
Towards Automated Configuration
of Cloud Storage Gateways: A Data

Driven Approach

Sanjeev Sondur and Krishna Kant(B)

Temple University, Philadelphia, PA 19122, USA
{sanjeev.sondur,kkant}@temple.edu

Abstract. Cloud storage gateways (CSGs) are an essential part of enter-
prises to take advantage of the scale and flexibility of cloud object store.
A CSG provides clients the impression of a locally configured large size
block-based storage device, which needs to be mapped to remote cloud
storage which is invariably object based. Proper configuration of the
cloud storage gateway is extremely challenging because of numerous
parameters involved and interactions among them. In this paper, we
study this problem for a commercial CSG product that is typical of
offerings in the market. We explore how machine learning techniques
can be exploited both for the forward problem (i.e. predicting perfor-
mance from the configuration parameters) and backward problem (i.e.
predicting configuration parameter values from the target performance).
Based on extensive testing with real world customer workloads, we show
that it is possible to achieve excellent prediction accuracy while ensuring
that the model is not overfitted to the data.

Keywords: Cloud storage gateway · Object store · Performance ·
Configuration management · Machine learning

1 Introduction

A Cloud Storage Gateway is an emerging concept in Cloud Storage Solutions;
wherein the CSG application is installed on-premise and translates cloud stor-
age object-store APIs such as SOAP or REST to the block I/O-based storage
protocols such as SCSI, Fibre Channel, NFS or SMB.

Cloud Storage Gateway (CSG) concept was pioneered by Google [5], and
subsequently offered by many leading industry vendors as a Cloud Storage solu-
tion. As shown in Fig. 1, CSG appliance connects the client applications running
locally to an object store hosted in a remote cloud data center. Although the
remote storage could be block based, it is almost universally object based due
to many advantages of the cloud model. The advantage of CSG is that while
the user data resides on the cloud storage devices, it makes the accesses appear
locally going to a SCSI device.

c© Springer Nature Switzerland AG 2019
D. Da Silva et al. (Eds.): CLOUD 2019, LNCS 11513, pp. 192–207, 2019.
https://doi.org/10.1007/978-3-030-23502-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-23502-4_14


Towards Automated Configuration of Cloud Storage Gateways 193

Fig. 1. Cloud storage gateway architecture.

Customers deploy CSG to expand storage capabilities of their local comput-
ing infrastructure. For example, a large video animation customer like Disney
could work with hundreds of graphics files of size 1GB or more, a financial
company may store a large number of fiscal records in medium size files (say 1–
10 MB text files). The locally running business workloads would typically persist
or retrieve a large amount of such data through the CSG. Since a single CSG may
be used by many different business applications with different persist/retrieve
patterns, a proper configuration of CSG is a very challenging problem.

Data center operators have a huge amount of operational data collected over
time that can be exploited to understand the system configuration parameters
and their influence on the operational behavior. We keep the discussion focused
by studying the configuration challenges as pertaining to the customer side CSG
system, and not the backend data center hosted cloud object store system in
Fig. 1. We use a commercially available CSG available from a prominent market
vendor. The main goals of our study are as follows:

– Design experiments to collect performance and configuration data for a large
number of configurations of this CSG.

– Explore the use of suitable machine learning techniques to build models for
solving the forward problem (predicting performance for given configuration
parameters), and reverse problem (predicting certain configuration parame-
ters based on target performance).

– Explore how the domain knowledge can be exploited to reduce the configu-
ration space and enhance the accuracy of the predictions.

The key contribution of our work is to demonstrate that we can build robust
models for relating user settable system and hardware parameters to the perfor-
mance of cloud storage gateway and thereby debugging the configurations. Even
in cases where such automated analysis fails to provide the optimal result, it is
expected to yield configurations that are close to optimal and thus can be tuned
further with far less effort and time than the prevalent manual approaches whose
success entirely depends on the experience of the administrators. To the best of our
knowledge, the priorwork has predominantly considered performance as a function
of workload parameters rather than the user tunable system parameters.



194 S. Sondur and K. Kant

2 Motivation and Challenges

Proper configuration management of complex cyber-systems is a very challenging
problem in the real-world, and yet very much under-appreciated in the research
community. Misconfigurations in large enterprises often account for up to 80%
of the malfunctions and attack vulnerabilities, and routinely consume days of
engineer’s time to diagnose and fix [10]. Configuration management of data cen-
ter storage systems can be particularly complex and labor intensive task [3], and
CSG is no exception. In addition, CSG configurations combine the complexi-
ties inherent in storage system configuration, cache configuration, unpredictable
network traffic and the complexities of back-end cloud systems. Similar to other
cyber-systems, CSG has many configuration parameters or “knobs” with little
clarity on how to set them or what precise impact they have on the output end.

