
A Method and Tool for Automated Induction
of Relations from Quantitative

Performance Logs

Joshua Kimball(&) and Calton Pu

Georgia Institute of Technology, Atlanta, GA 30332, USA
{jmkimball,calton.pu}@gatech.edu

Abstract. Operators use performance logs to manage large-scale web service
infrastructures. Detecting, isolating and diagnosing fine-grained performance
anomalies require integrating system performance measures across space and
time. The diversity of these logs layouts impedes their efficient processing and
hinders such analyses. Performance logs possess some unique features, which
challenge current log parsing techniques. In addition, most current techniques
stop at extraction leaving relational definition as a post-processing activity,
which can be a substantial effort at web scale. To achieve scale, we introduce
our perftables approach, which automatically interprets performance log data
and transforms the text into structured relations. We interpret the signals pro-
vided by the layout using our template catalog to induce an appropriate relation.
We evaluate our method on a large sample obtained from our experimental
computer science infrastructure in addition to a sample drawn from the wild. We
were able to successfully extract on average over 97% and 85% of the data
respectively.

Keywords: Information integration � Data cleaning � Data extraction

1 Introduction

Our experimental computer science infrastructure, elba, generates huge volumes of
data from large numbers of diverse experiments and systems topologies, which support
our empirical-based method for understanding computer systems’ more fundamental
behavior. As we show later, we have run over 20,000 experiments on elba over the last
three years generating over 100 TB of data spread across 400K various log files. To
isolate and diagnose nuanced, fine-grained performance anomalies, we need to support
a broad array of experimental configurations, since these bugs can materialize under a
range of conditions. For example, experimental artifacts like logs can vary in number
and layout per experiment making data extraction and subsequent analysis challenging
to perform at scale. Recent approaches like DeepLog operate over arbitrary text and
attempt to isolate “macro-level” system events like crashes [1]. Our automated relation
induction approach, perftables, operates over the diverse performance monitoring
outputs with the objective of isolating much more precise (shorter and transient) events.

© Springer Nature Switzerland AG 2019
D. Da Silva et al. (Eds.): CLOUD 2019, LNCS 11513, pp. 11–25, 2019.
https://doi.org/10.1007/978-3-030-23502-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-23502-4_2

The layout diversity observed across these performance logs stems from our
infrastructure’s enormous experimental parameter space and its diversity of instru-
mentation. Resource monitoring is one particularly good illustration. Elba infrastruc-
ture currently features five resource monitors: iostat, systat (sar), collectl, oprofile and
lockmon. Each execution (of a given monitor) can have very different output even
though each of these programs accepts a fixed number of parameters. For example,
toggling a runtime parameter to change the resources being monitored alters the layout
of the monitor’s log file. Assuming each resource monitoring decision is binary, there
can be as many as 2n possible layouts for a performance monitor capable of measuring
up to n resources. (From this point forward, layout and format are used interchange-
ably.) Given this, the number of possible layouts is exponential in the number of
resources being monitored. This makes a naïve approach of writing a parser for each
unique format simply intractable. In our data set, we have found the number of distinct
layouts to number in the hundreds (under the most conservative accounting). Data
variety and volume at our scale impedes automated data extraction and subsequent data
analysis, creating an enterprise data-lake-scale data management challenge for our
infrastructure [2]. The longer data remains unprocessed, the more unwieldly its man-
agement becomes [3].

Previous Work. Approaches from previous work in automated information extraction
has generally fallen into one of two categories: wrapper induction and supervised
learning techniques [4, 5]. Wrapper induction techniques have been applied to docu-
ments with explicit record boundaries like HTML [4, 6, 7]. Supervised techniques have
been applied to similar domains. Work on extracting relations from web lists also
shares some parallels with work on information extraction [8].

Previous work from the systems and programming language communities on log
dataset extraction also feature similar work [9]. Work from the systems community has
generally relied on source code interposition techniques to decorate logging statements
corresponding to specific string literals which are found in the output [10]. Work from
the programming language community has primarily used examples to either synthe-
size transformations or automatically generate a transformation program from user
provided transformation actions. RecordBreaker is one such example of this latter
approach [9], and it along with Datamaran are the most similar approaches to ours [11].

