
On the Optimal Number of
Computational Resources in MapReduce

Htway Htway Hlaing1(B), Hidehiro Kanemitsu1,2, Tatsuo Nakajima1,
and Hidenori Nakazato1

1 Waseda University, Tokyo, Japan
htwayhtwayhlaing@toki.waseda.jp, kanemitsuh@stf.teu.ac.jp,

tatsuo@dcl.cs.waseda.ac.jp, nakazato@waseda.jp
2 Tokyo University of Technology, Tokyo, Japan

Abstract. Big data computing in the cloud needs faster processing and
better resource provisioning. MapReduce is the framework for comput-
ing large scale datasets in cloud environments. Optimization of resource
requirement for each job to satisfy a specific objective in MapReduce
is an open problem. Many factors, e.g., system side information and
requirements of each client must be considered to estimate the appropri-
ate amount of resources. This paper presents a mathematical model for
the optimal number of map tasks in MapReduce resource provisioning.
This model is to estimate the optimal number of the mappers based on
the resource specification and the size of the dataset.

Keywords: Big data · Cloud computing · Resource provisioning

1 Introduction

Large amount of the datasets are continuously produced from the web, scientific
computing, social media, and IoT application. When input data is too large to
handle by a single computational resource, the computation needs to be dis-
tributed across a massive number of machines to finish the job in the given
time.

MapReduce library partitions the input data into a number of inputsplits. A
map task reads an inputsplit and, the user-defined map function processes the
inputsplit. The map function takes input key/value pairs and produces a set of
intermediate key/value pairs. The intermediate key/value pairs are buffered in
the memory of the mapper. When the amount of the data size reaches a threshold
of the memory buffer, intermediate key/value pairs are written to the local disk
and partitioned by hash function for reduce tasks. Reduce tasks read and sort
intermediate data so that the data with the same key are grouped together. The
key and the set of intermediate values are passed to the reduce function. The
output data from the reduce function is appended to the final output file [1].

c© Springer Nature Switzerland AG 2019
D. Da Silva et al. (Eds.): CLOUD 2019, LNCS 11513, pp. 240–252, 2019.
https://doi.org/10.1007/978-3-030-23502-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-23502-4_17

On the Optimal Number of Computational Resources in MapReduce 241

Due to the flexibility, scalability, simplicity in scheduling and fault tolerance,
MapReduce is increasingly used for large scale data processing such as personal-
ized advertising and the other efficient data mining tasks. MapReduce programs
are run in public cloud or private cloud. However, running the MapReduce pro-
gram on the public cloud has become a realistic option for most users. In the
public cloud environment, virtualization technique provides services for users to
provision a virtual cluster or to release the cluster in a specified time. Users
are responsible for determining the appropriate number of virtual machines to
execute specific MapReduce tasks.

Optimal configuration for the map and reduce tasks may differ based on
the type of application and the amount of input data. Running a MapReduce
program in the cloud requires optimization for resource usage to minimize the
cost or job finish time. In many research approaches, resource provisioning in
MapReduce based on regression analysis such as profiling or sampling a number
of parameters with test runs on small scale Hadoop clusters using sample datasets
[2–4].

MapReduce performance models are designed to estimate job completion
time based on job profile, size of input data and specification of resources [3,4].
The job profile includes the application characteristics during all map and reduce
phases of a MapReduce job. Any modifications of the MapReduce program or the
underlying Hadoop framework are not necessary for profiling technique. However,
test runs are necessary to estimate the number of resources using job profiles.

