air flow.

According to the software and for simplicity of design, we chose to use the control
signal for the muscles from 0 to 5 volts to produce 0 to 1 A which assured proper
functioning of the valves. We created proportional conversion modules to accomplish
this. Each module has a voltage to current converter with load to ground plus a power
stage using transistors TIP 41 and TIP 42 for amplifying the current in a push-pull
array, an op amp for compensation of the 0.7 volts drop of the emitter followers, and
another op amp for impedance coupling and protection of the acquisition cards.

4 Results

Eye movement was controlled by software, in which the movements of the eye are
selected by the rotational coordinates of the axes X and Y. However, to demonstrate the
usability, we tested the eye’s model movement by imitating the movement of a real
eye. For this, an electrooculography circuit was implemented. The signals were
acquired by electrodes connected as shown in Fig. 10.

Fig. 9. Physical eye model
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The movement of the eye is measured in degrees from its initial position to the
desired position. To characterize the movement of the model, the degrees moved and
time taken were measured for each movement. The measurements where made with the
eye in its center position, as the initial position, and to the up, left, and right position;
also, from the up position to the left and right. The time was measured in seconds and
the velocity as the ratio of degrees and time. The results are shown in Table 1.

Compared to the human eye, the model is 45 times slower due to its mechanical
limitations. These limitations include the valve’s response time, the program processing
time, the acquisition cards voltage response time, and the valves closed state to fully
flowing state. The model is limited in the down motion because of the physical
restrictions, achieving the 6 of the 9 basic eye positions.

This interface demonstrates to be simple and yet reliable to monitor the movement
of the muscles in the human eye. Thus, the interface can be an advantage in many
applications where the eye movement is tracked like in computer games [12] where it
can be used as a joystick to navigate through a level, or to help severely disabled people
[13] to help them control a computer, or a way to measure spatial attention [14] for
therapies and studies. and even helping studies of visual marketing [15].

Fig. 10. Position of electrodes

Table 1. Model measurements

Origin Destiny Degrees [°] Time [s] Velocity [°/s]

Center Right 5 0.8 6.3
Up Right 4 1.1 3.6
Up Left 10 1.5 6.7
Center Left 11 1.4 7.9
Center Up 15 1.6 9.4
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5 Conclusions

Representing human eye movements accurately using vector or mechanical analysis
results is difficult because of the complexity of the human vision system. Nevertheless,
it turns out to be easier to understand how eye movement is produced with the use of
everyday language as “too much” or “too little”. With use of artificial intelligence
techniques, such movements can be represented as a simple and easy to understand
process, achieving good approximation of the real movement without the use of a
mathematical model. Artificial intelligence techniques can be used as the link between
physiology and engineering. With the use of this system, medical students can com-
prehend in a more interactive and didactic way such complexities. The muscles were a
challenge since real muscles can be contracted and elongated. The design of the air
muscles can elongate easily; but the contraction was made by rubber bands which not
always applied the same force. This model proved to be a good alternative for emu-
lating the eye’s movement for potential applications of algorithms designed for robotic
systems.

References

1. Robinson, D.: A quantitative analysis of extraocular muscle cooperation and squint. Invest.
Ophthalmol. 14, 801–825 (1975)

2. Kowler, E.: Eye movements: the past 25 years. Vis. Res. 51, 1457–1483 (2011)
3. Robert, S.: Ocular torsion and th function of the vertical extraocular muscles. Am.

J. Ophtalmol. 79, 292–304 (1975)
4. Fry, G.: The center of rotation of the eye. Am. J. Optom. 39, 581–595 (1962)
5. Maysam, F., Diedrich, G., et al.: Survey of utilisation of fuzzy technology in medicine and

healthcare. Fuzzy Sets Syst. 120, 331–349 (2001)
6. Zimmermann, H.: Fuzzy Control, Fuzzy Set Theory – and Its Applications. Springer,

Heidelberg (1996). https://doi.org/10.1007/978-94-010-0646-0
7. Sugeno, M.: An introductory survey of fuzzy control. Inf. Sci. 36, 59–83 (1985)
8. Jang, J.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man

Cybern. 23(3), 665–685 (1993)
9. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall, Upper Saddle River

(2008)
10. Nauck, D., Klawonn, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. Wiley, Hoboken

(1997)
11. Jang, J.-S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man

Cybern. 23, 665–685 (1993)
12. Lin, C., Huan, C., et al.: Design of a computer game using an eye-tracking device for eye’s

activity rehabilitation. Opt. Lasers Eng. 42, 91–108 (2004)
13. Norris, G., Wilson, E.: The eye mouse, an eye communication device. In: Proceedings of the

IEEE 23rd Northeast Bioengineering Conference (2002)
14. Daniel, C., Michael, J.: Eye tracking: research areas and applications. In: Encyclopedia of

Biomaterials and Biomedical Engineering, pp. 573–582 (2004)
15. Wedel, M., Pieters, R.: Eye tracking for visual marketing. Found. Trends Mark. 1(4), 231–

320 (2008)

Modeling Human Eye Movement Using Adaptive Neuro-Fuzzy Inference Systems 311

http://dx.doi.org/10.1007/978-94-010-0646-0

	Modeling Human Eye Movement Using Adaptive Neuro-Fuzzy Inference Systems
	Abstract
	1 Introduction
	2 General Aspects
	2.1 Description of the Human Eye’s Movements
	2.2 Vector Analysis of the Human Eye
	2.3 Artificial Intelligence Systems

	3 Implementation
	3.1 LabVIEW
	3.2 Physical Implementation

	4 Results
	5 Conclusions
	References