Example 1.1. Most previous work assumes record boundaries have been established
beforehand or can be easily established using repeated patterns found in explicit
structures such as the HTML DOM tree. As Gao et al. explain, log files have no natural
record boundaries or explicit mechanisms like HTML tags for determining them [11].
In addition, log files can have nested structures and variable length records, i.e. records
which span a variable number of rows. Log files also include noise such as formatting
concerns and various metadata as shown in Fig. 1.

Performance logs present some specific and unique challenges. First, performance
logs output formats are impacted by two implicit factors: the computer architecture of
the system components being monitored and the actual behavior of the system under
study. This latter characteristic suggests layout is at least partially runtime dependent,
thus the layout of a given performance log for a given execution is not known a priori.

12 J. Kimball and C. Pu

Example 1.2. Figures 1 and 2 shows the performance output from the same perfor-
mance monitor bootstrapped with the same monitoring parameters but running on
different systems. Figure 1 displays the output for the multicore system while Fig. 2
depicts the single core system. Clearly, the output is significantly different holding all
else constant. The impact of these implicit factors on the layout of the output under-
scores the need for an unsupervised approach.

Secondly, performance logs often contain multiple, related record types. In addition,
record types can have degenerative sub-structures such as variable length attributes.
This characteristic only adds to the complexity of comparing records once they are
found. Prior work has assumed records are independent, so this work contains no
mechanism for evaluating the relationships among records. This step is critical to
realizing an end-to-end unsupervised approach. Information must be able to be
extracted and directly represented in relations.

Example 2. Figure 4 shows a snippet of a log file containing process and context
switch data from two sampling periods. First, notice that each active process appears on
a separate line. Since each sampling period has a different number of active processes,
each sampling period spans a variable number of lines. Also, the sampling period is the
record in this case. Under a record type independence assumption, each region of data,
i.e. the regions containing data about context switches and processes respectively,
would be treated as their own record types. In this case, the two sampling periods not
the data regions constitute the two record structures, which also happen to span a
variable number of rows, i.e. variable length records.

While assuming independent record types is suitable for simple extraction, it is
impractical at our scale. In our case, once the data has been extracted, it would still
require significant transformation to get it into the correct relational form. This last
example also demonstrates the need for an approach to identify record boundaries over

Fig. 1. collectl multi-core

Fig. 2. collectl single core

A Method and Tool for Automated Induction of Relations 13

a (potentially large) variable number of rows due to the impact of runtime factors can
have on the layout.

Approach Overview. In this paper, we present perftables—our unsupervised algo-
rithm for automatically inducing relations directly from performance monitoring log
files. Our method goes beyond extraction as our unsupervised approach constructs
tables directly from the observed data.

To accomplish this objective, we have defined a small set of pattern-based tem-
plates. We use a set of delimiters to first convert text into tokens. Then we transform
each token sequence into a sequence of data type labels by applying a series of data
type functions to each token. Next, we lazily match these sequences of data labels to
one of our templates based on similarity. Once data has been matched to a template, the
template can be used to extract the data and separate semantically meaningful metadata
from “noise.” To detect record boundaries, we induce a graph over the matching
template instances. Finally, we construct relations from the template-matched data
according to the record structure detected in the graph.

Generally, our method differs from previous work in its ability to handle logs with
runtime dependent layouts. Due to the impact of runtime behavior on log output,
multiple record types and variable length records are particularly prevalent in perfor-
mance logs. For example, we have observed over 100 distinct layouts generated from
several distinct runtime configurations across 3 monitoring programs. Specifically,
perftables does not depend on pre-defining record boundaries. Moreover, it does not
assume record boundaries appear over some constant, fixed number of lines. Its lazy
approach obviates the need for such a hyperparameter.

Secondly, our method goes beyond extraction and induces relations directly from the
log text data. Previous work has relegated schema definition and data transformation to
manual post-extraction tasks—a significant burden at our infrastructure’s scale. To
analyze experimental data at our scale, we require an approach that can extract and
transform unstructured log data into structured (relational) data with as little human
supervision as possible. As Fig. 3 shows, we have used perftables to successfully extract
with more than 98% accuracy over 250 GB of data from over 1 TB of log data.

Fig. 3. perftables usage

14 J. Kimball and C. Pu

In this paper, we demonstrate how our approach efficiently, accurately and auto-
matically identifies and extracts relations from performance log files. Specifically, we
have developed a small set of layout pattern-based templates, which support data
extraction and attribute identification. Secondly, we have developed a set of algorithms
to automatically identify record boundaries even in the presence of irregular and
variable length records. We also show how our templates support automatically
defining relations from matching data. Finally, we demonstrate the effectiveness (ac-
curacy and efficiency) of our templates inside our environment and provide coverage
for performance log data beyond our domain.