In MapReduce cloud services such as Amazon Web Services, customers can
create MapReduce clusters to analyze large datasets by specifying required
resources and submit MapReduce jobs and cloud service provider invokes virtual
machines (VMs) to execute the jobs and the VMs are revoked by cloud service
providers or released by customers after job completion. The cost of cloud ser-
vice usage and performance of the specific job depends on the parameters chosen
by users, such as the type of virtual machines, the number of virtual machines
and the number of mappers per VM. Cloud service models can be generally
classified as three approaches. In the first approach, the customer specifies the
resource requirement for each job and the cloud service provider simply allocates
the requested resources upon job arrival time [19,20]. Customer manages each
job for the efficient resource usage and, therefore it is lack of global resource
optimization across jobs. In the second approach, customers specify the required
resources for each job and cloud provider schedules the jobs [5]. Optimization
is partly managed by the customer and partly managed by the cloud service
provider. The cloud provider performs optimized resource management to finish
the jobs in the specified time to meet the service requirements for the customers.
Therefore, the opportunity for delay start is not provided for the jobs of the cus-
tomer and each job is necessary to start immediately. Inefficient allocation of
the resources to a job can result in higher cost for the cloud service provider. In
the third approach, customers only require to submit the jobs and specify job
completion time and, cloud service provider manages the resource requirements
and allocation of resources [4].

242 H. H. Hlaing et al.

However, all conventional resource provisioning models are on profiling tech-
nique, test runs and sampling. Such approaches are not realistic to apply for
MapReduce resource provisioning system in practical use. Automatic provision-
ing approach can help solve the problems to reduce both customer’s burden and
cloud provider’s burden. According to the best of our knowledge, our mathemat-
ical model is the first approach for the estimation of computational resources in
the cloud environment.

In this paper, we propose a mathematical model to estimate the optimal
number of mappers based on the resource specification and the size of datasets.
This model can be used for both customer-managed and cloud-managed envi-
ronments. The mathematical model is derived to find the number of map tasks
from the phases of mapper to optimize resource provisioning in MapReduce.
This paper is organized as follows. Section 2 presents our MapReduce perfor-
mance model. The preliminary evaluation is shown in Sect. 3. Related works are
described in Sect. 4. Section 5 summarizes the paper and describes future work.

2 MapReduce Performance Model

In this resource provisioning approach, computational nodes are assigned as
mappers and reducers. Input data is distributed across mapper nodes in Hadoop
File System (HDFS) and partitioned into equal-sized inputsplits. Mappers read
inputsplits from HDFS, create key/value pairs of input records and process user-
defined map function. Output data is partitioned and formatted by partitioning
and serialization utilities of MapReduce. Output partitions are stored in the
memory buffer of mappers. The buffer consists of two parts: accounting part
that stores 16 bytes of metadata per record and serialization part that stores
serialized map output records. When either of two parts fills up to threshold,
the spill process begins to write data records to disk. If more than one spill
file is created, all spill files are merged into a single output file. Thus, the total
processing time for the map task includes time taken for read phase, map phase,
collect phase, spill phase and merge phase. In a merged file on a mapper, several
partitions are generated and evenly distributed to all reducers by using the hash
function. A partition corresponds to the set of key/value, where all keys are the
same. Reducer merges all partitions from mappers and writes to shuffle files. One
shuffle file handles only one key. All shuffle files are merged into one input file
for the reduce function. The reducer processes the input file and then writes the
result on HDFS. Total processing time at reducer includes time taken for shuffle
phase, sort phase, reduce phase and write phase. This paper presents the details
of procedures at a mapper and estimation of the optimal number of mappers.
Figure 1 shows the procedures of mapper and the notations for parameters of
the equations are shown in Table 1.

On the Optimal Number of Computational Resources in MapReduce 243

Table 1. Notations

I, input data
N, number of inputsplit
Ii, i-th inputsplit
|Ii|, size of i-th inputsplit
CI , constant for |Ii|
M, the set of mappers
m, number of mappers
Mk , k-th mapper
αp
k, processing speed of k-th mapper

αr
k, I/O read speed of k-th mapper

αw
k , I/O write speed of k-th mapper

Rin
rec(i), number of input records in i-th inputsplit

win
i,k, workload to process the k-th input record in Ii

wsplit, workload to generate an inputsplit
Tgen(i, k), time to generate N inputsplits
Tmap(i, k) , processing time of i-th inputsplit on k-th mapper Mk

win
i,j , workload of j-th input record in i-th inputsplit

win
i , mean workload for each input record in Ii

Rout
rec(i), number of output records in Ii

ρrec(i), the ratio of the number of records between Rin
rec(i) and Rout

rec(i)
Win, width of each input record
Wout, width of each output record
wpart

i , workload of partitioning the k-th output record from Ii
wser

i , workload of serializing the k-th output record
Tser(i, k), serialization time of k-th output record
Tcollect(i, k), total time of collect phase
Rser

