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Abstract. The Naive Bayesian algorithm is one of the ten classical algo-
rithms in data mining, which is widely used as the basic theory for text
classification. With the high-speed development of the Internet and infor-
mation systems, huge amount of data are being produced all the time.
Some problems are certain to arise when the traditional Bayesian clas-
sification algorithm addresses massive amount of data, especially with-
out the parallel computing framework. This paper proposes an improved
Bayesian algorithm INBCS, for text classification in the Spark comput-
ing environment and improves the Naive Bayesian algorithm based on
a polynomial model. For the data preprocessing, this paper first pro-
poses a parallel noise elimination algorithm, and then proposes another
parallel dimension reduction algorithm based on Information Gain and
TextRank computation in the Spark environment. Based on these prepro-
cessed data, an improved parallel method is proposed for calculating the
conditional probability that comprehensively considers the effects of the
feature items in each document, class and training set. Finally, through
experiments on different widely used corpuses on the Spark computation
platform, the results illustrate that INBCS can obtain higher accuracy
and efficiency than some current improvements and implementations of
the Naive Bayesian algorithms in Spark ML-library.

Keywords: Big data · Naive bayesian classification ·
Parallel computing · Spark · Text classification

1 Introduction

With the rapid development of information society, the Internet has been widely
used and currently has become the most important source of information. In
particular, with the emergence of cloud computing and the big data era [1],
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the data generated from the Internet are rapidly growing with the index grade.
These data have the following characteristics: large in amount, high in dimension,
complex in structure and containing much noise, but widespread application
prospects. Furthermore, most of the information and data stored on the Internet
are text. How to organize, manage, and utilize these text data is a great challenge
for the currently limited computing power, especially when confronts with a
large amount of information that needs to be searched effectively, quickly and
accurately by users for the Internet applications. The Spark platform [2], as the
new generation of big data processing engine, supports a Resilient Distributed
Datasets (RDD) model built on a in-memory computing framework. It allows
users to cache data in memory, and to perform computation and iteration for
the same data directly from memory. Based on the memory computing mode,
the Spark platform can save the amounts of disk I/O operation time. Therefore,
it is more suitable for machine learning algorithms with iterative computation.

This paper proposes an improved naive Bayesian classifier model based on the
Spark platform (INBCS), which provides a new method to calculate the condi-
tional probability and solve the above problems. INBCS uses TF-IDF weighting
to obtain the probabilities of feature items belonging to a given class. It not
only takes account of the respective proportions in feature items and the entire
training set but also takes the impact of the proportion of documents into con-
sideration, which contains the feature items in the training set. From the above,
our contributions in this paper are summarized as follows:

1. A parallel method that removes noises in a data set running on the Spark
platform.

2. A dimension reduction method for high-dimensional data in English and Chi-
nese texts preprocessing.

3. An improved conditional probability applied in Naive Bayesian to improve
the precision and accuracy.

4. A new memory prediction algorithm used in the SpillWrite operation of
Spark’s Shuffle Read.

The rest of the paper is organized as follows. Section 2 reviews the back-
ground and related work. Section 3 proposes an improved Multinomial Bayesian
model, INBCS, and provides the formalization descriptions for this model. Par-
allel implementation of INBCS on Spark is developed in Sect. 4. Experimental
results and evaluations are provided in Sect. 5. Finally, Sect. 6 presents the con-
clusion and future works.

2 Background and Related Work

Several machine learning and data mining algorithms have been proposed for text
classification. The most popular methods include Naive Bayesian [3], support
vector machines [4], decision trees, artificial neural networks, k-nearest-neighbor
(k-NN) classification and association rules. The support vector machine model
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has been proven to be more accurate than most other techniques for classifi-
cation, but the complexity of the algorithm is relatively high [5]. Compared to
other algorithms, a decision tree is simple and easy to understand. However, its
accuracy is unsatisfactory compared to other text classification algorithms, espe-
cially when the number of distinguishing features of documents becomes large.
The k-NN algorithm is easy to implement and shows its effectiveness in a vari-
ety of problem domains. However, the computation will increase dramatically
when the size of the training set grows large. Naive Bayes is based on an inde-
pendence assumption for the features in a document. Although this assumption
violates the natural language rules, after IR transformation [6], the results show
that Naive Bayes classification can still perform surprisingly well [3]. Because
Naive Bayes is efficient and easy to implement, this paper proposes an improved
model INBCS for the text classification and improves its performance through
noise diminution and dimension reduction, especially for various practical appli-
cations, such as spam filtering or news article classification.