2 Terminology and Problem Statement

In this section, we will formally define our problem of unsupervised table extraction
from performance log files.

Definition 2.1 (Data Type Sequence). By applying one or more delimiters to a string,
it can be transformed into a sequence of tokens. This process is typically referred to as
tokenization.

A best-fitting data type description can be estimated for each token by applying a
data type function to each one. For example, if a token consists of the characters “123”
then a data type description function might return “INT” to indicate integer as the best-
fitting data type for this character sequence. By applying a data type function to every
token in a sequence, a sequence of data type labels can be constructed. We refer to this
sequence of labels as a data type sequence for short.

Definition 2.2 (Layout Template). A Layout Template is a regular expression for
data type sequences. We say the data type sequence matches a layout template iff the
regular expression of a layout template matches the string form of a data type sequence.

Definition 2.3 (Layout). A layout is a specific arrangement of data. Formats or lay-
outs like those depicted in the previous Figures use formatting characters like
whitespace and other special character delimiters like “#” or “:” and the order of
metadata and data and their orientation to accomplish two objectives: partition data

Fig. 4. Long variable length records. Intermediate rows, indicated by braces, were removed for
space considerations.

A Method and Tool for Automated Induction of Relations 15

from metadata and metadata from “noise” and express relationships among the data.
For example, metadata which immediately precedes data can be assumed to describe
the data that follows it. In short, a layout is a sequence such that order can be used to
partition the sequence into data and metadata constituent parts.

Formally, a layout, L, consists of text that can be divided into rows separated by
newline characters, i.e. “\n.” A layout consisting of n rows is <r1, r2, …, rn>. Applying
some tokenization function, f, to the ith row ri results in m tokens <ti1, ti2, …, tim>, and
applying some function g to one or more successive tij determines its membership in
M or D, the sets of metadata and data respectively.

Example 3. In the performance monitoring domain, layout explicitly encodes or aligns
the measurements to corresponding resources. It expresses relationships among data
visually. In Fig. 2, each line expresses the relationship between time and a magnitude
for each of the resources being measured. Specifically, at 20:54:06.403, the CPU
utilization is 19%, i.e. 100% - Idle%. It also shows the components of this utilization:
User and (Sys)tem. Since the values appear on the same line, the layout is expressing a
co-occurrence between these components of utilization at time, 20:54:06.403. In the
multi-core case in Fig. 1, we see each CPU core (and corresponding components of
utilization) are represented as separate columns. Once again, the layout expresses a co-
occurrence among these cores’ measurements at time 12:58:56.657. In both Figures,
the preceding labels describe the data, and more specifically, that a label at a specific
position corresponds to data at the same position in a subsequent row. The presence of
labels provides an additional important signal. Specifically, knowing labels exist and
their location in a file provides information about the location of the data they describe.
Moreover, labels immediately preceding values in a tabular-like orientation suggests
order can be used to match values to labels—an important signal that could be
used during processing. In this respect, these files exhibit some self-describing
characteristics.

Definition 2.4 (Log Data). Consider a file F with m layouts <l1, l2, …, lm>. Given our
layout definition, interpreting each of the file’s layouts can help us separate data from
metadata and segregate useful labels from other metadata. Our goal is to find a layout
that most closely matches the observed data, so it can be used to extract a Table T from
this data. This is a subjective goal as solutions will have a different number of tables,
columns and records. We obviously want to maximize the amount of information that
can be reliably extracted. Instead, we need to formulate the problem as an optimization
task.

Problem. The task is to find the best fitting Layout Template or Templates given the
text. Once we have matched a template to an observed layout, we can use the template
to construct a table T containing some number of columns and a maximal number of
rows from the matching data. So, our refined problem is to extract a table T from the
given log data using the best fitting layout L so that the number of extracted tuples is
maximized.

16 J. Kimball and C. Pu

3 Model

In this section, we identify the layout patterns our model covers and its assumptions.
Our model reduces layout patterns into sequences of coarse-grained data type labels.
By casting each token to a best-fitting data type, we can begin to “see” the format
patterns more explicitly. Our model also includes a collection of Layout Templates that
are expressed as regular expressions over the same alphabet as the one for data type
labels. Layout templates not only express data composition but also a specific ordering.
These model components combined with a few other reasonable assumptions enable us
to automatically extract relations from performance log data.