While working with the commercial vendor of a CSG product, we noticed
that the most common problems were related to customer complaints about
poor performance or I/O time-out errors. We invariably found that on further
investigation that most of these complaints were a result of poor understanding of
the workload (i.e. request streams) and the configuration parameters of the CSG.
The main source of difficulties in configuration management are the numerous
parameters with complex inter-dependencies that are mostly unknown or poorly
understood with respect to their impact on the overall performance, availability
or user experience [11].

This prompted our research into understanding the relationship between var-
ious parameters in the Cloud Storage Gateway environment. For example, there
are few uncontrollable variables such as eviction rate, cloud storage response,
internet throughput, etc. and some parameters under the user control such as:
workload, hardware characteristics, cache configuration, etc.

It is well known that the storage system performance depends on the
workload characteristics, deployed optimizations, and their specific configura-
tion (See [3] & references therein). Configurations also “are often difficult and
knowledge-intensive to develop, brittle to various environment and systems
changes, and limited in capacity to deal with non-steady-state phenomena [7].”

Cloud storage gateway (CSG) is a relatively new paradigm in cloud stor-
age solutions, and effective methods for its configuration management is largely
unexplored.

3 Cloud Storage Gateway

Unlike the cloud storage services which they complement, CSGs use standard
network protocols that integrate with existing applications and can also serve
as an intermediary to multiple cloud storage providers. Increasingly, CSGs also
provide many sophisticated services such as backup and recovery, caching, com-
pression, encryption, storage de-duplication and provisioning. A CSG will typi-
cally serve multiple clients using a set of local storage devices (possibly a RAID
but not necessarily) that is seen by the clients as a local block storage. All clients
assigned to this local storage share the storage, although there might be some



Towards Automated Configuration of Cloud Storage Gateways 195

internal fine-grain storage allocation policies that are not revealed to the client.
Each client will be allocated space for its data, metadata, and log files. The CSG
can be viewed as two I/O layers (see Fig. 1): (i) front-end for local user I/O and
(ii) the back-end for cloud storage I/O operations. At a minimum, the CSG will
provide the ability of intelligently partitioning the space into data, metadata,
and log files, and a suitable caching mechanism for each so that data transfers
from the backend can be properly handled.

3.1 Characterizing the Behavior of a CSG

The performance and behavior of a CSG depends on the hardware platform
architecture h (CPU, memory, storage, network, local I/O rate, etc.), work-
load characteristics k (incoming request rate/distribution, data writes/sec, data
reads/sec, metadata reads/sec, metadata size, etc.) and application goals p.
Application goal is predominately expressed as I/O performance (MBytes per
sec). Generally, the application goals are achieved by: (a) most reads are satisfied
locally (which is essential to match the higher I/O inject rate to the slower back-
end rate), and (b) maintain and batch writes locally so as to make the writeback
more efficient. These functions along with the management of meta-data files,
rotating log files, garbage collection etc. are normal storage system attributes
that affect the behavior of CSG. Furthermore, workload characteristics such as
burstiness are also important. Workload and performance may be specified either
directly in terms of resource requirements, or in more abstract terms such as pri-
ority, latency, or resource combination (e.g., a “small” vs. “medium” vs. “large”
configuration). In any case, these are ultimately translated to individual system
parameters, either explicitly or via policies.

It is easy to see that if the workload characteristics k, system configuration h
and CSG configuration r are not matched, the end users would likely experience
undesired performance p which is usually defined as the read and write rates sup-
ported with certain maximum latency and without any I/O timeouts. Read/write
operations beyond the acceptable range or complete rejection is considered I/O
failure. As workloads change over time (i.e. as ith workload ki deviates from initial
assumed pattern ki), the initial user-defined configuration ri may no longer sup-
port the demands of new workload(s) and cause undesired end-user experiences.

