
Heterogeneity-Aware Data Placement
in Hybrid Clouds

Jack D. Marquez(B) , Juan D. Gonzalez , and Oscar H. Mondragon

Universidad Autonoma de Occidente, Cali, Valle del Cauca 760030, Colombia
{jdmarquez,juan davi.gonzalez,ohmondragon}@uao.edu.co

Abstract. In next-generation cloud computing clusters, performance of
data-intensive applications will be limited, among other factors, by disks
data transfer rates. In order to mitigate performance impacts, cloud sys-
tems offering hierarchical storage architectures are becoming common-
place. The Hadoop File System (HDFS) offers a collection of storage
policies that exploit different storage types such as RAM DISK, SSD,
HDD, and ARCHIVE. However, developing algorithms to leverage het-
erogeneous storage through an efficient data placement has been chal-
lenging. This work presents an intelligent algorithm based on genetic
programming which allow to find the optimal mapping of input datasets
to storage types on a Hadoop file system.

Keywords: Hadoop · HDFS · Integer lineal programming ·
Genetic algorithm · Data placement

1 Introduction

As the amount of data generated by organizations is taking enormous propor-
tions, more and more companies leverage Big Data analysis to drive business
decisions [1,2]. The use of distributed file systems allows to reliably store this
massive data and distribute storage and computation across very large clusters,
facilitating scalability. In order to optimize the storage and retrieval of data,
system software must provide efficient data placement mechanisms [3].

Modern distributed file systems commonly have large hybrid storage capacity
through the combination of Solid State Drive (SSD) and Hard Disk Drive (HDD)
disks. Data placement algorithms must be aware of these heterogeneous archi-
tectures in order to maximize the performance of applications using them. For
example, applications with real-time requirements may benefit from using SSD
instead of HDD, as disk data transfer rates have been identified as a bottleneck
for such applications [4].

One of the most commonly used framework to process big data is Hadoop
Apache software [5], which can run tasks that use and produce a large amount
of data using a vast quantity of processing cores. Hadoop provides a distributed
file system (HDFS) [6] and a framework that allows to analyze and process large
amount of data using the MapReduce model [7].
c© Springer Nature Switzerland AG 2019
D. Da Silva et al. (Eds.): CLOUD 2019, LNCS 11513, pp. 177–191, 2019.
https://doi.org/10.1007/978-3-030-23502-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_13&domain=pdf
http://orcid.org/0000-0002-2673-3507
http://orcid.org/0000-0001-7512-2553
http://orcid.org/0000-0002-5772-6545
https://doi.org/10.1007/978-3-030-23502-4_13


178 J. D. Marquez et al.

From version 2.3, Hadoop supports heterogeneous storage, which enables
users to specify the type of storage (RAM DISK, SSD, HDD, ARCHIVE) to use
by setting storage policies (Lazy Persist, All SSD, One SSD, Hot, Warm, Cold)
to files and directories [4]. The selection of a storage policy impacts directly
applications performance since it determines data locality and the data transfer
rate offered to them [8]. We defined the problem of allocating different datasets
to storage types resources as an Integer Linear Programming (ILP) problem
and propose an intelligent algorithm based on Genetic Programming to solve
it. Then, we contrast our genetic algorithm against other solutions, specifically
Simplex, Generalized Reduced Gradient (GRG) and Evolutionary algorithms
and show a comparison of the throughput achieved for each of them for different
sizes of datasets by running each algorithm on a Hadoop cluster.

The contributions of this paper are (I) The formulation of the heterogeneous
storage problem as an ILP problem. (II) The implementation of an intelligent
algorithm based on genetic programming that solves the ILP problem allowing
to find the optimal mapping of each dataset to storage types on a Hadoop file
system. (III) A comparison of our solution against alternative algorithms. (IV)
A new HDFS storage policy that allows using RAM DISK without replication
in other storage types. (V) A benchmark to test and evaluate data write and
read throughputs in HDFS.

The rest of the paper is organized as follows. In Sect. 2, we present a brief
background on Hadoop heterogeneous storage support and HDFS storage poli-
cies. In Sect. 3, we describe the problem and the proposed ILP model for data
placement. Section 4 explains our proposed GA to solve the formulated ILP prob-
lem. In Sect. 5, we discuss the experiments performed to validate our model. In
Sect. 6, we report related work. Finally, we conclude in Sect. 7.

2 Background

This section describes the main features of the Hadoop heterogeneous storage
mechanisms and the HDFS storage policies that support our algorithm.

2.1 Hadoop Heterogeneous Storage Support

The heterogeneous storage support included in Hadoop 2.3 version changed the
storage model from single storage to multiple physical storage media. This allows
HDFS to adapt according to the characteristics of the data to store. HDFS
supports the following storage types:

– ARCHIVE: archival storage is commonly used for heavy storage and for stor-
ing data that is accessed only rarely.

