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Abstract. Advancements in RNA sequencing technology have made genomic
data acquired during sequencing more precise, making models fitted to
sequencing data more practical. Previous studies conducted regarding prostate
cancer diagnosis have been limited to microarray data, with limited successes.
We utilized The Cancer Genome Atlas’ (TCGA) prostate cancer sequencing
data to test the viability of fitting machine learning models to RNA sequencing
data. A major challenge associated with the sequencing data is its high
dimensionality. In this research, we addressed two complementary tasks. The
first was to identify genes most associated with potential cancer. We started by
using the mutual information metric to identify the most significant genes.
Furthermore, we applied the Recursive Feature Elimination (RFE) algorithm to
reduce the number of genes needed to identify cancer. The second task was to
create a classification model to separate potential high-risk patients from the
healthy ones. For the second task, we combated the high dimensionality chal-
lenge with Principal Component Analysis (PCA). In addition to high dimen-
sionality, another challenge is the imbalanced data set that has a 10:1 class
imbalance of cancerous and healthy tissue respectively. To combat this problem,
we used the Synthetic Minority Oversampling Technique (SMOTE) to create
synthetic observations and equalize the class distribution. We trained and tested
a logistic regression model using 5-fold cross-validation. The results were
promising, significantly reducing the false negative rate as compared to current
diagnostic techniques while still keeping the false positive rate low. The model
showed great improvements over previous machine learning attempts to diag-
nose prostate cancer. Our model could be applied as part of the patient diagnosis
pipeline, helping to improve accuracy.
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1 Introduction

Prostate cancer is the second leading cause of cancer death among men in the United
States, with an estimated 31,620 deaths predicted in 2019 [1]. The cancer is charac-
terized by a malignant tumor found within the prostate and is mainly found in men 65
and older [1]. Currently, diagnosis begins with a preliminary blood test called a
Prostate Specific Antigen (PSA) test. If the patient shows an abnormally high PSA
level, a doctor may recommend that they undergo a second PSA test and a Digital
Rectal Exam (DRE), in which a doctor palpates the prostate to check for abnormalities
implying a tumor. A prostate biopsy may be recommended if a lump is detected or if
PSA levels continue to rise1. After the biopsy, the cancer is assigned a Gleason score
and stage, both of which indicate the severity of the cancer [2].

There is a great need for an accurate early detection method for prostate cancer.
Various studies have raised concerns regarding PSA testing and the effects it has on
patients. It is estimated that PSA tests have overdiagnosis rates of between 23% and
42% [3]. Often, this can lead to unnecessary anxiety and decreased general health for
patients [4]. The results from the PSA tests often prompt patients to get a biopsy done;
however, this can lead to more confusion due to the inaccuracy of biopsy-based
diagnosis. A study done in 2013 found that the standard 12-core biopsy method of
diagnosis is very ineffective [5]. According to the study, Gleason scores were under-
estimated in 47.8% of patients. In addition, they found that the false negative rate could
be 30% or more, meaning that many patients with cancer were diagnosed as healthy.
Lastly, they found the detection rate was even lower for patients with lower PSA
values. These issues have prompted researchers to seek new methods of diagnosis, one
of which is through the use of RNA sequencing data.

RNA sequencing is a gene sequencing techniquewhich gives amore precise view of a
cell’s transcriptome than previous microarray or Sanger sequencing based methods [6].
DNA microarrays are used to measure gene expression levels; however, they are not as
detailed as RNA sequencing is [6]. The data acquired from RNA sequencing is important
for cancer classification because certain differences in the transcriptome can indicate the
presence of prostate cancer. The sequencing could be performed after the biopsy in
addition to slide pathology.

A recent study done by the National Institute of Health compiled RNA sequencing
data for 33 different types of cancer. The database, called The Cancer Genome Atlas
(TCGA) contains data for both healthy and cancerous samples for each cancer. We
selected prostate cancer because of its prevalence in society and current problems with
diagnosis. In addition, the prostate cancer dataset has a relatively high number of
samples. All of the datasets have many more cancerous samples than healthy samples
and have a sample-feature imbalance. This means that the number of features signifi-
cantly outnumbers the samples, which is common in gene and healthcare research.
Thus, picking one of the cancers with a relatively high amount of samples ensures that
the results are more robust.