A major issue in properly configuring the CSG is that the vendors invariably
do not reveal most of the internal details, and instead expose a limited set of
administrator controllable configuration parameters to tune the system. Often,
these administrator controllable parameters are not even the actual configuration
parameters, but merely some sizing controls or decision variables that affect
multiple internal parameters. In other words, the knobs visible to the enterprise
are rather fuzzy with little knowledge of what exactly they do. Of course, this is
partly done to simplify the job of the administrator; a vendor willing to expose all
raw knobs would invariably make them unusable. Thus the phenomenon of fuzzy
knobs with little visibility is an essential characteristic of real systems and cannot
be wished away! It alone precludes simple analytic models for characterizing
performance of a component like CSG or fine-tuning it for very specific workload
or hardware. With absence of any quantifiable, well-defined correlation or closed
loop representation, configuration management is more an art than science.



196 S. Sondur and K. Kant

3.2 Complexities in Configuration Control

Generally, as the size of the local storage (henceforth referred to as “cache”)
increases, we expect the CSG throughput to increase because more I/O can
be handled locally. The benefit is entirely dependent on how well the caching
mechanism keeps and prefetches “hot” data. Since the overall space available
for caching is shared by multiple clients, there is interaction across clients. For
example, giving more space for some clients hurts others, and the net effect is
very complex to predict. This caching mechanism is hidden by the vendor and
not controllable by the end-user, adding to the complexity of the configuration
control. These comments apply to both data and metadata but with different
effects. The metadata needs to be consulted for every I/O regardless of whether
the corresponding data is in the cache or not. Depending on the workload and
the granularity of access, metadata caching becomes more dominant than data
caching. At the same time, metadata is generally much smaller than data, and
thus it is much easier to provide generous amounts of storage for metadata.
We explore the data cache vs. metadata size in our research through varied
workload and configurations studies. The log size should have no influence on
performance except that writebacks of the log would take up some backend
I/O bandwidth. This initial description paves the way for understanding the
complexity of configuring the CSG system.

Incorrect configurations could result in significant competition between the
following three activities:

1. Eviction of modified pages requiring writeback to the backend object storage
which is likely to experience high latency, limited I/O bandwidth due to
network issues, and perhaps a significant write amplification due to the need
to write the entire object.

2. Cache misses from client requests thereby requiring reading of backend object
storage, which experiences similar issues as writebacks (e.g., significant read
amplification and latency due to transfer of entire objects, for which the CSG
need to make adequate room).

3. Local read/writes performed by the clients which are expected to be much
more frequent and expect a low latency.

Note that the cache eviction is not complete until the write confirmation is
received from the cloud storage, and the data must be kept in the cache until
then. Consequently, a more aggressive eviction would only result in fewer entries
in the cache to handle new data requests that must be fetched from the cloud.
The CSG may also need to retry the entire object operation if unsuccessful. In
addition to the whole object transfers on the backend, the transfer normally
uses HTTP which adds considerable overhead. The varying size of the object
could interfere with the SLA guaranteed to the user about upload/inject rates.
We quantify SLAs based on local SCSI update traffic generated by the client,
and any SLA violation is seen by the client as I/O timeout or errors. Note that
increasing the cache size does not solve the writeback problem; in fact, it could
even make it worse.



Towards Automated Configuration of Cloud Storage Gateways 197

4 Configuration Problem Formulation

The CSG system in Fig. 1 serves as a ‘disk cache’ to buffer the incoming user
request and match it with the cloud storage uploads (or downloads). User
requests come over a SCSI bus at a high arrival rate λin (high throughput,
high bandwidth, low latency) and the backend cloud storage presents a low evic-
tion rate system λc (high latency/low bandwidth/higher error retries). Resource
allocation for the disk cache needs to match the kn incoming request streams
and the service rates. We model CSG Controller of Fig. 1 as a queuing system.
The incoming request stream k can be represented as:

k = f(ar, rs, rm) (1)

where: k the request stream is a function of: ar the request arrival rate, rs the
size of the request, and rm the metadata size. These request streams are charac-
terized by the real world customer workloads as given in Table 2. Each of these
requests consumes hardware and disk cache resource for servicing. Note in Fig. 1
that all n request streams share the same resource of CSG controller. There is no
known functional relationship to analyze the queue behavior, and the controller
has no user controllable factors to allocate resources per request stream. The
relationship between the input stream, requested resource, queue and the disk
cache is unknown. This leads us to conclude that there is no clear optimization
or queuing technique that can model the serviceability of the incoming streams.
For example, if the cache size is small and the eviction rate to backend cloud
storage is high, then the system should be able to handle high requests. The
converse means the requests will be dropped.