3.1 Visual Structural Cues and Layouts

Performance log files are often formatted to support human readability and compre-
hension. As such, humans can use visual cues provided by a file layout to easily
separate data from metadata. Unfortunately, performance log text does not explicitly
and consistently identify the regular structures that are visually obvious.

We can view the problem of automatically extracting data from performance log
files as one of interpreting the file layout. Our task is to find a mechanism to convert the
visual cues provided by the layout into something more explicit to support automated
detection and extraction. As we will show, the arrangement or sequence of data types
seems to sufficiently approximate the layout’s visual cues.

We previously defined layout as a sequence of metadata and data in which order
can be used to differentiate data from metadata. Figure 5 depicts some of the most
common layout structures appearing in performance logs. Each “row” in the figure
represents a line, and each “cell’s” shading indicates whether it represents a data (grey)
or metadata (lavender) element. Gaps among the cells indicate breaks or irregularities,
i.e. NULLs. Each example in the figure can be described by their orientations of data to
metadata: tabular, horizontal, vertical, or series of independent tabular structures. We
use these graphical models as a basis for defining our collection of Layout Templates,
which relate sequences of data types to data and metadata distinctions.

3.2 Layout Templates

To support our broader identification and segmentation tasks, we have defined a set of
data layout templates, or layout templates for short, to codify each of the layouts
pictured in Table 1. Specifically, our templates are defined using regular expressions
over the same alphabet used for representing data type sequences (S, D, N). We name
these patterns after the basic data type sequences they describe.

Fig. 5. Common layouts (Color figure online)

A Method and Tool for Automated Induction of Relations 17

For example, Fig. 2 could be expressed as a sequence of four matching patterns:
US, US, UN, UN. (A note on notation: an alphabetic subscript on a basic pattern refers to
the specific branch taken in the pattern definition.)

Our templates express varying degrees of restrictiveness. This follows the intuition
that the more structure or regularity the data exhibits, the more specific the matching
rules can be. Accordingly, our templates can be applied using the best fit principle.

3.3 Assumptions

Our method makes several assumptions about files and their layouts, which enable the
application of our templates. While these assumptions might appear to be restrictive,
we demonstrate in our evaluation that all log files in our sample, including those
collected from the wild, respect these assumptions.

Layout Templates Coverage Assumption. This assumption makes explicit the set of
files our approach covers. Our approach begins by assuming files observe a left-to-
right, top-to-bottom orientation. Specifically, our method covers files that match our
Series layout template. Stated differently, our method can process log files that can be
expressed as an ordering of our Layout Templates.

For our method to achieve its ultimate objective to automatically recover relations,
the order of data in files of interest needs to matter; order must have semantic meaning.
This assumption originates from our definition of a Layout. Our coverage assumption
not only restricts the potential layouts our method covers, but it also bounds the search
space and limits the set of files from which we can automatically materialize relations.

Token Creation Assumption. This assumption concerns the process of applying
some regularly occurring delimiter to split a text of interest into tokens. Specifically, we
assume each character in a text is either used for formatting or as part of a data value.
Under this assumption, a character used as a delimiter cannot also be part of a data
value.

Said differently, characters used as delimiters should not split semantically mean-
ingful data. For example, using a colon “:” as a delimiter on text containing datetime
would split semantically meaningful tokens, since the corresponding date entity is now

Table 1. Template definitions

Type Pattern

Uniform (U) U = {S+ | (D | N)+}
Alternating (A) A = {D?(SN)+ | D?(NS)+}
Tag (G) G = {S(D | N)+}
Tabular (T) USi, UN+j where 0 <= i < j < n
Horizontal (H) A+i, A+i+1 where 0 <= i < n
Vertical (V) G+i, G+i+1 where 0 <= i < n
Series (Ti | Hi | Vi)+ where 0 <= i < n

Note: Series template describes sequences of other
layout templates.

18 J. Kimball and C. Pu

represented as a series of independent tokens. Under this assumption, a colon character
needs to either be a delimiter or part of a value for a given text.