1 https://www.cancer.gov/types/prostate/psa-fact-sheet#q1.

66 M. Casey et al.

https://www.cancer.gov/types/prostate/psa-fact-sheet#q1


The purpose of this project was two-fold. The first was to identify genes related to
cancer. The second was to produce effective classification models that can outperform
standard biopsies and microarray-based models. The costs of genomic sequencing have
decreased, making prostate cancer classification using RNA sequencing data a much
more practical option to enhance diagnostic techniques [7]. Biopsies do not always
result in accurate results, and our model can enhance the results of biopsies, leading to
greater predictive accuracy.

The paper is organized as follows. The second section will discuss related works.
The third section will discuss problem formulation and data acquisition. The fourth
section will address how to identify key gene sequences related to Prostate Cancer
using mutual information and recursive feature elimination. In the fifth section, we will
develop a binary classification model, utilizing logistic regression to distinguish
cancerous and non-cancerous individuals. In the sixth section, we will discuss addi-
tional efforts we explored or are currently in progress. In the final section, we will
summarize what we have accomplished and future works.

2 Related Work

Various attempts have been made to classify cancer based on tissue samples. These
various studies have used microarray, clinical, imaging, and RNA sequencing data.
Many recent works have utilized microarray datasets for cancer classification. The most
recent study developed a new approach which aimed to improve accuracy when using
microarray data for classification [8]. Early studies conducted that attempted to diag-
nose prostate cancer with machine learning utilized microarray datasets. Various
studies were conducted using different methods and were tested on five different
microarray datasets [9–14]. These studies aimed to predict whether a cancer would
metastasize or not. Although the results of all the microarray based studies are sig-
nificant, the increased information gain about the transcriptome from RNA sequencing
should give way to improved classification accuracy.

A recent study done attempted to diagnose prostate cancer with machine learning
through use of clinical data [15]. They trained an Artificial Neural Network
(ANN) with data consisting of 22 clinical features. They found that although their
model performed well, it needed improvements before being suitable for clinical
applications.

The TCGA database has already been used for cancer classification. The data
contained in the database goes beyond RNA sequencing data. A recent study used slide
images for classification of lung cell cancer through use of a Convolutional Neural
Network (CNN) [16]. Their results improved upon those achieved by doctors in manual
diagnosis.

Based on our research, no published studies have yet attempted using prostate
cancer RNA sequencing data from the TCGA database for cancer classification.
However, studies have been published using the breast cancer dataset for classification
[17, 18]. The two main challenges associated with all of the TCGA datasets for
advanced analytical study are high dimensionality and class imbalance. The high
dimensionality poses two problems. Firstly, there are so many features that the models

A Machine Learning Approach to Prostate Cancer Risk Classification 67



will not be able to accurately separate the data into healthy and sick. Thus, the results of
any model trained on the data may be poor. Secondly, the number of features is many
times greater than the number of samples. This is known as a feature-sample imbal-
ance, and it causes models trained on the data to be unstable and leads to overfitting.
This makes the results of any model trained on the data unreliable. The studies con-
ducted by Danaee et al. [17] and Golcuk et al. [18] using TCGA breast cancer tested
many methods to combat these problems.

Danaee et al. tried various methods of dimensionality reduction such as a Stacked
Denoising Autoencoder (SDAE), differentially expressed genes, PCA, and KPCA.
They tried each of these methods with three different models, an Artificial Neural
Network (ANN), a Support-Vector Machine (SVM) with a linear kernel, and an SVM
with a radial basis function kernel (SVM-RBF). They calculated five metrics for each
model: accuracy, sensitivity, specificity, precision, and f-measure. They found that the
highest accuracy was attained using the SDAE for dimensionality reduction followed
by the SVM-RBF model. This method also had the highest F-measure. The highest
sensitivity was achieved with the SDAE as well, but with the ANN model. The KPCA
with SVM-RBF model attained the highest specificity and precision.