To add to this complex analysis, the CSG runs on a hardware platform char-
acterized by core speed, number of cores, memory capacity, disk I/O capacity
and network I/O throughput. Here, network I/O throughput represents the mea-
surable I/O throughput to upload an object from the client system to the cloud
storage. The hardware characteristics of the CSG platform is represented as:

h = f(cs, nc,me,mbw, di, th) (2)

where h the hardware characteristics is a function of: cs core speed, nc number of
cores, me memory capacity, mbw memory bandwidth, di disk I/O rate and th I/O
throughput measured between the on-premise CSG and cloud object store. For
example, one disk partition dj on three independent disks has a better I/O rate
compared to three individual partitions on one SCSI disk. Similarly a network
card capacity of 10 Gbps would have better eviction rate than a network card
capacity of 1 Gbps. Another evident characteristic is the performance boost
from using a SSD versus a HDD disk. Again modeling the complex interactions
between different these limited parameters and their relative effect on the CSG
disk cache performance is unknown.

The disk cache is split into three distinct partitions: data buffer db, metadata
md and log space ls (Sect. 3.2 & Fig. 1). These are bound by the total resource
disk space available dsmax, such that:

dsmax ≥ db + md + ls (3)



198 S. Sondur and K. Kant

Each of these parameters db,md, ls coupled with the request stream k influ-
ences the behavior of the system as explained earlier.

Finally, if the configuration r of the CSG is optimized on a given hardware
h, the input stream/ workload k will experience a performance or service rate
of p. We denote this performance as:

p = g(h, k, r) (4)

denoting that the performance (or service rate) p depends on hardware char-
acteristics h, service rate (or workload) k and CSG configuration r. Note that
Eqs. 1, 2 and 4 is a multidimensional vector. Changing any one of the above
parameters will affect the performance output p.

4.1 Research Questions

We define our research problem using a specific example relating to configura-
tion challenge faced by a system administrator. Suggest a CSG configuration
that satisfies the required performance p (10 MBps), given a specific hardware
architecture h (2 × 1.2 GBps cores, 64 GB RAM, 1 GBps NIC card, 0.25 GBps
network speed) and a workload w (5 concurrent users, 10 files, avg 5 GB size,
upload time: 24 h). In general, we define the following:

1. P = {p1, p2, · · · pn}: performance constraints for each of the n applications,
predominantly defined by expected I/O rate, e.g.: 100MBps min for both I/O
write and reads.

2. K = {k1, k2, · · · kn}: workload characteristics for each of the n applications.
We used real-world workload patterns observed from end customers of a com-
mercial industry vendor (See Table 2), predominantly defined by average file
size, number of files, users, sub-directory hierarchy etc.

3. H = {h1, h2, · · · hm}: m hardware characteristics, i.e. the machines running
the CSG application, e.g.: core speeds, memory, local storage disk character-
istics, network I/O bandwidth, etc.

4. R = {r1, r2, · · · rl}: l cloud gateway configurations each specified in terms of
system configurations e.g.: 100GB data cache, 25GB log space, 50GB meta-
data space, 10 concurrent threads etc.

We can now ask two key questions:

Q.1 What should be the cache configuration to satisfy the ‘k’ request streams.
Q.2 What is the maximum performance from ‘k’ streams given certain cache

configuration constraints (e.g. allocation of resources).

We are interested in a mechanism that draws a relationship between the
workload characteristics K, system architecture H, configuration R, performance
P and can answer the following.

1. Verify Configuration - given the system architecture, workload characteristics,
and CSG configuration, determine if the performance constraints are met with
a high probability.

[Hnew,Knew, Rnew] ⇒ Pnew is satisfied (5)



Towards Automated Configuration of Cloud Storage Gateways 199

In most cases, only a few parameters are new; however, because of the depen-
dencies and nonlinear interactions, it may or may not be possible to exploit
the unchanged parameters. This represents Q.2 of our discussion.

2. Configure - given the system architecture, workload characteristics, applica-
tion goals and performance constraint, propose a configuration Rnew that
satisfies all the constraints. That is, given Hnew, Knew, and Pnew find Rnew.

[Hnew,Knew, Pnew] ⇒ Rnew (6)

This problem is the reverse of the first problem and is substantially harder.
As in the last problem, only a few parameters may be new but it may or may
not be possible to exploit the unchanged parameters.

3. Predict - Based on a time series of performance data for a given configuration,
with changing workload, predict if the current configuration is likely to fail.