Feature selection and reduction are extremely important phases in classifi-
cation algorithms, and there have been multiple efforts to improve them in a
variety of scenarios. Aghdam et al. [7] introduced a feature selection and reduc-
tion method using ant colony optimization. Shi et al. [8] considered test crite-
ria, such as frequency, dispersion and concentration indices, and proposed an
improved dimension reduction method and feature weighting method to make
the selection more representative and the weighting of characteristic features
more reasonable. Berka et al. [9] made another effort for the improvement of
dimensionality reduction and introduced an algorithm that replaces rare terms
by computing a vector that expresses their semantics in terms of common terms.
Furthermore, due to the high dimensionality of data, Xu [10] proposed a dimen-
sion reduction method for the registration of high-dimensional data. Tao et al.
[11] and Lin et al. [12] analyzed and proposed various improved classification
algorithms for high-dimensional data based on dimension reduction. However,
all the serial algorithms above achieved improved performance on small-scale
data. When the scale and dimension of data become large, the effects of these
algorithms would be reduced.

How to eliminate the noise in the text has always been a topic that must be
considered in the text classification algorithm, too much noise in the text will
not only increase the calculation amount of the processing, but also seriously
affect the precision and accuracy of the classification. The researchers have made
great progress in this area. For example, RONG-LU LI mentioned a method
that based on text density and sample distribution can be used to eliminate
noise data in the training data set, at the International Conference on Machine
Learning and Cybernetics conference in 2003. In addition, how to classify text
more quickly and effectively has also bothered people, so the concept of parallel
and distributed computing has gradually become the focus of public attention.
There are also many related researches on the implementation of text classifi-
cation algorithms based on parallel computing platforms, such as, Xiangxiang
Chen and Kaigui Wu’s paper presented at the 2010 MINS conference, which
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proposes a parallel distributed classification algorithm based on Mapreduce
model to reduce computational time during large numbers of training process.
At same time, skender lgen Oul introduced a fast Bayesian text classification
method on the spark distributed platform, because the spark platform uses a
distributed in-memory data structure to provide faster storage and analysis of
data. Based on the previous research, this paper proposes a parallel algorithm for
bayesian text classification based on noise elimination and dimension reduction
in spark computing environment.

3 An Improved Multinomial Bayesian Model

3.1 The Naive Bayes Classifiers

The Bayes theorem describes the probability of an event, which is based on
conditions that might be related to previous events. Naive Bayes classifiers are
based on strong independence assumptions among all features in the samples.
We define C as a set of predefined categories, which consists of m components
as follows: C = {c1, c2, · · · , cm}. This paper defines P (cj |di) to denote the prob-
ability of a document di belonging to a class cj . The classifier selects the class
with the maximum probability as the result class, and the conditional probability
P (cj |di) can be calculated by the Bayesian theorem as in Eq. (1):

P (cj |di) =
P (cj)P (di|cj)

P (di)
(1)

where P (di|cj) represents the distribution of documents in each class, and it
cannot be estimated directly. We use this formula for text classification specifi-
cally. However, based on the Naive Bayes Assumption, the document di can be
treated as a sequence SEQi with a set of independent words wk. Therefore, the
length of document di can also be regarded as the number of words in SEQi,
and P (di|cj) can be calculated by Eq. (2):

P (di|cj) =
n∏

k=1

P (wk|cj) (2)

In Eq. (1), P (di) represents the probability of a document di in the training data
set. Because the values of P (di) are the same for all the classes, we can ignore
this probability when we compare P (cj |di) to other classes.

Because a Bayesian text classifier formalizes the distribution of words in a
document as a multinomial, a document can be formalized as a sequence of words
with the assumption that each word position is generated independently. Based
on this, we assume that there are a fixed number of classes: C = {c1, c2, · · · , cm}
and that each of them has a fixed set of multinomial parameters. For a spe-
cific class c, the parameter vector is

−→
Vc = {Vc,1, Vc,2, · · · , Vc,n}, where n is the

vocabulary size,
∑

jVc,j = 1, and Vc,j is the probability that word j appears in
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class c [6]. The likelihood of a document depends on the parameters of the words
that appear in the document:

P (d|−→Vc) =
(
∑

j fj)!∏
j fj !