Golcuk et al. conducted a study which aimed to improve upon the results achieved
by Danaee et al. As a baseline they tried three dimensionality reduction algorithms
(PCA, KPCA, and NMF), followed by a SVM. They also tried utilizing a ladder
network, which does not require a reduction in dimensionality. They found that the
ladder network slightly outperformed both the SDAE and SVM models from the
previous study in almost all metrics. The only metric in which it performed worse was
specificity, showing a slight decrease as compared with the KPCA and SVM-RBF
model.

Only one of these studies however dealt with the class imbalance problem. The first
study utilized the same SMOTE technique that we will use in this study to increase the
number of samples in the dataset. The second study, however, failed to address the
class imbalance. Both their test and validation sets have only 20% of the data, and with
such a low number of healthy samples in the dataset already, each of these datasets had
very few healthy samples. As a result, the results of the model could have been inflated
and makes their results less reliable than those of the first study.

Both of these studies used only the gene expression data and neglected to use the
other three datasets obtained from RNA sequencing. The other datasets present a
significant source of information that could help to improve the performance of models.

3 Data Acquisition and Preprocessing

In this section, we will discuss how we acquire the genomic datasets from the TCGA
database and the preprocessing method to combine the datasets based on shared IDs.
Furthermore, we will boost our dataset using the Synthetic Minority Oversampling
Technique (SMOTE). The purpose of doing the preprocessing is to prepare the data for
use in the gene selection and classification models, and to combat model instability
issues.
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3.1 Data Acquisition

In order to download the RNA sequencing data from the TCGA database, we used an
open-source tool called TCGA-Assembler 2 [19]. All four main RNA sequencing
datasets were downloaded as well as the clinical data. Various types of genomic data
were included: Exon expression, Exon Junctions, Isoform expression, and Gene
expression data. Exons, or sections of genes that provide the code needed to create
proteins, as opposed to introns, which are designed to not code for anything. Exon data
in the TCGA data set displays the positions of the exons on the individual chromo-
somes based off of distance from the ends of the chromosomes. It also shows the
expression levels of each of the exons. Exon Junctions, or the positions where two
exons meet, show mutations occurring when the individual exons are combined to form
a single pre-mRNA chain and allow for scientists to observe similarities in specific
mutations in a specific area that are common to all cancerous patients [8]. Isoforms,
genes that serve almost identical purposes, but are composed of different exons in
different orders or completely different bases, show the genes that are similar to each
other. Lastly, gene expression data shows the exact levels at which a gene is expressed,
allowing researchers to identify genes that are common to cancerous patients and those
that are common to healthy individuals.

After downloading the data, the built-in processing functions were used to clean up
the raw data. These functions extract the most useful parts of the data for analysis. For
instance, for gene expression data, normalized count values are extracted, and for exon
expression data, RPKM (Reads Per Kilobase of transcript, per Million mapped reads)
values are extracted. These values are selected because they are comparable from
sample to sample, unlike the raw data, making them far more useful for analysis. Each
dataset was outputted in a tab-delimited text file and was used later in our own pre-
processing. At this point, the high dimensionality of the data becomes very clear, with
nearly 600,000 total features across the four datasets (Table 1).

3.2 Preprocessing of RNA Sequencing Data

The four different data types arising from the RNA sequencing were preprocessed
separately due to slight differences in structure. For each data type, the data was first
formatted so that the index was the sample ID and the columns were the features. Then,
the samples were categorized as either 0 for cancerous or 1 for cancer free, by
extracting the 13th and 14th digits of the sample ID. A few samples were originally
categorized as 6, or metastatic, and those were reclassified to be 0.

For the gene quantification and isoform quantification datasets, each gene/isoform
had two columns, one corresponding to the raw count per transcript and the other
corresponding to a scaled value which was independent of transcript length. In order to

Table 1. Number of features for each dataset

Gene Exon Junction Isoform Exon

Feature count 20531 249566 73598 239321
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make more accurate comparisons of gene and isoform expression between samples, the
raw count column was dropped for each gene/isoform. In addition, the scaled values
were multiplied by one million to convert them into a Transcripts Per Million
(TPM) value. Following completion of individual preprocessing, the data were merged
into one larger dataset. Since all of the data came from the same sequencing process,
each sample had data in each dataset, and the merge was done using the sample ID as
the reference.