[Hold, Rold]and[Ki, Pi], i = 1, 2, ...n ⇒ Failure (7)

5 Solution Approach

As stated earlier, the complexity of the relationships between the user settable
CSG parameters and the performance precludes a modeling or simulation based
characterization. Therefore, we turn to machine learning based methods to learn
various relationships along with our domain knowledge into the functioning of
the CSG. Machine learning (ML) is, of course, no panacea; it often requires
a significant amount of training data and the learned model may be “over-
fitted”, and thus may be unable to accurately predict behavior when the inputs
(workload or configuration parameter values) are sufficiently different from those
for the training data. We will address this aspect carefully in our analysis.

5.1 Feature Vector

The feature vector used to support our research is built from the above equations
Eqs. (1, 2, and 3) and represented as below. We have included throughput (a.k.a
performance in bytes/sec) in the feature vector. As explained earlier in Sect. 4,
our work defines QoS and SLA in terms of latency. Any latency exceeding the
limit is experienced as I/O time-out. We do not explicitly include latency in
the feature vector since a configuration that leads to time-outs will be rejected
right away and is not relevant for performance analysis. We discuss some tests
that violated SLA and unacceptable latency in Sect. 6.3; these were attributed
to wrong configuration choice for specific workload constraints. Learning config-
urations that cause time-outs (and thereby avoid them) is a reasonable goal, but
much harder and beyond the scope of this work. Therefore, all our tests used in
the analysis are for valid SLA conditions (Table 1).

There are many parameters relevant to CSG operation that could potentially
affect the performance; however, it is neither possible, nor practical to consider
them all. There is no escape from applying the domain knowledge to consider
only those parameters that are likely to be controllable or relevant. One such



200 S. Sondur and K. Kant

Table 1. Subset of feature vector supporting the problem.

ar Request arrival rate rs Size of the request

rm Request metadata size cs Core speed

nc Number of cores me Memory capacity

mbw Memory bus bandwidth di Disk I/O rate

th Network I/O throughput db Data buffer

md Metadata ls Log size

p System performance (measured as throughput)

example is the ubiquitous use of NFS for users to mount the remote storage
device (but still within the local data center boundaries). NFS has many mount
options (rsize, wsize, etc.) that can be chosen for individual mounts. However,
these parameters are invariably set at default values and unlikely to be changed.
Similarly, although the storage interconnect speeds (PCI bus speed, SATA/SAS
interface speed, etc.) are potentially important, their selection happens at a
much more basic level (i.e., when deploying the storage device/system) rather
than for performance optimization. Therefore, consideration of these aspects is
beyond the scope of this paper.

5.2 Research Hypothesis

We use statistical machine learning, classification, and optimization mechanism
to learn these relationships. Our prediction model is expressed as a function of
the above feature vector. Let x = {x1, x2, . . . xk} denote the vector configuration
parameter values. Let φ(x) denote the hypothesized functional relationship to be
learned and γ(x) is the true observed output for given values of the input x.

We now have the basics to answer our research question Q.1 and Q.2 by using
the above features and to accurately design our hypothesis φ(x) and output γ.

For a given workload, a service rate ki, a set of constraints on hardware
hi and CSG configuration ri, we predict the maximum performance pi by the
following hypothesis (i represents ith variation).

Hypothesis:

φ(ar, rs, rm, cs, nc,me,mbw, di, th, db,md, ls)
Output: γ() = p (8)

Similarly, rearranging the features, and re-writing the hypothesis, we predict
the data cache configuration r required to achieve a given performance p for a
given workload (service rate) k under a set of hardware constraints h.

Hypothesis:

φ(p, ar, rs, rm, cs, nc,m,mbw, di, th)
Output: γ() = (db,md, ls) (9)



Towards Automated Configuration of Cloud Storage Gateways 201

5.3 Classification Problem

In Eq. 8, we compute a single parameter p (performance) for a given set of con-
straints, and in Eq. 9, we compute multiple parameters db,md, ls (data cache size,
metadata and log size). The former is called single label classification and the
latter is called multi-label classification [6]. Computing a single label/parameter
is relatively easier than computing three inter-related labels/parameters. For our
end results, we predict performance, data cache size etc. as multiple classes (e.g.
performance = {class 1, class 2, . . .} or data cache size = { class 1, class 2, . . .
}). These are called multi-class prediction (for Eq. 8) and multi-class multi-label
prediction (for Eq. 9). We will quantify this while discussing workload design
and results in Sects. 6.2 and 8.