While this assumption seems to be restrictive, we add flexibility by limiting the
context under which the assumption must be true. Previous work has assumed delimiter
characters need to be pre-identified or apply uniformly to a file. This has typically been
referred to as tokenization or chunking. In our case, we assume the context for eval-
uation is the text between two consecutive newline characters, i.e. a line of a file.

In our domain, whitespace is frequently used for formatting and layout purposes.
From this experience, we have found using whitespace characters as delimiters usually
respects this assumption.

4 perfTables Approach

Our approach consists of four steps: tokenizing the file, matching data type sequences
to layout templates, identifying candidate relations and records and finally extracting
relations. Our layout templates are projected onto a file after a file has been transformed
into sequences of data type labels. We create this tokenized representation by applying
user-provided (or a default set) of delimiters to the file. Next, we create sequences of
data type labels by inferring the best fitting coarse-grained data type for each token. We
match our Layout Templates to these data type label sequences using a backtracking
approach. Once data type sequences have been matched to templates, we use infor-
mation from the matched data to identify candidate relations and their constituent
records. Finally, we this information and the matchings to form relations.

4.1 Token Creation

First, a file is broken up into tokens using either a set of user-provided or default
delimiters. The default set consists of white space characters, pipe (|), comma and
quotation marks.

Specifically, each line can be converted into a “row of tokens” by applying one or
more of these delimiters to it. After the file has been tokenized, we now consider each
line of the file to be a row. Specifically, a row r with m tokens is expressed: r = <t0, t1,
t2, …, tm−1>.

The default delimiters are used to bootstrap or initialize our method. Users can
supply supplemental delimiters; however, we have found our default set to be reliable
for performance log data.

Fig. 6. perftables approach

A Method and Tool for Automated Induction of Relations 19

Sequences of Data Type Labels. Each token in the row can be evaluated for fit
among three coarse-grained data types: DATETIME, NUMBER and STRING. We
represent each token in the row with a label corresponding to the best fitting coarse-
grained data type: S for STRING, D for DATETIME and N for NUMBER. At the end
of this encoding step, each row is represented by a sequence of S, D and N characters.
We call these sequences of data type labels sequences for short.

The next step in our method involves analyzing these patterns for the implicit
semantic clues expressed in the layout. For example, a row with the sequence S, N, S,
N, S, N describes a sequence of alternating STRING and NUMBER data. This layout
suggests data is located at the positions corresponding to the “N” labels, and its
metadata is located at the “S” label positions. (Note: the preceding sequence can be
expressed by the regular expression (SN)+ which also corresponds with our Alternating
pattern definition.) The next step in our approach involves evaluating these sequences
by matching these data type labels to our Layout Templates’ regular expressions.

4.2 Model

During this step, we interpret the sequences and match them to our templates to identify
candidate tables. The objective of this step is to identify those rows that “belong
together.”

Matching Sequences to Layout Templates. After tokenizing the file, we try to match
sequences of data type labels to the best fitting layout template. Not knowing a file’s
layout a priori motivates the need for a lazy, adaptive approach to matching.
Accordingly, these sequences are lazily evaluated according to their topological order.

Backtracking. We match sequences to templates using a backtracking algorithm. This
approach optimizes the best-fitting template through a process of elimination. We
evaluate sequences according to their topological order. Each data type label sequen-
ce’s string form is matched to each of the regular expressions accompanying each
template definition. Only matching templates are preserved until only one remains. The
process restarts once a sequence invalidates the remaining template, but not before the
remaining template and its span of matching rows is added to an array of template, row
span tuples. Once all rows’ sequences have been matched to templates, a table can-
didate can be induced from the constituent rows corresponding to each matching
template, row span tuple.

4.3 Extracting Relations

Besides helping to isolate common patterns, our Layout Templates provide another
important function. They provide some of a matching file’s missing semantic infor-
mation. Specifically, they use the location and position of matching data to impart
relational model semantics. For example, based on data type, composition and position,
a piece of matching text might be used as attribute labels. These mapping rules also
support data alignment, i.e. determining which labels (if they exist) correspond to
which data. In this respect, our templates provide a convenient abstraction for aligning
matching data to the constructs of the relational model.

20 J. Kimball and C. Pu

Each template specifies how matching data can be separated into attributes and
attribute labels. For example, some of our definitions use sequence or a common token
index to align labels and corresponding attribute data.