Due to space restrictions, we display only a snapshot of one of the four datasets
(Table 2). This dataset contains 20531 genes and 546 patients, however we only show
five genes and two patients. The values in the table represent the expression of the gene.

3.3 Upsampling with Synthetic Minority Oversampling Technique

Before any testing could be done using machine learning models, we first upsampled
the data in order to deal with model instability resulting from the 10:1 class imbalance
between cancerous and normal (minority) cells. The Synthetic Minority Oversampling
Technique (SMOTE) is a method in which synthetic data of the minority class is
created which closely resembles the original data [20]. In order to do this, it creates a
new observation randomly on the imaginary line connecting an existing data point with
the data point closest to it. As a result, the data stays in the same general cluster, but the
amount of samples is increased. We increased the number of samples from 496
cancerous and 50 healthy to 3000 cancerous and 1500 healthy. By doing this, we
increased the robustness of the results of the classifiers since more healthy samples are
contained in each test part of the test/train split. Without this method, there was a very
low amount of healthy samples in the test set, which may have artificially inflated the
accuracy.

4 Key Gene Sequence Identification

In this section, we will first identify a set of genes related to Prostate Cancer using the
techniques of mutual information and Recursive Feature Elimination. The mutual
information is used to give a preliminary measure of each gene’s importance. The RFE is
then used to minimize the gene sequences needed to perform diagnostics and predictions.

Table 2. Sample gene data

Patient ID UNK-
100130426

UNK-
100133144

UNK-
100134869

UNK-
10357

UNK-
10431

TCGA-2A-
A8VL-01

0.0 1.294659 0.788167 11.358769 85.259114

TCGA-2A-
A8VO-01

0.0 1.121938 0.593362 8.164714 52.753502
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4.1 Gene Sequence Selection Using Mutual Information

The first step in the feature selection process was the identification of genes that are
significant in determining whether a cell is cancerous. We used the mutual information
metric to determine the most significant genes. Mutual information is a metric which
quantifies the amount of information gained about one variable by observing the other.
High mutual information between a gene and the target would mean that knowing the
expression of the gene would give the model a good indication of whether the sample is
cancerous. Equation 1 defines the mutual information between two discrete variables X
and Y and was used to calculate the mutual information between each gene and the
target (cancerous or healthy).

I X; Yð Þ ¼
X

y2Y
X

x2X p x; yð Þlogð p x; yð Þ
p xð Þp yð ÞÞ ð1Þ

The results of the mutual information are summarized in Table 3.

Table 3 contains the top twenty genes with the highest mutual information values.
The meaning of these genes can be found on the National Center for Biotechnology
Information (NCBI) database. We examined several genes from Table 3 using the NCBI
database and noticed some of those genes are theorized to be related with cancers.

Table 3. Mutual information rankings

Gene ID Mutual information

Gene_POLR2H-5437 0.167398
Gene_GSTM4-2948 0.163962
Gene_APOBEC3C-27350 0.161822
Gene_HPN-3249 0.159367
Gene_ETNK2-55224 0.154814
Gene_ANGPT1-284 0.154056
Gene_GSTP1-2950 0.153113
Gene_LURAP1-541468 0.151971
Gene_TMLHE-55217 0.151118
Gene_MCF2-4168 0.149987
Gene_SLC19A1-6573 0.149467
Gene_NKX2-3-159296 0.148963
Gene_PYCR1-5831 0.148119
Gene_PLP2-5355 0.146773
Gene_HOXC6-3223 0.145437
Gene_EFNB1-1947 0.144863
Gene_NKAPL-222698 0.144755
Gene_MARCKSL1-65108 0.14449
Gene_ASPA-443 0.144207
Gene_NECAB1-64168 0.143234
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4.2 Feature Selection with Recursive Feature Elimination