6 Implementation Details

6.1 Test Environment

Our test environment (Fig. 2) is comprised of (i) Dell PowerEdge R320 with 4
cores @ 1.8 GHz, 16 GiB memory, 3 ATA Disks- each of 500 GB and one 1 GB
Ethernet interface (ii) Dell PowerEdge R730xd with 8 cores @ 2.1 GHz, 32 GiB
memory, one SCSI disk of 5495 GB and one 1 GB Ethernet interface. Both servers
have Ubuntu 14.04 with required tools and connected to local network. We used
different hardware configurations to study the influence of cores, core speeds,
disk, and memory configurations. On each of these servers, we partitioned the
disk for several cache configurations. The server is connected to the HDD volumes
on a remote cloud object store service, as NFS mounts. We used C++ and
Python scripting tools for executing the workload and collecting metrics.

The algorithms were implemented in Python using scikit-learn [4] library.
This tool gives both the algorithms, tuning parameters, cross validation and the
associated metrics such as accuracy, prediction error, etc. For machine learning
algorithm efficiency metrics, see [1].

Fig. 2. Cloud storage gateway - test environment.



202 S. Sondur and K. Kant

Once the test scripts were ready, the evaluation setup for each exper-
iment involved partitioning the disks for various configurations, allocate
cache/metadata size (see Table 3), connecting the newly configured server to
data center object store and running the workloads and of course collecting the
metrics. We ran over 100 different combinations of configurations/ workloads
and collected the metrics (around 990 tests). Compared to the huge configura-
tion space and vast research boundary, this limited tests gave us enough data
points to validate our approach (see Sect. 8).

6.2 Workload Execution

Since there is no public domain workload data or readily available storage traces
for CSG systems, we conducted our research using real world customer work-
load patters. We ran complete experiments on CSG platform from a commercial
industry vendor and using workload characteristics as observed by real-world
customers. This is shown in Table 2. Additional variants of workloads influenc-
ing meta-data size such as sub-directory depth and hierarchy were also used
but are not shown in the table. File size and number of files followed a Zipf
distribution with α of zero for maximum variance.

6.3 Metrics Collected

Table 2. Real world customer workloads.
Workload Average

file size

No. of files No. of

users

Total

file size

Tiny 4KB 10,000 25 1GB

Small 256KB 10,000 10 25GB

Medium 1MB 10,000 5 50GB

Large 10MB 1,000 5 50GB

Huge 1GB 200 2 400GB

We executed workloads on different
servers and various configurations,
and collected metrics on execution
time, meta-data time (e.g. to cre-
ate sub-directories, open and close
files etc.), throughput in bit/sec.
Alongside the workloads we cap-
tured the configuration information
about the server (e.g. cores, core speed, memory, disk capacity etc.) and CSG
cache configurations (i.e. data cache area, meta-data, log size). We captured the
available network throughput independent of the CSG, using a special RESTAPI
tool set. We attempted a few workloads that would result in I/O timeouts to
study the boundary conditions. Since the performance or throughput metrics at
boundary conditions were meaningless (i.e. zero throughput or IO timeouts), we
discounted these metrics from our labeled data-set. We ran all the workloads
on both servers for different combination of data cache/metadata size configu-
rations. The different instances were tested both for the homogeneous case (all
workloads identical) and the heterogeneous case (workloads with different file
sizes and read/write ratios). To collect a wide range of samples (test-data), we
ran over 100 combinations of workload and configurations, executed about 990
of test cases, i.e., approximately 9 10 different configurations per workload type.
During the course of our experiments and data collection, we persisted over 8
million objects and populated over 5.5TB of cloud object store.



Towards Automated Configuration of Cloud Storage Gateways 203

6.4 Data Pre-processing and Classification

For each experiment, we created the ’sample’ using workload, configuration,
compute servers characteristics, observed performance into the feature vectors as
{2 cores, 1.2 GHz speed, 16 GB RAM, 100 GB cache, 50 GB metadata, 347 Mbps
network I/O, 108 Mbps performance etc.}. We classified the discrete numbers
into buckets to give us meaningful insight into the behavior of the gateway
servers and configuration. For observed metrics, a discrete throughput data of
488175 bits/s and 21392622 bits/s was classified into bucket sets as throughput
class 1 or throughput class 4. Similarly a configuration of cache data or meta-
data size of 450GB and 200 GB was classified as class 5, 4 and so on. Via such
discretization, we classified the data into buckets as shown in Table 3. In terms
of machine learning, this bucketization means that the regression problem is
transformed into a classification problem.