∏
j
(Vcj

)fj (3)

where fj denotes the frequency count of each different word in the document d.
By assigning P (

−→
Vc) as a prior distribution over the set of classes, we can acquire

the minimum-error classification rule that selects the class with the largest pos-
terior probability, as in Eq. (4):

L(d) = arg max
c

[
log P (

−→
Vc) +

∑
j
fj log Vc,j

]
= arg max

[
hc +

∑
j
fjWc,j

]
(4)

where hc is the threshold term and Wc,j denotes the weight of classc for wordj .

3.2 An Improved Naive Bayesian Text Classifier

To process the documents more efficiently, this section uses a Vector Space Model
to represent the texts, which is often used in information filtering, information
retrieval, indexing, and relevancy rankings. In INBCS, we formalize a set of
documents as

−→
d = {−→

d1,
−→
d2, · · · ,

−→
di , · · · ,

−→
dn}. For each item, t ∈ (t1, t2, · · · , tm)

denotes a set of feature items, and tfi,j counts the number of times that word j

appears in the document
−→
di . Thus, the texts can be represented as the matrix,

where each row represents a specific document and each dimension of a column
vector corresponds to a separate term feature. There are several different ways
to compute the values of tfi,j , which are also known as term weights. One of the
best-known schemes is TF-IDF weighting.

For this method, we use a new variable to describe the word frequencies via
a simple transform as in Eq. (5):

tf
′
i,j = log(tfi,j + 1.0) (5)

the transform in Eq. (5) has advantages when the number of features is zero or
one, and it eliminates the effects of some large number of features. Another fac-
tor that would impact the classification decisions is the function words without
actual meanings. This is because the function words normally do not contain
specific information, which just increases the noise in parameter estimation. A
heuristic transform in the information retrieval community, known as inverse
document frequency, is widely used to discount terms by their document fre-
quency [6]. A common way to do this is shown in Eq. (6):

tf
′′
i,j = tf

′
i,j log

(
N

nj + 1.0

)
(6)

where N represents the number of documents belonging to the training data sets
and nj represents the number of documents that contains wordj .
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In practice, documents have strong word inter-dependencies. After a word
first appears in a document, it is more likely to be there again. Because the
Multinomial Naive Bayesian model assumes that the feature items in the docu-
ment are independent of each other, it is harmful to the parameter estimation for
long documents. This paper addresses this problem by normalizing the number
of feature words. In practical terms, this paper uses a common IR transform [6]
that has not been used with Naive Bayesian to eliminate the influence of word
inter-dependencies. The formalization is shown in Eq. (7):

tf
′′′
i,j =

tf
′′
i,j√

m∑
j=1

(tf ′′
i,j)

2
(7)

where m represents the number of feature items in the ith document. Through
combination and deformation for the above equations Eqs. (5), (6) and (7), we
can obtain the following expression as Eq. (8):

tf
′′′
i,j =

log (tfi,j + 1.0) × log
(

N
nj+1.0

)

√
m∑

j=1

[
log (tfi,j + 1.0) × log

(
N

nj+1.0

)]2 (8)

Meanwhile, because the proposed model in this paper is based on the Multi-
nomial Bayesian Model, according to Eq. (4), P (

−→
Vc) is the priori probability of

class c, which equals to the total number of words in class c divided by the total
number of words in the training data set, and Wc,j denotes the transformed
posterior probability of word j in class c, which can be calculated via Eq. (9):

Wc,j = log Vcj = log P (wj |Vc) (9)

This model uses P (wj |Vc) to represent the probability of word j in the class
c and uses variable n to count the total number of words in class c. P (wj |Vc)
can be obtained from Eq. (10):

P (wj |Vc) =
N(wj , Vc) + δ

n∑
j=1

N(wj , Vc) + δ|v|
(10)

for this equation, N(wj , Vc) represent the TF-IDF weight of wordj in class Vc

as Eq. (7) specified, when N(wj , Vc) = 0, it denotes that wordj does not exist
in class c. Because the accuracy of classification will be degraded in this case,
this defect can be optimized by Laplace Calibration [13] with a simple imple-
mentation. In this manner, the value of feature items that do not exist in the
class will be added to a coefficient to avoid the probability being equal to zero.
In Eq. (10), as δ is the Laplace smoothing coefficient, we can set δ = 1 to achieve
this effect, and |v| denotes the size of different words in the class c. However, the
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formula (10) does not take the number of words in all category into account. For
instance, compared to the documents in category c1, if a category cr has more
documents, or the document has more words, the probability of P (wj |Vc) will
likely be higher than the value in c1.