In order to improve the performance of a model trained on the selected features, feature
selection through Recursive Feature Elimination (RFE) was employed on the gene
quantification data. The advantage of this method over purely using the genes with the
highest mutual information is that it will pick genes that are not related to each other.
Two genes may have very high mutual information values but if they are highly
correlated to each other, dependent on the same hidden variable, or are otherwise
related, one of them is redundant when doing classification. With RFE, the chosen
genes are not related, and therefore the variance of the data is better represented.
Using RFE, the highest ranked genes selected will give the highest accuracy when
classifying a sample. A further advantage of this method is that because only a few
genes need to be used when doing classification, the large sample/feature imbalance no
longer exists, and any models created will be more robust.

We trained the model on the genes which had a mutual information value of above
0.05. We selected this threshold to ensure we maximize the number of significant genes
used in the selection model. With this threshold, we kept only 2565 genes for use from
the original 20532 genes (Fig. 1).

Without such initial filtering, the RFE is infeasible from a computational per-
spective. During each iteration of training, a logistic regression classifier was trained to
classify samples as healthy or cancerous. After training, the model ranked the features
in order of importance, and the least important feature was removed. This process was
repeated until there was only one feature left, and a ranked list of all of the genes was
obtained. The results of the RFE are summarized in Table 4.

Fig. 1. Density plot of mutual information w/threshold of MI = 0.05
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Many of the genes found in Table 4 are not found in Table 3. This indicates that
many of the genes with high mutual information were related to each other and as a
result were not found to be as significant by the RFE.

Compared to the model that will be generated in Sect. 5 using PCA, any models
using this set of features will have higher interpretability. These features are genes that
can be easily related to pathology. In addition, it is economically advantageous to
sequence only a few genes as compared with sequencing the whole genome [21].
Besides the topics discussed in Sect. 6, in the future we would like to apply RFE to the
combined data, and use the resulting features for classification.

5 Predictive Modeling

In this section, we developed a predictive model using the combined data. The features
were condensed using PCA (Principal Component Analysis), allowing us to develop a
classification model. In our current research, a logistic regression model was developed
to fit the preprocessed datasets from Sect. 3. In Sect. 6, we will discuss how to extend
this model to include the prediction of cancer stages using more advanced modeling
approaches.

Table 4. Recursive feature elimination rankings

Gene ID Mutual information RFE rank (Logistic)

Gene_HPN-3249 0.159367224 1
Gene_GSTM1-2944 0.134699717 2
Gene_APOE-348 0.059651147 3
Gene_MRPL41-64975 0.091810873 4
Gene_TRIB1-10221 0.060442517 5
Gene_RPL18A-6142 0.051059319 6
Gene_ISG15-9636 0.052118627 7
Gene_RHOB-388 0.056353286 8
Gene_AMACR-23600 0.107861574 9
Gene_MYLK-4638 0.134553865 10
Gene_FLNA-2316 0.058148017 11
Gene_EEF1G-1937 0.059776923 12
Gene_RPL37-6167 0.074615666 13
Gene_WFDC2-10406 0.099545078 14
Gene_APOC1-341 0.078565194 15
Gene_RPLP0-6175 0.054809254 16
Gene_PCP4-5121 0.082975965 17
Gene_GDF15-9518 0.058465024 18
Gene_RPL28-6158 0.103847129 19
Gene_ATP5MF-9551 0.055716636 20
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5.1 Dimensionality Reduction with Principal Component Analysis

High dimensionality prevents models from producing effective results because it is
difficult for the model to extract target information from the data. Dimensionality must
be reduced in order for models to function. Besides RFE, the other dimensionality
reduction technique we used was Principal Component Analysis (PCA). This technique
reduces a set of possibly correlated variables into a set of principal components, which
are uncorrelated variables. These principal components represent the variance in the
data, with each successive principal component representing less variance.