max(i), number of maximum serialization records
pSortMB, io.sort.mb
pSortRatio, Sorting ratio
pSpillRatio, Spill ratio
|Oi|, output size for Ii
Racc

max(i), maximum number of accounting records
Rspillb(i), number of spill buffer records
Nspill(i), number of spills
|Bspill|, spill buffer size
|Fspill(i)|, spill file size
Tspill(i, k), total time for spill phase
Nred, number of reducers
wsort, workload to sort a record
wmerge, workload to merge a record
Nspill

max (i), maximum number of spill
Nmerge, number of merges
Tmerge(i, k), merge time of of i-th inputsplit on k-th mapper Mk

T total
map (i, k) , total processing time of i-th inputsplit on k-th mapper Mk

Nopt, optimal number of inputsplits
α∗
ave, average performance

244 H. H. Hlaing et al.

Fig. 1. Procedures at a mapper

2.1 Partitioning Input Data and Execution at Mappers

The input data is defined as I = {I1, I2, . . . , IN} where Ii is the i-th inputsplit,
|Ii| is the size of Ii, and N is the number of inputsplits. In MapReduce, Ii

is located on a local disk of a mapper in Hadoop File System (HDFS). The
set of mappers is defined as M = {M1,M2, . . . ,Mm}. αp

k, αr
k, and αw

k are the
processing speed, I/O read speed, and I/O write speed of mapper k, respectively.
Let the number of input records in Ii be Rin

rec(i), and the workload to process
the j-th input record in Ii be win

i,j . Since input data is divided into equal-sized
inputsplits, |Ii| = CI ,∀Ii ∈ I for a constant CI . If the workload to generate an
inputsplit is defined as wsplit, the time to prepare N inputsplits is defined as

Tgen(i, k) =
wsplit

αp
k

(|I|
CI

− 1
)

=
wsplit

αp
k

(N − 1) (1)

where |I| is the size of input I.
The sum of the time to transfer inputsplit Ii, to read Ii, and to process the

map task on mapper Mk is defined as

Tmap(i, k) =
CI

αr
k

+
1
αp

k

Rin
rec(i)∑
j=1

win
i,j

=
CI

αr
k

+
win

i Rin
rec(i)

αp
k

, (2)

where win
i is the mean workload to process each input record in inputsplit Ii.

2.2 Collect Phase

The number of output records for Ii from mapper Mk is defined as

Rout
rec(i) = Rin

rec(i) × ρrec(i), (3)

On the Optimal Number of Computational Resources in MapReduce 245

where ρrec(i) is the ratio of the number of output records to input records. If
the size of each input record is defined as Win, the number of input records is
Rin

rec(i) = CI

Win
. Thus, (3) can be rewritten as

Rout
rec(i) =

CIρrec(i)
Win

. (4)

Let the workload to partition the output generated from Ii be wpart
i and their

average be wpart
i . Then the time of partitioning the output of Ii assigned to

mapper Mk is defined as follows:

Tpart(i, k) =
1
αp

k

CI ρrec(i)
Win∑
j=1

wpart
i,j =

wpart
i

αp
k

CIρrec(i)
Win

. (5)

As for the serialization time, let wser
i be the workload to serialize the output

from Ii assigned to mapper Mk and the mean workload to serialize the output
records be wser

i . Then the time for serialization is defined as follows:

Tser(i, k) =
1
αp

k

CI ρrec(i)
Win∑
j=1

wser
i,j =

wser
i

αp
k

CIρrec(i)
Win

. (6)

Thus, the total processing time in this collect phase can be derived by Eq. (5)
+ Eq. (6).