To address these above defects and shortcomings, we should consider the
overall impacts of the proportions of feature words in documents, local classes,
and training data sets. As an improvement, this paper introduces a comprehen-
sive coefficient as an eclectic coefficient, as in Eq. (11):

P (wj |Vc) =

⎛
⎜⎜⎜⎝

N(wj , Vc) + δ
n∑

j=1
N(wj , Vc) + δ|v|

⎞
⎟⎟⎟⎠

α

×

⎛
⎜⎜⎜⎝

√√√√√
N(wj , Vc) + δ

m∑
c=1

n∑
j=1

N(wj , Vc) + δ|v|
× T (wj , Vc) + δ

m∑
c=1

T (wj , Vc) + δ|T |

⎞
⎟⎟⎟⎠

β

(11)
where β = 1 − α and α takes the different values and have different impacts on
P (wj |Vc). In this manner, the text classification has been changed into a problem
of searching for the maximum probability value of Eq. (11). The bigger α is, the
greater the local influence of feature items is. Therefore, our target is to find
the optimal value of α to achieve the best classification performance through
multiple training. T (wj , Vc) counts the documents that contain the feature wj

in the class c. As in Eq. (10), we also set δ = 1 with |T | as the average number
of documents for each class in the training data set in Eq. (11).

3.3 Noise Elimination

Function words are ubiquitous and enormous in general documents, have no ben-
efit on the document classification, and may even cause some serious influence
on the classification results. In this section, we proposed a method to imple-
ment noise reduction based on RDD before data training. After the original
input data set is uploaded to HDFS, the data path named as datasetsPath will
be used as the input of the following preprocess function: preprocess(). If the
datasetsPath is a directory, this algorithm will traverse it, and then continue
recursively calling the function preprocess(). If the datasetsPath is a file, a par-
allel noise elimination process removingFuncWords() based on Spark will be
executed to remove the meaningless function words in the original data set. In
this function, firstly we read files from HDFS according to the specified data
path to obtain a HadoopRDD, then, we spilt the very line of documents into
different words by using the map() function to get a MappedRDD, secondly a
filter() function will be applied to previous FiltereddRDD, to remove all words
that appear in function words dictionary, finally a final ProessedRDD without
function words will be returned. The specific process is shown in the Fig. 1.

The quality of the text in the training data set directly determines the result
of the text classification. In practical applications, the construction of the train-
ing set inevitably produces noise samples. Besides some functional words which
has simple structure contained in these samples, other kinds of words such as
stop words, low frequency words, modal words... will also have a serious influ-
ence on the accuracy of the classification, because these words almost exist in
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Fig. 1. The procedure of removing function words

all texts, and contain little information, and their function are too superficial
to support the results of the classification. So we need to remove these words
in each document of the training data set before text categorization, and then
convert the remaining words into feature vectors. The processing of text noise
is a very critical phase for text categorization, whose importance is self-evident.
The DFRF (Document Frequency Ratio Filter) algorithm is a relatively sim-
ple algorithm with low computational complexity. It is mainly used for feature
extraction and keyword filtering. The formula is as follows in Eq. (12):

DFRF (t, Ci) =

⎧⎪⎪⎨
⎪⎪⎩

t|log2

⎛
⎜⎜⎝

S(i,t)
n∑

t=1
S(i,t)

× ni

N − ni

× C(i,t)

C′
(i,t)

⎞
⎟⎟⎠ > θ

⎫⎪⎪⎬
⎪⎪⎭

(12)

where S(i,t) represents the amount of words t in class i, ni represents the total
size of articles in class i, and N represents the size of articles in the whole training
set, and C(i,t) denotes the number of articles which contains the term t in class i,
C

′
(i,t) denotes the total number of articles containing the word t in other classes,

θ denotes the threshold, and only words whose DFRF rates exceeds a certain
threshold can be chosen. We can use this method to filter out the noise data in
the text during the preprocessing stage.