– DISK or HDD: hard disk drives are the default storage type.
– SSD: it is recommended to use solid state drives to store data that needs to

be written and recovery with a higher intensity.
– RAM DISK: this type of storage has the highest I/O performance, but the

storage is non-persistent.



Heterogeneity-Aware Data Placement in Hybrid Clouds 179

2.2 HDFS Storage Policies

HDFS storage policies allow managing different types of storage and the replica-
tion factor. As can be seen in the Table 1, Hadoop provides six different storage
policies, based on the types of storage supported by HDFS and the combination
of them. Block placement property defines the type of storage that will be used
to locate the data blocks and its replicas (n). Fallback Storage for Creation prop-
erty indicates what storage type will be used as an alternative in the case that
the main storage type is not available. Fallback Storage for Replication property
indicates what type of storage will be used for the replicas alternatively in the
case that the main storage type defined for the replicas is not available [9]. HDFS
provides the following policies:

Table 1. HDFS storage policies [9]

ID Name Block placement (n) Fallback creation Fallback replication

15 Lazy Persist RAM DISK: 1, DISK: n-1 DISK DISK

12 All SSD SSD: n DISK DISK

10 One SSD SSD: 1, DISK: n-1 SSD, DISK SSD, DISK

7 Hot (default) DISK: n <none> ARCHIVE

5 Warm DISK: 1, ARCHIVE: n-1 ARCHIVE, DISK ARCHIVE, DISK

2 Cold ARCHIVE: n <none> <none>

– Lazy Persist: this is the only one of the policies that allows to use the stor-
age in RAM DISK and combines it with the storage in DISK. Lazy Persist
always stores the data in RAM DISK and replicates them in DISK regardless
of the replication factor is 1. A replication factor greater than one impacts
performance, since only one replica is stored in RAM DISK while the rest of
the replicas are stored in DISK [9].

– All SSD: as the name implies, it stores all the replicas in SSD and uses the
DISK storage as an alternative for creating data blocks and for replicas.

– One SSD: this policy combines SSD and DISK. It stores one replica in SSD
and the rest in DISK.

– Hot: when no policy is set, this is used by default. Both data blocks and
replicas are stored on disk and there is no alternative for the storage of the
blocks in case of a failure. For replicas, Archive is used as a fallback.

– Warm: Warm policy combines DISK and ARCHIVE. It stores one replica on
Disk and the rest on file.

– Cold: Cold stores all replicas in ARCHIVE.



180 J. D. Marquez et al.

3 Modeling Data Placement on Heterogeneous Storage

In this section we describe the formulation of the problem of mapping input
datasets to storage types on a Hadoop Distributed File System (HDFS). We for-
mulate this as an Integer Linear Programming problem, which allows to minimize
the time of placement of datasets on HDFS heterogeneous storage by leveraging
storage policies.

3.1 Resource Constraints

We consider the problem of allocating N datasets (DS) to M different Storage
Types (ST) in a Hadoop cluster. Each storage type has certain resource capacities
including data write rate and storage capacity. Correspondingly, each dataset
has a size. In any valid DS-to-ST allocation, the capacity constraint must be
satisfied. That is, for each resource, the total capacity requested by all the DSs
cannot exceed STs’ storage capacity.

3.2 Optimization Objective

The optimization objective of our problem is to minimize the data placement
time of the DS to the ST. The placement time may be affected by several con-
tributors such as network technology, CPU, memory and storage throughput.
For simplicity, we focus on the effect of storage throughput because it is the
factor with impacts most data placement time [10]. HDFS storage policies play
an important role here since they allow to define the storage types in which files
will be stored.

3.3 Data Placement Model

Each one of the DSs to be stored is received from the application and moved
directly to one of the STs. We develop an Integer Linear Programming model [11]
for this problem which is considered as NP-Hard [12]. We define an objective
function that includes the dataset size, the storage type data write rate, and the
correct allocation as decision variable. We consider two types of constraints for
this problem: storage capacity and the guarantee that each DS must be assigned
to one ST. Table 2 describes the variables we use in our model.

Optimization Objective. Minimize

M∑

j=1

N∑

i=1

DSSi

Bj
× Xij (1)

In our approach, the optimization objective is to minimize the data placement
time of datasets to the available storage types. Each mapping time corresponds
to the ratio between the dataset size (MB) and the allocated storage type data



Heterogeneity-Aware Data Placement in Hybrid Clouds 181

Table 2. Problem model variables

Variable Description

DSi i-th Dataset

DSSi i-th Dataset size

Bj j-th Storage Type Data Write Rate

Xij Dataset i stored in Storage Type j

Cj available storage capacity of the j Storage Type

M Number of Storage Types

N Number of Datasets

write rate (MB/s). The mapping of a dataset i to a storage type j is controlled
by the binary variable Xij , which indicates whether DS i is assigned to ST j,
with Xij = 1 if DS i is assigned to ST j and Xij = 0 otherwise.