In order to pick how many components to reduce the data to, we found the cumu-
lative explained variance for each number of components (Fig. 2). We originally
selected 200 components for the combined data and 50 for each individual dataset. We
found however that the logistic regression models trained on this data were heavily
overfitting, achieving nearly 100% accuracies. A full summary of the performance of the
combined data 200 principal component model can be found in Table 5. We hypoth-
esized that the overfitting was caused by the feature sample imbalance, and that there
were still too many features being used. To combat this problem, we decided to reduce
the number of principal components for each data type to 5 and the number on the
combined data to 20. We chose this number of components because they explained
nearly 90% of the variance, a heuristic often utilized to determine how many principal
components to use. Each of these five resulting datasets was later used for classification.

5.2 Fitting of the Models

We created six different logistic regression models, one for each of the post-PCA
datasets, and one for the top five features from the recursive feature elimination. We
chose logistic regression due to the linear nature of the data and the robustness of the
logistic regression algorithm. 5-fold cross-validation was performed and repeated
twenty times in order to validate the robustness of the classifier. The upsampled data
was used, allowing us to do the cross-validation, which would otherwise not have been
possible.

Fig. 2. PCA cumulative explained variance
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Various metrics were calculated for each model trained during the cross-validation,
and the final metric represents the average of all of these results. The metrics collected
were accuracy, precision, recall, f1 score, ROC AUC, PR AUC, false-negative rate, and
false-positive rate. Precision quantifies how many instances that were predicted posi-
tive are actually positive. Recall quantifies how many instances that are actually pos-
itive were predicted as such. F1 score is the harmonic average of precision and recall
and it quantifies the overall performance of the model. ROC (Receiver Operating
Characteristics) AUC is the area under the curve with false positive rate on the x-axis
and true positive rate on the y-axis. PR (Precision-Recall) AUC is the area under the
curve with recall on the x-axis and precision on the y-axis. Accuracy was chosen just to
see a benchmark, but due to the imbalanced nature of the dataset, the precision, recall,
and f1 score provide a much more meaningful quantification of the model’s perfor-
mance. ROC AUC was calculated since it is a standard metric. However, PR AUC
gives a more meaningful representation of the model performance. Figure 3 shows the
PR and ROC curves for the combined PCA model.

Table 5 gives a summary of each model’s performance. We created seven models
and report eight metrics on each of them. For PCA models, we applied the PCA
algorithm to five different prostate cancer sequencing datasets (Gene, Exon, Exon
Junction, Isoform, and all the former combined) and trained a logistic regression model
on the resulting principal components. These models are referred to as PCA gene, PCA
exon, PCA exon junction, PCA isoform, and PCA combined respectively. The PCA
Combined200 model uses the top 200 principal components instead of the top 20, as
discussed in Sect. 5.1. The RFE gene model uses features selected by the recursive
feature elimination algorithm applied to the Gene dataset.

Out of the four individual PCA models, the gene model performed the worst.
However, the RFE gene model outperformed all the individual PCA models, implying
that RFE is a better way to do feature reduction, as there may be less information loss.
This gives another reason for RFE to be applied to the combined data in future work.

The combined PCA model performed the best on all metrics except false negative
rate, with a ROC AUC score of 0.99, PR AUC of 0.98, and an F1 score of 0.96. The RFE

Table 5. Model metrics

Dataset Accuracy Precision Recall F1
score

ROC
AUC

PR
AUC

FN FP

PCA Gene 0.850 0.783 0.736 0.759 0.913 0.841 0.084 0.065
Exon 0.896 0.859 0.806 0.832 0.952 0.902 0.062 0.042
Exon
Junction

0.919 0.885 0.859 0.872 0.970 0.946 0.045 0.036

Isoform 0.879 0.832 0.780 0.805 0.933 0.887 0.070 0.050
Combined 0.972 0.969 0.942 0.955 0.995 0.987 0.019 0.010
Combined200 0.999 0.995 1.000 0.998 0.999 0.999 0.000 0.001

RFE Gene 0.961 0.926 0.941 0.912 0.993 0.985 0.014 0.024
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gene model achieved a false negative rate lower than the combined PCA model.
However, it performed more poorly with regards to PR AUC and F1 score. Thus, overall
the RFE gene model is a less effective classifier than the combined PCA Model.