Tcollect(i, k) =
wpart

i

αp
k

CIρrec(i)
Win

+
wser

i

αp
k

CIρrec(i)
Win

=
CIρrec(i)
αp

kWin

(
wpart

i + wser
i

)
. (7)

2.3 Spill Phase

In this phase, each output key/value pair is sorted and written to “spill” files.
Spill phase starts when the output data (output records and accounting part) in
the memory buffer exceeds the threshold value (e.g., 0.8 × output buffer size).
The size of each output records is Wout = |Oi|

Rout
rec(i)

= |Oi|
Rin

rec(i)ρrec(i)
, where |Oi| is

the output size for Ii.
The output buffer is divided into two parts: serialization buffer and account-

ing buffer. Each buffer stores its own serialization records and accounting records.
The number of maximum serialization records in the output buffer can be
defined as

Rser
max (i) =

pSortMB × 220 × (1 − pSortRatio) × pSpillRatio
Wout

=
pSortMB × 220 × (1 − pSortRatio) × pSpillRatio

|Oi|/{Rin
rec(i)ρrec(i)} , (8)

246 H. H. Hlaing et al.

where pSortMB is “io.sort.mb” and therefore psortMB is multiplied by 220.
16-byte data is written as metadata for each accounting record. The number

of accounting records is defined as

Racc
max(i) =

pSortMB × 220 × pSortRatio × pSpillRatio
16

(9)

From (4), (8), and (9), the number of spill buffer records when spill is per-
formed is defined as

Rspillb(i) = min{Rser
max(i), Racc

max(i), Rout
rec(i)} (10)

The number of spills is defined as

Nspill(i) =
⌈

Rout
rec(i)

Rspillb(i)

⌉

⇔ Nspill − 1 <
Rout

rec(i)
Rspillb(i)

≤ Nspill (11)

The spill buffer size is defined as follows:

|Bspill| = Rspillb(i) × Wout.

|Fspill(i)| = |Bspill|. (12)

where |Fspill(i)| is the spill file size. The total time for spill phase is defined as:

Tspill(i, k) = Nspill(i) ×
{

Rspillb(i) log
(

Rspillb(i)
Nred

)
× wsort

αp
k

+
|Fspill(i)|

αw
k

}

=
⌈

Rout
rec(i)

Rspillb(i)

⌉{
Rspillb(i) log

(
Rspillb(i)

Nred

)
× wsort

αp
k

+
Rspillb(i)Wout

αw
k

}

= Rout
rec(i)

{
log

(
Rspillb(i)

Nred

)
× wsort

αp
k

+
Wout

αw
k

}

= Rout
rec(i)

{
log

(
Rspillb(i)

Nred

)
× wsort

αp
k

+
Wout

αw
k

}
, (13)

where wsort is the processing time to sort a record and Tspill(i, k) is the total time
to spill the records which exceed the threshold value. Thus, the time complexity
is O

(
Rspillb(i) log

(
Rspillb(i)

Nred

))
, where log

(
Rspillb(i)

Nred

)
steps for the merging are

needed for generating partitions in total. By applying (4) to (13),

Tspill(i, k) =
|Ii|ρrec(i)

Win

{
log

(
Rspillb(i)

Nred

)
× wsort

αp
k

+
Wout

αw
k

}
. (14)

2.4 Merge Phase

This phase is performed after the spill phase finishes. Both spill phase and merge
phase are optional. The objective of the merge phase is to generate one output

On the Optimal Number of Computational Resources in MapReduce 247

file from several spill files. The number of merges depends on the parameter of
“io.sort.factor” which is the number of spill files to generate a new file. Thus,
generally, the number of merges is

Nmerge(i) =

⌊
Nspill(i)

Nspill
max (i)

⌋
(Nspill

max − 1) + Nspill(i)mod(Nspill
max (i)) − 1 +

⌊
Nspill(i)

Nspill
max (i)

⌋

=

⌊
Nspill(i)

Nspill
max (i)

⌋
Nspill

max +

(
Nspill(i) −

⌊
Nspill(i)

Nspill
max (i)

⌋
Nspill

max (i) − 1

)

= Nspill(i) − 1. (15)

The file read time for each spill file, the file write time for each spill file, and
the number of records for merging into one records affect the time of the merge
phase. By using (15), the time for merging is defined as

Tmerge(i, k) = Nmerge(i)
(|Fspill(i)|

αr
k

+
|Fspill(i)|

αw
k

+
Rspillb(i)ρrecwmerge

αp
k

)
(16)

where Rspillb(i)ρrec is the number of records in a spill file, and we assume that
each single spill file is read and then written down to the merged file in one by
one basis. By using (12), (16) is rewritten as follows:

Tmerge(i, k) = (Nspill(i) − 1)

{
Rspillb(i)Wout

(
1

αr
k

+
1

αw
k

)
+

Rspillb(i)ρrecwmerge

αp
k

}

= (Nspill(i) − 1)

{
Rspillb(i)

(
Wout

(
1

αr
k

+
1

αw
k

)
+

ρrecwmerge

αp
k

)}
. (17)

2.5 Total Processing Time at a Mapper

Let the total processing time at a mapper Mk to process Ii be T total
map (i, k). Thus,

we have

T total
map (i, k) = Tgen(i, k) + Tmap(i, k) + Tcollect(i, k) + Tspill(i, k) + Tmerge(i, k).

(18)

By developing (18), we have

T total
map (i, k) =

wsplit

αp
k

(|I|
CI

− 1
)

+
CI

αr
k

+
win

i Rin
rec(i)

αp
k

+
CIρrec(i)
αp

kWin

(
wpart

i + wser
i

)

+
CIρrec(i)

Win

{
log

(
Rspillb(i)

Nred

)
× wsort

αp
k

+
Wout

αw
k

}

+ (Nspill(i) − 1)
{

Rspillb(i)
(

Wout

(
1
αr

k

+
1

αw
k

)
+

ρrecwmerge

αp
k

)}
.

(19)

248 H. H. Hlaing et al.

At (19), if the system is homogeneous, total processing time at the mapper
can be rewritten as

T total
map (N, k) =

wsplit

αp
ave

N +
|I|
N

{
N

αr
ave

+
ρrec(i)

αp
aveWin

(
wpart

i + wser
i

)}

+
|I|
N

ρrec(i)

Win

{
wsort

αp
ave

log

(
Rspillb(i)

Nred

)
+

Wout

αw
ave

}

+
|I|ρrec(i)

NWin

{
Wout

(
1

αr
ave

+
1

αw
ave

)
+

ρrecwmerge

αp
ave

}

− Rspillb(i)

{
Wout

(
1

αr
ave

+
1

αw
ave

)
+

ρrecwmerge

αp
ave

}
− wsplit

αp
ave

=
wsplit

αp
ave

N +
|I|
N

{
1

αr
ave

+
ρrec(i)

αp
aveWin

(
wpart

i + wser
i

)}

+
|I|
N

ρrec(i)

Win

{
wsort

αp
ave

log

(
Rspillb(i)

Nred

)
+

Wout

αw
ave

+ Wout

(
1

αr
ave

+
1

αw
ave

)
+

ρrecwmerge

αp
ave

}

− Rspillb(i)

{
Wout

(
1

αr
ave

+
1

αw
ave

)
+

ρrecwmerge

αp
ave

}
− wsplit

αp
ave

(20)

where α∗
ave is the average performance for reading time, processing time and

writing time of mappers.
If we define the optimal number of inputsplits as Nopt, it is obtained by

differentiating equation (20) with respect to N . Nopt is the value of N when we

have dT total
map (N,k)

dN = 0. Nopt is derived as

Nopt =
[
αp

ave|I|
wsplit

{
1

αr
ave

+
ρrec(i)

αp
aveWin

(
wpart

i + wser
i

)
+

ρrec(i)
Win

A

}] 1
2

, (21)

where

A =
wsort

αp
ave

log

(
Rspillb(i)

Nred

)
+

Wout

αw
ave

+ Wout

(
1

αr
ave

+
1

αw
ave

)
+

ρrecwmerge

αp
ave

. (22)

3 Preliminary Evaluation

In our MapReduce experiment, a program that estimates the value of Pi (π) using
quasi-Monte Carlo method was tested to compare the performance with original
approach. Hadoop MapReduce 3.0 is configured for 8 nodes cluster in cloud
environment created by CloudStack. The π sample uses a statistical method to
estimate the value of π. Random points are placed in a unit square which contains
a circle. The area of the unit square is 1 and the probability of the points that
fall within the circle are equal to the area of the circle, π/4. The value of π
can be estimated by the value of 4R in which R is the ratio of the number of