7 Predicting Performance and Configuration

Table 3. Metric Classification.
Metric #Classes Bucket size

N/W Throughput 10 unif (100Kbps, 350Mbps)

Performance 10 unif (100Kbps, 350Mbps)

Data cache 7 25, 50, 100, 200, 500, 1000,

> 1000GB

Metadata 5 25, 50, 100, 200 & 500GB

There are well proven algo-
rithms in the field of machine
learning and their applicability
is specific to the data charac-
teristics and domain [6]. Fur-
ther, the efficiency and accu-
racy metrics of the algorithms
depend on both the problem
domain and associated parameters like learning rate, regularization parameter,
etc. We explored a wide range of ML algorithms to find the best fit for our
problem domain. We found that Decision Trees fitted the relationship between
the performance and configuration parameters with higher accuracy. Using sta-
tistical machine learning methods, Decision Trees tries to infer a split of the
training data based on the values of the available features to produce a good
generalization. The algorithm can handle both binary or multi-class classifica-
tion problems. The leaf nodes can refer to either of the K classes concerned. It
is basically an approximation function working on a multi-dimensional Carte-
sian space using piece-wise constant functions. Decision trees have been used in
other storage metrics predictions such as [8] where authors exploit the trees for
response time prediction of a single disk across different workload parameters.
The reverse problem in Eq. 9, is a multilabel multi-class classification prediction,
where in the end result includes multiple parameters: data cache and metadata
configuration.

Our ML based solution approach is illustrated in Fig. 3. The working data-set
is the used to train the ML Classifiers. We used two different algorithms and
regression classifiers to predict (i) single label performance value and (ii) multi-
label configuration parameters. The algorithms use a sub-set of data to train the
respective model, using hypothesis in Eqs. 8 and 9. The resulting weights of the
model is used to predict end result for a new query. The algorithm returns the



204 S. Sondur and K. Kant

predicted values, accuracy metric and root mean square deviation. We present
the prediction accuracy, cross validation results and algorithm efficiency below.

8 Evaluation Results

The evaluation results should tell us how suitable our approach is to predicting
the right performance (Eq. 8) and a right configuration (Eq. 9).

Preparing Cross Validation Data Set
There are several ways in which the collected data can be split into the

training set and the testing set to verify an algorithm for over-fit/under-fit (See
Monte Carlo cross validation selection [9]). Towards this end, we first shuffle the
data randomly and then divide it into three equal size buckets. We then use
some part of each bucket for testing and use the rest of the bucket for training.
We now consider two specific cases: (A) Use 90% of each bucket for training and
the rest for testing, and (B) use 80% of each bucket for training and the rest for
testing. For each case, we use only one bucket at a time, thereby giving three
sub-cases in each case. These combinations are marked as suffix A.1, A.2, A.3,
B.1, B.2, B.3 in the figures below.

Fig. 3. Predicting performance and configuration.

Predicting Performance - Results
The performance prediction efficiency is shown in Fig. 4. The bar-graphs have

different sample size and train vs. test data ratios, as shown in primary (left side)
y-axis labels. X-axis indicates the different test cases. For these test cases, the
prediction accuracy is on secondary y-axis (right side). The results show that
our solution has prediction accuracy around 95% for various combinations (or
about 5% prediction error) and do not suffer from under-fit or over-fit. As stated
earlier, we are not aware of other public studies on characterizing the relationship
between configuration parameters and performance of CSG or other systems, and
thus a direct comparison against prior results is not possible directly. However,
we compare our results against results from similar techniques used in a different



Towards Automated Configuration of Cloud Storage Gateways 205

storage context (e.g., performance vs. workload parameters). In particular, the
study by Wang [8] using their CART-based models show a relative error between
17% and 38% for response time prediction. Using Inside-Out [2], Hsu reports a
performance prediction error around 9%.

Predicting Cache Configuration - Results
The cache prediction efficiency is shown in Fig. 5. The bar-graphs have dif-

ferent sample size and train vs. test data ratios, as shown in primary (left side)
y-axis labels. X-axis indicates the different test cases. For these test cases, the
prediction accuracy is on secondary y-axis (right side). The results show that
our solution has prediction accuracy around 75% for various combinations (or
about 25% prediction error) and do not suffer from under-fit or over-fit. In cache
prediction, we predict multiple parameters, i.e. data cache size, meta-data and
log size. The reason for higher error is self-explanatory by the nature of complex
multi-label multi-class parameter prediction with limited training data set.

Fig. 4. Efficiency metrics for performance prediction.

Fig. 5. Efficiency metrics for configuration prediction.