3.4 Dimension Reduction

Information Gain (IG) has been widely used in machine learning and acts as a
function to measure the amount of information obtained from category predic-
tion by judging whether a feature term is present in a document or not. Because
Chinese characters are connected to each other in the text and only the combina-
tion of characters can express complete semantics, IG is not suitable for reducing
the dimensions of Chinese documents. In this section, we take a method based on
IG through the maximum entropy model and TextRank [14] to extract feature
items to reduce the dimensions for Chinese documents.
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This section illustrates the steps for English documents and Chinese docu-
ments. For English documents, we calculate the IG values of all terms in the
preprocessed data set and extract the important terms with large Information
Gain values. We will traverse the ProcessedRDD and calculate the IG value of
each words according to Eq. (13), if the IG value of word is lower than given
threshold, the word will filter out from the ProcessedRDD, so we can get the a
ResultRDD after dimensions reduction.

The computational procedure of Information Gains is shown in Eq. (13):

IG (t) =H (C) − H (C|t)

= −
m∑

i=1

P (Ci)log2P (Ci) + P (t)

m∑
i=1

P (Ci|t) log2P (Ci|t) + P
(
t
) m∑

i=1

P
(
Ci|t

)
log2P

(
Ci|t

)

(13)
In Eq. (13), m is the number of classes in the preprocessed data set, H(C)

and H(C|t) represent the original entropy of the system and the conditional
entropy, respectively.

For the data sets of Chinese documents, this section implements the dimen-
sion reduction process through a retrieval algorithm based on the Double Array
Trie data structure. Double Array Trie is essentially a deterministic finite
automaton (DFA). Every node represents a state of automation, and the state
transition among nodes depend on different Chinese character variables that are
appended to the current Double Array Trie. When the end states in this DFA are
reached, or the current state cannot transition to any other state, the retrieval
is finished.

Based on Double Array Trie, we can use two arrays to store the actual data.
One is named base array, in which every element represents the node of Double
Array Trie. Another is named check array in which every element represents
the previous state of the current state in this array. Equation (14) formalize the
transfer from state s to state t:

base[s] + c = t

check[base[s] + c] = s
(14)

where variable c represents one or more input chars. The positions of Chinese
characters in the base array should be depend on their Chinese encoding. If
there are n words for which the first character is i, and the second characters of
these n words are a1, a2, · · · , an, respectively, then the positions of the second
characters in the base array should be base[i] + a1, base[i] + a2, · · · , base[i] + an.
If the values of base[i] and check[i] are equal to 0 simultaneously, it denotes that
the state does not exsit.

After completing the words net based on Double Array Trie, we use
the Viterbi algorithm to generate a word graph. Algorithm1 describes this
processing.
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Algorithm 1. Viterbi Segment Algorithm
Require:

The words graph created by DoubleArrayTrie algorithm, which is named WordNet;
Ensure:

The list of shortest path of words graph;
Receive the Vertex list of words graph:nodes;
for i = 1 to lenthof(nodes) do

// The nodeArray is the list that contains vertex
nodeArray = nodes[i];
for j = 1 to lenthof(nodeArrays) do

// The node is vertex
node = the jth element of nodeArrays;
calculate the length of real word of node:RWLength;
for k = 1 tonodes[i + RWLength] do

obtain toV ertex: the jth element of nodes[i + RWLength];
calculate the shortest path from toV ertex to node;

end for
end for

end for
create and return the list of shortest path depend on nodes.

3.5 Shuffle

The implementation of shuffle in Apache Spark consists of two kind of phase:
Shuffle Write and Shuffle Read. In the Shuffle Write phase, the output of map
task will be sorted by the partition id and key of record (key/value pair) in the
memory buffer, when the capacity of buffer has arrived the threshold of memory,
the intermediate data will be spilled into disk. In the Shuffle Read phase, the
reducer tasks will fetch the corresponding intermediate data partly from different
map nodes according to their own reducer id.