Constraints
M∑

j=1

Xij = 1, ∀i (2)

N∑

i=1

DSSi × Xij ≤ Cj , ∀j (3)

(2) is the placement constraint, which ensures that each dataset should be
assigned to exactly one ST.

(3) is the storage type capacity constraint. New allocated datasets size cannot
exceed the current available storage of a storage type.

4 Solving the Optimization Problem Using Genetic
Programming

Computational Intelligence (CI) often is used to address cloud computing
resource allocation problems [13]. Our Optimization problem shows an ILP prob-
lem behavior and can be solved it using different algorithms such as Simplex [14],
GRG [15], Evolutionary and Genetic Algorithms [16], among others. For this
problem, we propose a Genetic Algorithm (GA) which is explained in next sec-
tions.

4.1 Chromosome Representation

One of the most important parts of a GA is the chromosomes representation.
Each one of the “chromosomes” represents one individual or possible solution to
the proposed problem [17]. In our case, each solution consists of a binary vector



182 J. D. Marquez et al.

which represent the mapping of the datasets to any of the four storage types. In
Fig. 1 there is an example where the file 1 and 3 are assigned to SSD, file 2 to
RAM DISK, and file 4 to ARCHIVE. In Fig. 1 the chromosome is shown as a
matrix but in our algorithm, it is represented as a one dimension vector.

((a)) Chromosome
Representation

((b)) Two-point
Crossover

((c)) Single-point
Mutation

Fig. 1. GA algorithm steps

The size of this vector is determined by the number of datasets to be placed.
One dataset only can be placed in one storage type in order to satisfy the con-
straint (2). One storage type can store multiple datasets but without exceeding
its capacity in order to satisfy the constraint (3).

4.2 Initialization

This is the first stage of the GAs. In this stage the initial population must
be created. In our case the population is a number of chromosomes generated
randomly. Here, the constraints have to be considered when creating possible
solutions (i.e. chromosomes).

4.3 Fitness Function and Selection

The fitness function allows to measure the quality of the solution. Generally, this
value is obtained using the objective function. In our case each of the solutions
represents the Xij values, therefore we have to multiply these values with the
placement time, given by the quotient of the dataset size and the storage type
bandwidth. The selection operation is the process in which the best solutions are
selected from the population. In our case we are doing a elitist selection which
consists in selecting two chromosomes that had the highest value on the fitness
function.

4.4 Crossover and Mutation Operators

GAs are based in biological evolution, the crossover (Fig. 1(b)) and mutation
(Fig. 1(c)) processes represent the steps in which new individuals, solutions or
chromosomes are generated by mixing the best ones (parents) from the previous



Heterogeneity-Aware Data Placement in Hybrid Clouds 183

generation [18]. These new individuals are generated in each generation if the
probability of crossover is bigger than the defined. The children usually tend to
get a better value for the fitness function.

4.5 Genetic Algorithm Parameters

There is not a standard mechanism to calculate GA parameters [19]. Like con-
ventional genetic algorithms, our chromosome parameters receive random initial
values. We consider 100 chromosomes randomly created as initial population, a
crossover probability of 0.9 and a mutation probability of 0.1. The number of
generations was set to 1000.

5 Allocating Storage in a Hadoop Cluster

In the next sections we describe a number of experiments performed in order to
validate our model, both using simulations and real hardware. First, we describe
the experiment setup used for both kind of experiments. Next, we introduce
a new storage policy that we propose in order to analyze the performance of
RAM DISK storage, which differs from the current Lazy Persist policy in that
it uses exclusively RAM DISK storage. Then, we use our GA model to simulate
the placement of datasets to storage and compare our results against alterna-
tive algorithms. Finally, in order to study the algorithms performance in a real
HDFS environment, we executed some experiments on a cloud computing cluster
running Hadoop.

5.1 Experiment Setup

We tested our GA algorithm and compare its performance against Simplex,
GRG, and Evolutionary solutions. For that end, we performed experiments using
different numbers of datasets as input, which are mapped to storage in a 5-node
cluster with a hierarchical storage setup. We used the experiment setup described
here to perform both simulated and real hardware experiments. For the latter,
we configured our cluster on Chameleon Cloud [20], a large-scale cloud research
configurable environment funded by National Science Foundation (NSF). Table 3
shows the experiment setup.