Candidate Attribute Labels. Each template includes rules for identifying the location
of label candidates. Each label candidate must be a string, but each string is not
necessarily a label candidate. The mapping rules accompanying each template make
this noise, label or data distinction. For example, in Fig. 6, the rows with similar size,
{Us, 6, 1} and {Un, 6, 3}, were paired, and the row matching a uniform string pattern
can be conveniently used as semantically appropriate attribute labels in defining a
relation for the data matching {Un, 6, 3}.

Given this mapping between our templates and relational model constructs, we can
automatically infer a schema (one or more relations) directly from this log data. For
now, we assume each instance of a template matching data is independent. We show in
our Evaluation how our approach accommodates situations when this is not true.

5 Evaluation

We explore our method’s performance primarily along two dimensions: accuracy and
processing time. We assess its performance across two different datasets. The first data
set originates from our substantial experimental systems infrastructure. We use it to
conduct a broad array of systems experiments to assess experimental systems perfor-
mance. To support this work, we need to collect an enormous amount of performance
data.

5.1 Elba Dataset Characteristics

As Fig. 3 shows, we have used perftables to process tens of thousands of experimental
systems’ performance data on the order of hundreds of GBs. Our experimental systems
infrastructure primarily relies on three monitoring software programs: collectl, sar
(systat) and iostat. As we briefly discussed earlier, these monitors can generate a large
variety of layouts. Figure 7 shows the log diversity generated by these three monitors
in our environment.

Fig. 7. Data volume and variety for three Elba performance monitors

A Method and Tool for Automated Induction of Relations 21

Gao et al. developed a convenient categorization for describing layout variety. We
adapt their categorization as follows: we differentiate interleaved and non-interleaved
records precisely. In the following graphs, non-interleaved record structures are rep-
resented by “1,” and in the interleaved case, we enumerate the number of record
structures present in files to illustrate the variety of layouts more explicitly. We don’t
explicitly separate files with single lines from those with multiple lines in the inter-
leaved case (Fig. 8).

Runtime and Accuracy. Figure 9 shows perftables performance by varying size and
variety. The sub-linear trend highlights the effectiveness of our lazy approach.

We consider variety in terms of the number of repeated record structures that appear
in a file. Even files with multiple record structures, perftables performs in sub-linear
time.

Fig. 8. Variety and size on performance (Elba)

Fig. 9. Variety and size on accuracy (Elba)

22 J. Kimball and C. Pu

5.2 GitHub Dataset Characteristics

The second dataset comes from the wild via a popular public source code repository,
GitHub. We eliminated those files from the sample that did not originate from per-
formance monitoring programs. This small, quasi-random sample helps us assess the
validity of our assumptions by testing the generalizability of our approach. We
retrieved this dataset by querying Github for keywords such as “log,” “nagios,” and
“top.” The latter two terms refer to two popular open source resource monitoring tools.
Given their wide spread use, we thought they should be included in our sample.
Table 2 details our GitHub sample’s characteristics. While our quasi-random sample
was small, it covers 7 unique monitors not currently deployed in our infrastructure,
including: top (profile and process), vmstat (vmware), oprofile, nagios, logstat
(kvm) and a bespoke CPU/network monitoring tool.

Github Accuracy. In the following figure, we demonstrate the ability of our method
to extend beyond the monitors and their corresponding outputs defined in our envi-
ronment. On average, we were able to correctly extract over 90% of the data obtained
from GitHub into relations. We were only able to extract approximately 75% of the
nagios log data due to our approach treating network message labels as attribute labels
instead of elements of an enumeration. Despite this result, repairing this error can be
accomplished with some simple post-processing (Fig. 10).

Table 2. GitHub sample characteristics

Record types # of samples Average size (# of lines)

One (single line) 5 3500
One (multi-line) 2 3000
Two or more 1 4000

Fig. 10. Variety and size on accuracy (GitHub)

A Method and Tool for Automated Induction of Relations 23

6 Related Work

Previous work has formulated similar log data extraction problems as uncovering some
unobserved “template” (structure) from the observed text (data). Some previous work
has relied on machine learning techniques to divine such structure from the data [12,
13]. There are two general limitations with such approaches. First, they are dependent
on the availability of data, so in this sense, these methods are biased based on the
composition of the corpus [8, 14]. Secondly, using supervised machine learning
methods usually means manually curating labels for a training data set, and this data set
should contain enough variety to account for potential bias. Unfortunately, to the best
of our knowledge such a data set is not publicly available, and given the enormous
parameter space, it is not likely to be sufficiently varied if one did exist.