On the Optimal Number of Computational Resources in MapReduce 249

points inside the circle to the total number of points within the square. Mapper
generates points in a unit square and counts the points inside and outside of the
inscribed circle of the square. Reducer accumulates points inside and outside
of the circle from the output of the mapper. If the sample of points is large,
the estimation is better. The optimal number of map tasks is obtained after
running the user program to estimate the value of π by varying the number of
map tasks from 1 map task to 32 map tasks using 100× 103 samples to 10× 106

samples. The MapReduce program was tested on small scale cluster of 8 virtual
machines with QEMU Virtual CPU built on Intel Xeon (R) CPU E5-1660 v4 @
3.20 GHzx15 processor with 64 GB memory. The processing time for map tasks
of the program is shown in Fig. 2.

Fig. 2. Optimal processing time at the mappers

Fig. 3. Optimal number of map tasks

250 H. H. Hlaing et al.

The program is tested for both single node Hadoop cluster setup and multin-
odes Hadoop cluster setup by varying input data size from 100 × 103 samples,
1 × 106 samples to 10 × 106 samples. Figure 3 shows the experimental result
for the optimal number of map tasks when the various number of samples are
processed and optimal number of map tasks is automatically figured out by the
program. For resource provisioning, customers can choose the optimal number
of map tasks to process 100×103 samples to 10×106 to estimate the value of π.
The processing time of the optimal map tasks are significantly faster than that
of the chosen number of map tasks in existing approach as shown in Fig. 2.

4 Related Works

The existing researches on MapReduce focused on improving the performance
of MapReduce in a Hadoop cluster based on profiling and sampling [6–10,12,16]
and collecting properties of codes and data on the execution of jobs [11]. Pro-
filing approaches use job profiles to optimize MapReduce resource provisioning.
A framework for the resource provisioning and failures estimation in Hadoop
cluster by profiling characteristics of MapReduce jobs was introduced in [3].
MapReduce profiling techniques were developed to optimize the resource provi-
sioning and minimize the cost of computing in the cloud [3,12–15]. Automatic
resource prediction tool based on job profiling and estimation models was devel-
oped to provision the best cluster size to meet the requirements of jobs [17].
CRESP [2] developed a MapReduce resource provisioning method by analyz-
ing the cost for map and reduce tasks to find optimal setting for resources.
Bazaar [18] was developed to predict the job performance in data centers using
gray box approach with MapReduce resource provisioning as an example of the
data analytic. Cura [4] addressed the global resource optimization and schedul-
ing for the cloud provider to minimize the customer costs in MapReduce jobs.
In existing researches, profiling and sampling approaches were used to estimate
the optimal number of resources with test runs. Profiling and sampling can incur
overheads and increase processing time depending on the time for generating job
profiles, the characteristics of data and resource specification. In our research,
a mathematical model is derived to estimate the number of map tasks for both
customer-managed and cloud-managed environment without profiling or sam-
pling. Our research is to optimize resource provisioning in Hadoop MapReduce
for both customers and cloud service providers in private and public cloud envi-
ronments.

5 Conclusions and Future Work

This paper presents a mathematical MapReduce performance model for apply-
ing in both cloud-managed environment and customer-managed environment.
In contrast to existing services, this approach can estimate the number of map
tasks for resource provisioning in big data computing without test runs. Pro-
filing or sampling is not necessary to find the optimal number of map tasks in

On the Optimal Number of Computational Resources in MapReduce 251

this research. The required number of map tasks can be calculated based on the
specification of resources and the size of input data. This research can improve
performance of Hadoop MapReduce environment for cloud service provider and
users. This research paper is on the mapper side to estimate the optimal number
of map tasks. Future work and the extension of this research paper are on both
map and reduce sides to estimate optimal number of mappers and reducers for
the resource provisioning using MapReduce benchmarks with overall evaluation.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

2. Chen, K., Powers, J., Guo, S., Tian, F.: CRESP towards optimal resource provi-
sioning for MapReduce computing in public clouds. IEEE Trans. Parallel Distrib.
Syst. 25(6), 1403–1412 (2014)