In the Shuffle Write phase, the input data is too massive to read into memory
one time, it can only be loaded into memory partly, the result of calculation is
stored in a data structure namely Append only Map, which is substantially a data
array occupied with a continuous memory space. With the execution of map
task, the capacity of data array will become bigger and bigger. Actually, there
is a prediction process called Maybe Spill Collection before storing calculation
result, which mainly predicts that whether this insertion will cause the out of
memory (OOM) exception. Once this insertion is predicted to cause memory
overflow, the Spill Write operation will be started up, and the data in Append
only Map will be spilled into disk batch by batch, one batch may contain 10000
key/value pairs. After that, the data array in Append only Map will be cleared
to leave more space for next round execution.

It can be seen from the above description that the prediction result of Maybe
Spill Collection process determines the times of Spill Write, so how to pre-
dict memory overflow precisely is extremely important. However, the original
prediction algorithm called Moving average algorithm is barely satisfactory.
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This method only considers the latest and previous sampling of Append only
Map, but the former samplings are all excluded which also have an significant
effect on the estimated size of memory utilization of Append only Map. It also
does not take the distribution of train data set into account, most data sets are
not very uniform, especially for text data. So we apply a new algorithm called
Triple exponential smoothing algorithm to predict memory capacity. Exponen-
tial smoothing is a rule of thumb technique for smoothing time series data using
the exponential window function. It can make use of all the sampling results, the
later the sampling is, the higher the weight will be. The every time of sampling
sequence of Append only Map is represented by {xt} beginning at time t=0,
and the output of the exponential smoothing algorithm is commonly written as
{St}, which may be regarded as a best estimate of what the next memory size
of Append only Map will be. The form of Triple exponential smoothing is given
by the formulas Eq. (15):

⎧
⎨

⎩

St
(1) = αxt + (1 − α)St−1

(1)

St
(2) = αSt

(1) + (1 − α)St−1
(2)

St
(3) = αSt

(2) + (1 − α)St−1
(3)

(15)

where the St
(1), St

(2) and St
(3) represent the single, double and triple smoothed

value of memory size of Append only Map for time t respectively, α is the smooth-
ing factor, and 0 < α < 1. we can calculate the feature memory size of Append
only Map after T times sampling as in Eq. (16):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xt+T = At + Bt + CtT
2

At = 3St
(1) − 3St

(2) + St
(3)

Bt = α
2(1−α)2

[
(6 − 5α)St

(1) − 2(5 − 4α)St
(2) + (4 − 3α)St

(3)
]

Ct = α2

2(1−α)2

[
St

(1) − 2St
(2) + St

(3)
]

(16)

where xt is the latest sampling size of Append only Map, when T = 1, the xt+1

is the predicted memory size of Append only Map of next update.

4 Parallel Implementation on Spark

Figure 2 illustrates the steps of training and testing in INBCS based on the Spark
computing framework, which are presented in detail as follow:

Step 1. Read the preprocessed data sets from HDFS into parallelCollection
RDD using the textF ile function.

Step 2. Organize the intermediate data in the form of keys/values from
parallelCollectionRDD, where the keys are specified as an identifier that con-
sists of the class and document names and the values are the contents of docu-
ments.

{hello,morning, · · · , apple} =⇒ {class1/7834911 : hello,morning, · · · , apple}
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Fig. 2. The procedure of training and testing

Step 3. Transform the documents into distributed row vectors and convert
the term frequency (TF) weight into the TF-IDF weight based on Eq. (8).

{class1/7834911 : hello,morning, · · · , apple} =⇒ {
class1/7834911 : 0 : 5.3,

1 : 7.8, · · · , 987 : 2.1
}

Step 4. Calculate some necessary parameters that can be used as the input
to the text classification model. These parameters include WeightsPerFeature,
WeightsPerLabel and Wc,i. They are described in detail as follows:

(1) WeightsPerFeature: a one-dimensional vector in which the elements rep-
resent the weights of each feature word. Because the length denotes the
number of feature words in data sets, it can be obtained by accumulating
all the feature vectors for each document.

(2) WeightsPerLabel: a one-dimensional vector in which each element repre-
sents the weight of all feature words in each class. The length of this vector
equals the number of classes in data sets.

(3) Wc,j : the posterior probability of word j in class c, which can be calculated
by Eq. (9).