Instead of trying to “learn” structure (bottom-up) as others have done, we project
structure onto the text (top-down) using a collection of pattern templates. These tem-
plates correspond to frequently occurring layouts. Previous work in automated data
extraction has used some regularities among HTML tags to separate data from its
presentation [15]. For example, groups of specific HTML tags signal more regular sub-
structures like tables and lists. In this respect, our types function like these groups of
HTML tags [5].

7 Conclusion

In this paper, we introduced our approach, perftables, for automatically inducing
relations from the log data generated by commonly used performance monitoring tools.
The reasons for extracting this data into a relational form are many: facilitates inte-
grating event and resource data across space (which node/ component) and time (when
did the event happen or when was the measurement made), supports automated
analysis techniques like machine learning and ultimately enables researchers to glean
patterns across a vast volume of experiments occurring over many years.

We demonstrated that we can successfully extract over 98% of our experimental
infrastructure’s performance data into relations despite the presence of variable length
records and multiple record types. Finally, we have shown that our approach extends
beyond the array of performance monitors present in our infrastructure by collecting a
sample of other performance monitoring logs from the wild.

References

1. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis from
system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (2017)

2. Rivera, J., Meulen, R.: Gartner says beware of the data lake fallacy. Gartner (2014). http://
www.gartner.com/newsroom/id/2809117

3. Stein, B., Morrison, A.: The enterprise data lake: better integration and deeper analytics.
PwC Technol. Forecast. Rethink. Integr. 1, 18 (2014)

24 J. Kimball and C. Pu

http://www.gartner.com/newsroom/id/2809117
http://www.gartner.com/newsroom/id/2809117

4. Agichtein, E., Gravano, L.: Snowball: extracting relations from large plain-text collections.
In: Proceedings of the Fifth ACM Conference on Digital Libraries (2000)

5. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: SIGMOD
Conference (2003)

6. Liu, L., Pu, C., Han, W.: XWRAP: an XML-enabled wrapper construction system for web
information sources. In: Proceedings of 16th International Conference on Data Engineering
(Cat. No. 00CB37073) (2000)

7. Han, W., Buttler, D., Pu, C.: Wrapping web data into XML. ACM SIGMOD Rec. 30, 33–38
(2001)

8. Cafarella, M.J., Halevy, A., Wang, D.Z., Wu, E., Zhang, Y.: WebTables: exploring the
power of tables on the web. Proc. VLDB Endow. 1, 538–549 (2008)

9. Fisher, K., Walker, D., Zhu, K.Q., White, P.: From dirt to shovels - fully automatic tool
generation from ad hoc data. In: POPL (2008)

10. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with fixed depth
tree. In: 2017 IEEE International Conference on Web Services (ICWS) (2017)

11. Gao, Y., Huang S., Parameswaran, A.G.: Navigating the data lake with DATAMARAN -
automatically extracting structure from log datasets. In: SIGMOD Conference (2018)

12. Chu, X., He, Y., Chakrabarti, K., Ganjam, K.: TEGRA. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, New York, NY, USA
(2015)

13. Cortez, E., Oliveira, D., Silva, A.S., Moura, E.S., Laender, A.H.F: Joint unsupervised
structure discovery and information extraction. In: SIGMOD Conference (2011)

14. Elmeleegy, H., Madhavan, J., Halevy, A.Y.: Harvesting relational tables from lists on the
web. In: PVLDB (2009)

15. Senellart, P., Mittal, A., Muschick, D., Gilleron, R., Tommasi, M.: Automatic wrapper
induction from hidden-web sources with domain knowledge. In: Proceedings of the 10th
ACM Workshop on Web Information and Data Management (2008)

A Method and Tool for Automated Induction of Relations 25

	A Method and Tool for Automated Induction of Relations from Quantitative Performance Logs
	Abstract
	1 Introduction
	2 Terminology and Problem Statement
	3 Model
	3.1 Visual Structural Cues and Layouts
	3.2 Layout Templates
	3.3 Assumptions

	4 perfTables Approach
	4.1 Token Creation
	4.2 Model
	4.3 Extracting Relations

	5 Evaluation
	5.1 Elba Dataset Characteristics
	5.2 GitHub Dataset Characteristics

	6 Related Work
	7 Conclusion
	References