6 Discussion

Our current approach, logistic regression, is limited due to its inability to determine the
stage of cancer because it is a binary model. In order to predict the patient’s cancer
stage, we attempted using a multi-classification approach. We utilized an Artificial
Neural Network (ANN), a deep learning approach, with a Rectified Linear Unit (ReLU)
as our activation function in the middle layers and SoftMax in the final layer. We used
the post-PCA combined dataset to train the model.

To analyze the performance of our ANN, we compared the performance (cross-
entropy) of the model to that of a zero model. The zero model is a model that represents
randomly guessing which stage of cancer (if any) the patient had. We found that our
model made no significant improvement in performance as compared with the zero
model. The zero model had an accuracy of 0.2501 and our model had an accuracy of
0.2839. We hypothesize that this may be because the stage and size of the cancer are
not reflected by the divergence in RNA sequences from healthy cells. Our next step is
to incorporate the clinical data to create a more effective classifier.

During our analysis we found that any model generated on our dataset was highly
dependent on input data and thus unstable in terms of its performance with regards to
the test-train split made. This is because any stable model must have a stable set of
statistical properties in the training set and a reliable statistical relationship between the
features and target. However, for such a small sample size, as is the case here, any split
would significantly disturb the distribution of feature values of the population in
training and testing data sets, especially for testing set. This is because slight changes in
the number of healthy tissues in the testing set would drastically change the generated
model performance. Thus, our challenge becomes whether we can build a stable model
with this data set.

Fig. 3. PR (left) and ROC (right) curves for combined PCA model
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A potential area for improvement is in the area of feature reduction. Our current
approach with PCA may be limited by its linearity, and this may be improved upon
using an autoencoder technique to create and highlight new features of importance.
One of our on-going efforts is to use multiple layers of auto-encoding neural networks
to do the compression. However, we must be cautious of problems associated with
model complexity in this case.

A limitation which was brought up concerned the performance of mutual infor-
mation with RFE. It was suggested that using a random forest in place of RFE may be
more optimal as it already has a built-in information theoretic feature selection criterion
and may improve overall performance. The reasoning is that since no features are
completely correlated, there is still loss of information when the RFE is used. In other
words, if one feature is removed, there may be an inadvertent and undesirable loss of
information. After creating a random forest of 300 trees with depths of 2 we found that
the most important selected features were comparable to those as selected by mutual
information. For example, we found that PLOR2H-5437, which ranked first in mutual
information, was ranked seventh in the random forest.

7 Conclusion and Future Work

Our model significantly improves upon previous prostate cancer research done using
microarray data, and research done using RNA sequencing breast cancer data. In
addition, it improves upon the accuracy of the standard biopsy procedure and has the
potential to standardize the process. The current method of identifying cancer through
the use of a biopsy is inaccurate and based on the skill of the technician, which varies
from location to location [22]. Our model provides a way to improve upon this, because
it can match or exceed the accuracy of diagnosis of a highly experienced technician,
and removes the disparity that exists between highly experienced and less experienced
technicians. In addition, there is an estimated 30% false negative rate associated with
the current method of diagnosis [5]. Our method greatly reduces this number to 1.3%,
meaning that many fewer cases of prostate cancer are missed, especially the less severe
cases. Although our proposed system still requires the use of a biopsy, it has the
potential to be a very useful tool which can help doctors accurately diagnose patients
and minimize false positives and false negatives.

In this paper, we have presented an approach which has the potential to improve
upon the microarray method of prostate cancer identification greatly. Our accuracy also
significantly improved upon previous attempts to classify prostate cancer using
machine learning. Our method, however, only demonstrates the initial advantages of
using machine learning in cancer prediction. This work is limited by the dataset used,
which forces us to create false observations to fix the class imbalance. Future work
needs to address this class imbalance and attempt other ways of dealing with it which
may have less of a potential to artificially inflate the results. Currently, our model does
not utilize clinical data when making a classification. In future work, we will also fit the
clinical data to see what effect on model effectiveness that data may have. We are
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testing deep learning approaches to compare this approach to traditional machine
learning methods. We would also like to apply the RFE algorithm to the combined data
to see how it performs. We hypothesize that it would outperform the results achieved
with the PCA.
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