Step 5. Broadcast the global variables to all worker nodes.
Step 6. Test each worker node to determine which class their document should

belong to according to Eq. (4).
Step 7. Collect the testing results and output the final results.
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5 Evaluation

First, the posteriori probability of the term feature determines the classification
accuracies. To estimate the impacts of various synthetic coefficients, we set a
group of experiments to find the best coefficient to achieve the highest accuracy.
Second, based on various sizes of data sets, this paper compares INBCS with a
single-word-frequency algorithm (TF) and the TF-IDF weighting algorithm and
then summarize the factors that affect the algorithm performances. Third, to
evaluate the performances in various conditions, we run our experimental code
on different numbers of computing nodes with various sizes of data sets in the
Spark computation environment.

5.1 Experimental Settings

INBCS has been evaluated on a practical test cluster, which includes 6 slave
nodes and 1 master node connected by a 1-Gb Ethernet switch. The experimen-
tal environment is based on Hadoop 2.6.0 and Spark 2.1.0. The hardware and
software configurations are shown in Table 1. All experiments use the default
configurations in Hadoop and Spark for HDFS.

Table 1. The software and hardware configurations in the Spark cluster

The node type Master Slave

Software
environment

Ubuntu 12.04,
JDK 1.7,
Hadoop 2.6.0,
Scala 2.11.0,
Spark 2.1.0

Ubuntu 12.04,
JDK 1.7,
Hadoop 2.6.0,
Scala 2.11.0,
Spark 2.1.0

CPU 4 cores, 2.7 GHz 4 cores, 2.7 GHz

Memory 8 G 8 G

Quantity 1 6

For comparison, this section selects the following four widely used cor-
pora in text categorization: the Reuters21578 (R8 ), 20Newsgroups data sets,
SogouLab Reduced data sets, and answer corpus. The Reuters-21578 Distri-
bution 1.0 dataset consists of 12,902 articles and 90 topic categories from the
Reuters newswire. We use the standard ModApte train/test split. 20Newsgroups
(20NG) contains messages across twenty different UseNet discussion groups. R8
and 20Newsgroups are English data sets, while the SogouLab Reduced corpus
and answer corpus are Chinese data sets.

5.2 Performance Analysis

In our experiments, we select approximately 60% of the preprocessed data as
training data sets by a random sampling method and take the rest as the testing
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data sets. We can first acquire an optimal coefficient α from the Spark computing
framework. This section compares the accuracies for the above four data sets with
various values of α. In these experiments, we set α ∈ (0, 1), and the increment
of the coordinate is 0.1. Figure 3 shows that the accuracies of these four data
sets increase as the coefficient α varies from 0 to 0.9 and decreases as it varies
between 0.9 and 1.0.

Fig. 3. The accuracies of different coefficient α

Because the time performances are usually related to the data quantities, the
following experiments should estimate the execution time under the condition
of different numbers of computing nodes with different sizes of input data sets.
Using the same running environment from the above experiments, we choose the
above four corpuses with size of 1 G, 5 G, 10 G, and 20 G.

As shown in Fig. 4(a) and (b), when the amount of data sets is 1 G or 5 G, the
time consumption grows linearly as the number of computing nodes increases.
This is because the Spark computing framework is based on memory computing.
Each machine has 8 G memory; hence, a single computing node can load all the
data sets into memory at once. Although the degree of concurrency of single node
is lower than multi-node, the consumption time of the internal communication
of the concurrent tasks is less than what the external nodes consume. Thus,
this process can save a significant amount of communication consumption time
among computing nodes. From these experimental results, when dealing with
the small data sets, the performance of a cluster is usually lower than a single
computing node with large memory.

As shown in Fig. 4(c) and (d), when the data size is 10 G or 20 G, with the
increase of the number of machines, the processing time becomes less and less
due to the limited memory capacity. In this situation, one machine cannot load
all the data into memory. If there is only one node in the cluster, there will be
many data exchanged between memory and disk. Meanwhile, the degree of con-
currency is not high, which will lead to greater time consumption. Therefore, the
time consumption by a single computing node is the largest. With an increas-
ing number of nodes, the data sets can be distributed on more different nodes.
After this, the increased number of nodes between clusters will yield increased
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(a) 1G (b) 5G

(c) 10G (d) 20G

Fig. 4. Time consuming comparisons for INBCS in different dataset.

communication consumption. However, this is not the dominant factor of total
time consumed. More nodes lead to a greater degree of concurrent tasks, and
then the main factor in reducing the total time consumed is the higher degree
of concurrency.