206 S. Sondur and K. Kant

9 Conclusions and Future Work

In this paper, we present a methodology for the configuration and performance
prediction of cloud storage gateway (CSG), which is an emerging system of
crucial importance in providing scalable access to remote storage. Because of
the large number of configuration parameters and inter-dependencies among
them, modeling the influence of configuration parameters on the performance is
a challenging problem. We show that machine learning techniques suitably aided
by the use of domain knowledge can provide robust models which can be used for
both the forward problem (i.e., predicting performance from the configuration
parameters) and the reverse problem (i.e., predicting configuration parameters
from the target performance).

We show that our models can provide performance prediction accuracies
in the range of 5% without requiring large amounts of data. The prediction
accuracies are worse when multiple configuration parameters are predicted, but
still respectable (in 20% range). We believe that similar methodology can be
applied to other systems as well, and we will examine this in our future work.

In future work, we will focus on robustness of the algorithms and extrap-
olation studies to look beyond test case boundaries. We plan to analyse the
sensitivity cost to continuously monitor the performance and the workload in
order to adapt the configuration gradually as the workload changes. Lessons
learned from this research can be expanded to the auto-tuning of the hosted
gateway solution and back end cloud based object store configurations.

Acknowledgements. This research was supported by NSF grant IIP-330295. Dis-
cussions with Dr. S. Vucetic of Temple University were highly valuable in devising the
extended validation techniques presented in the paper.

References

1. Almseidin, M., Alzubi, M., Kovacs, S., Alkasassbeh, M.: Evaluation of machine
learning algorithms for intrusion detection system. In: 2017 IEEE 15th Interna-
tional Symposium on Intelligent Systems and Informatics (SISY), pp. 000277–
000282. IEEE (2017)

2. Hsu, C.-J., Panta, R.K., Ra, M.-R., Freeh, V.W.: Inside-out: reliable performance
prediction for distributed storage systems in the cloud. In: 2016 IEEE 35th Sym-
posium on Reliable Distributed Systems (SRDS), pp. 127–136. IEEE (2016)

3. Klimovic, A., Litz, H., Kozyrakis, C.: Selecta: heterogeneous cloud storage con-
figuration for data analytics. In: 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 2018), pp. 759–773 (2018)

4. Pedregosa, F., Varoquaux, G., Gramfort, A.E.: Scikit-learn: machine learning in
Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

5. Prahlad, A., Muller, M.S., Kottomtharayil, R.E.: Cloud gateway system for man-
aging data storage to cloud storage sites, 2010. US Patent App. 12/751,953

6. Sorower, M.S.: A literature survey on algorithms for multi-label learning. Oregon
State University, Corvallis 18, 1–25 (2010)



Towards Automated Configuration of Cloud Storage Gateways 207

7. Tesauro, G., et al.: Online resource allocation using decompositional reinforcement
learning. AAAI 5, 886–891 (2005)

8. Wang, M., Au, K., Ailamaki, A., Brockwell, A., Faloutsos, C., Ganger, G.R.: Stor-
age device performance prediction with cart models. In: Proceedings of the IEEE
Computer Society’s 12th Annual International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunications Systems. (MASCOTS
2004). IEEE, pp. 588–595 (2004)

9. Xu, Q.-S., Liang, Y.-Z., Du, Y.-P.: Monte carlo cross-validation for selecting a
model and estimating the prediction error in multivariate calibration. J. Chemom.
J. Chemom. Soc. 18(2), 112–120 (2004)

10. Xu, T., Zhou, Y.: Systems approaches to tackling configuration errors: a survey.
ACM Comput. Surv. (CSUR) 47(4), 70 (2015)

11. Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L.N., Pasupathy, S.: An
empirical study on configuration errors in commercial and open source systems. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples, pp. 159–172. ACM (2011)


	Towards Automated Configuration of Cloud Storage Gateways: A Data Driven Approach
	1 Introduction
	2 Motivation and Challenges
	3 Cloud Storage Gateway
	3.1 Characterizing the Behavior of a CSG
	3.2 Complexities in Configuration Control

	4 Configuration Problem Formulation
	4.1 Research Questions

	5 Solution Approach
	5.1 Feature Vector
	5.2 Research Hypothesis
	5.3 Classification Problem

	6 Implementation Details
	6.1 Test Environment
	6.2 Workload Execution
	6.3 Metrics Collected
	6.4 Data Pre-processing and Classification

	7 Predicting Performance and Configuration
	8 Evaluation Results
	9 Conclusions and Future Work
	References