3. Verma, A., Cherkasova, L., Campbell, R.H.: Resource provisioning framework for
MapReduce jobs with performance goals. In: Kon, F., Kermarrec, A.-M. (eds.) Mid-
dleware 2011. LNCS, vol. 7049, pp. 165–186. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25821-3 9

4. Palanisamy, B., Singh, A., Liu, L.: Cost-effective resource provisioning for MapRe-
duce in a cloud. IEEE Trans. Parallel Distrib. Syst. 26(5), 1265–1279 (2015)

5. Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using
virtual machines. In: Proceedings of the 17th International Symposium on High
Performance Distributed Computing, pp. 87–96 (2008)

6. Jiang, D., Ooi, B.C., Shi, L., Wu, S.: The performance of MapReduce: an in-depth
study. Proc. VLDB Endow. 3(1–2), 472–483 (2010)

7. Babu, S., et al.: Towards automatic optimization of MapReduce programs.
In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 137–142
(2010)

8. Herodotou, H., Babu, S.: Profiling, what-if analysis, cost-based optimization of
MapReduce programs. Proc. VLDB Endow. 4(11), 1111–1122 (2011)

9. Wang, G., et al.: A simulation approach to evaluating design decisions in MapRe-
duce setups. In: Proceedings of the IEEE/ACM International Symposium on Mod-
eling, Analysis & Simulation of Computer and Telecommunication Systems, pp.
1–11 (2009)

10. Herodotou, H.: Hadoop Performance Models, Technical teport, CS-2011-05 (2011)
11. Agarwal, S., Kandula, S., Bruno, N., Wu, M.-C., Stoica, I., Zhou, J.: Re-optimizing

data-parallel computing. In: Proceedings of the 9th USENIX Conference on NSDI,
p. 21 (2012)

12. Kambatla, K., Pathak, A., Pucha, H.: Towards optimizing Hadoop provisioning in
the cloud. In: Proceedings of the Conference on Hot Topics in Cloud Computing,
pp. 156–172 (2009)

13. Morton, K., Friesen, A., Balazinska, M., Grossman, D.: Estimating the progress of
MapReduce pipelines. In: Proceedings of the IEEE 26th International Conference
on Data Engineering, pp. 681–684 (2010)

14. Tian, F., Chen, K.: Towards optimal resource provisioning for running MapRe-
duce programs in public clouds. In: Proceedings of the IEEE 4th International
Conference on Cloud Computing, pp. 155–162 (2011)

https://doi.org/10.1007/978-3-642-25821-3_9
https://doi.org/10.1007/978-3-642-25821-3_9

252 H. H. Hlaing et al.

15. Popescu, A., Ercegovac, V., Balmin, A., Branco, M., Ailamaki, A.: Same queries,
different data: can we predict runtime performance? In: Proceedings of the 3rd
International Workshop on Self-Managing Database Systems, pp. 275–280 (2012)

16. Herodotou, H., et al.: Starfish: a self-tuning system for big data analytics. In: CIDR
2011, pp. 261–272 (2011)

17. Herodotou, H., Dong, F., Babu, S.: No one (cluster) size fits all: automatic cluster
sizing for data-intensive analytics. In: Proceedings of the 2nd ACM Symposium on
Cloud Computing, pp. 1–14 (2011)

18. Jalaparti, V., Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Bazaar:
enabling predictable performance in datacenters, Microsoft Res., Cambridge, U.K.,
Technical report MSR-TR-2012-38 (2012)

19. Amazon Elastic Compute Cloud (2018). https://aws.amazon.com/ec2/
20. Amazon Elastic MapReduce (2018). https://aws.amazon.com/emr/
21. Apache Hadoop (2018). http://hadoop.apache.org

https://aws.amazon.com/ec2/
https://aws.amazon.com/emr/
http://hadoop.apache.org

	On the Optimal Number of Computational Resources in MapReduce
	1 Introduction
	2 MapReduce Performance Model
	2.1 Partitioning Input Data and Execution at Mappers
	2.2 Collect Phase
	2.3 Spill Phase
	2.4 Merge Phase
	2.5 Total Processing Time at a Mapper

	3 Preliminary Evaluation
	4 Related Works
	5 Conclusions and Future Work
	References