The experiments in Fig. 5(a) are all tested under a cluster with 8 nodes, and
we also test the speedups of INBCS in different scales of the computing cluster.
Figure 5(b) illustrates the speedups of INBCS with different corpus under the
different node number of the cluster computing environment. From these results,
we can easily draw a conclusion that the optimal speedup can be reached with 8
computing nodes in the experimental cluster. This is because the communication
costs among the computing nodes usually increase as cluster scale increased.
For the size of the input data in this experiment, eight computing nodes is an
appropriate scale.

(a) various corpus (b) various node numbers

Fig. 5. The comparison experiments for the speed up.
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In this section, a group of experiments is designed to compare the stan-
dard naive Bayes (NB) to naive Bayes with decision tree-based feature weight-
ing (DTFWNB) [15] and naive Bayes with CFS-based feature weighting (CFS-
FWNB) [16]. NB is regarded as the baseline.

All classification precisions were obtained by averaging the results from 8
separate runs of stratified 8-fold cross-validation. To further evaluate the per-
formance of our proposed approaches over the standard baselines, the F1 values
of classification are given in Table 2, which demonstrates that the competitive
effects of INBCS are higher than NB, DTFWNB and CFSFWNB. The clas-
sification accuracies were obtained by averaging the results from 10 separate
runs of stratified 10-fold cross-validation. From these results, INBCS can obtain
satisfactory classification accuracies in these examinations.

Table 2. Classification F1 & Accuracy value comparisons

F1 Accuracy

Dataset INBCS DTFWNB CFSFWNB NB INBCS DTFWNB CFSFWNB NB

20news
group

90.80% 86.47% 90.17% 86.79% 90.82% 87.69% 89.15% 86.79%

SogouLab
Reduced

82.92% 82.83% 78.64% 78.34% 82.14% 81.15 % 76.15 % 78.58 %

R8 93.23% 93.46% 92.54% 90.68% 93.93 % 93.17 % 92.35 % 89.94 %

Answer 82.74% 82.64% 82.19% 81.48% 84.07 % 82.26% 82.47% 82.54%

To further validate the effectiveness of former proposed approach, INBCS
is also compared with some other state-of-the-art methods that are not based
on naive Bayes, such as SVMs using Sequential Minimal Optimization [17] and
the Decision Tree [18]. In this experiment, INBCS is regarded as the baseline.
Table 3 show the detailed comparison results in terms of classification accuracy,
and AUC, respectively. To save time in running the experiments, we estimate
the classification accuracy of each algorithm on each dataset by averaging the
results from 5 separate tests of stratified 5-fold cross-validation.

Table 3. Classification Accuracy & UAC value comparisons

Accuracy AUC

Dataset INBCS SVM DecisionTree INBCS SVM DecisionTree

20newsgroup 90.82 90.27 87.49 97.45 93.35 92.94

SogouLab Reduced 82.14 83.26 69.45 96.17 95.79 88.89

R8 93.93 97.65 89.82 99.34 98.74 97.64

Answer 84.07 88.68 72.45 93.48 92.48 88.49
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6 Conclusion

The work in this paper are all based on the improvement of Naive Bayesian
model. Besides the noise elimination and high dimensionality reduction, this
paper also proposes an improved method for calculating the conditional prob-
ability that comprehensively considers the effects of the feature items in each
document, class and training set. Experiments on Spark clusters with large
amounts of data confirmed that the method proposed in this paper can achieve
better accuracy, F1 values and other performance evaluation indexes for several
popular corpora. From these efforts we can draw the following insights: 1. For
natural language processing, especially for text classification, a higher quality
training data set is essential for classification, so, the pre-processing of the text
on the early stage is very important. 2. Parallel computing may improve the
computational efficiency certainly, however, it is very important to choose the
appropriate cluster size according to the amount of data set, since the com-
munication and data transmission between multiple nodes may consume heavy
times, therefore, we need find an optimal point between the data size and the
cluster scale. Although the algorithm proposed in this paper can improve the
classification accuracy and computational efficiency to a certain extent, but the
classification result of Chinese text is not very satisfied, it may be caused by
the complicated structure of Chinese text and word segmentation, so we will
improve the model deeply to adapt it to different scenes in the future.
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