For the real hardware experiments, we used five Chameleon nodes, each one
with two CPU, 67.6 GB RAM, x86 64 Platform Type, Intel Xeon 3.00 GHz Pro-
cessor, 400 GB SSD and 2TB HDD. One of the nodes was configured as master
and the rest as workers. Datasets are mapped exclusively to workers nodes. We
allocate to HDFS only part of the worker nodes resources: 64 GB of RAM, 1 TB
of HDD, and 250 GB of SSD from each node. The cluster architecture is shown
in Fig. 2.



184 J. D. Marquez et al.

Table 3. Experiment setup

Parameter Element

Number of datasets 15, 35, 50

Number of storage types 3

Total cluster RAM DISK storage capacity 256 GB

Total cluster SSD storage capacity 1 TB

Total cluster HDD storage capacity 4 TB

RAM DISK bandwidth 6600 MB/s

SSD bandwidth 2320 MB/s

HDD bandwidth 267 MB/s

Dataset size 0 ≤ DSS ≤ 200 GB

Fig. 2. Hadoop cluster architecture

5.2 A New HDFS Storage Policy

In order to get a sense of RAM DISK storage performance it was necessary to
implement a new storage policy. In HDFS, the only available storage policy that
use RAM DISK is Lazy Persist and this policy always creates a replica on Disk,
even if the replication factor is set as one. We named our new policy All RAM
and differs from Lazy Persist in that it does not make replications on any other
storage type. Table 4 describes All RAM policy.

Table 4. All RAM storage policy

ID Name Block Placement (n) Fallback creation Fallback replication

14 All RAM RAM DISK: n DISK DISK



Heterogeneity-Aware Data Placement in Hybrid Clouds 185

5.3 Using the Genetic Algorithm Model to Simulate Data
Placement

Figure 3 shows the results of using the genetic algorithm model we describe in
Sects. 3 and 4 to simulate the data placement of different numbers of datasets
in a HDFS cluster, according with the experiment setup described in Sect. 5.1.
Throughout the generations, the fitness value is getting better, this is because of
the selection implemented method, elitism. This method ensures that the parents
of each generation are going to be the best in order to likely get better children.

((a)) 15 Datasets ((b)) 35 Datasets ((c)) 50 Datasets

Fig. 3. Best fitness curves using elitism with a 0.9 crossover rate and a 0.1 mutation
rate. The initial population is 100 chromosomes.

Each generation must accomplish the ILP problem constraints. In algorithms
like simplex or GRG it is possible to explicitly include the constraints, but in
the case of an Evolutionary algorithm and for our GA, mechanisms such as
penalization have to be used in order to make sure that each of the chromosomes
satisfies all the constraints. To accomplish that each chromosome satisfies the
constraint (2) we have to guarantee that there always exist a storage type storing
the dataset, even during the mutation process. Also, to achieve the fulfillment
of constraint (3) we implement a penalty process, which sets a high penalization
value in the objective function to the chromosomes that do not comply with the
restriction. This penalty value is used to ensure that a bad chromosome is not
going to be selected as a parent in the selection operation [21,22]. For all the
test, the GA found the optimal value long before the generation number 1000.
As shown in Fig. 3, for all the cases, the GA reached the equilibrium point before
generation number 100.

Comparing Against Alternative Algorithms. Our purpose in this part is to
evaluate the simulated data placement time achieved for alternative algorithms
and compare against our GA algorithm results. The resulting data placement
execution times are shown in Fig. 4.

Figure 4 shows that our GA outperforms the rest of studied algorithms. From
that figure, we can see that the data placement times obtained for the generic
evolutionary algorithm are significantly higher than the others, even though they
have the same parameter values used for GA, this is because the evolutionary



186 J. D. Marquez et al.

Fig. 4. Data placement execution time (s)

Table 5. Algorithms execution time (s)

15 Files 35 Files 50 Files

GRG 5.2 50 46

Simplex 1.3 1.2 2.5

Evolutionary 37 34 34

GA 0.6 0.9 1.3

algorithm does not consider the specific constraints for our ILP problem. Most
of the GA fitness values were better than the results of the other algorithms
even when those methods take into consideration the constraints automatically,
except for the evolutionary algorithm [23].

When using few datasets as input, Simplex, GRG and our genetic algorithm
have almost the same fitness values. For 35 datasets our GA shows the best
fitness value, while GRG and Simplex place the input data in approximately the
same time. For 50 datasets the difference between GA and the others algorithm
is bigger, but GRG and Simplex are still close.

Table 5 shows the time used for the algorithms under analysis to calculate
the data placement allocations. GA was the fastest followed by the Simplex
algorithm, while GRG and evolutionary take substantially more time to execute,
especially for datasets with a higher number of files.

5.4 Placing Datasets into a Real HDFS Cluster

We wrote a synthetic benchmark which generates different numbers of datasets
and load them to HDFS according to the allocation made by the algorithms.
We performed two experiments using replication factors of one and three. We
use replication factor 3 because this is the default replication factor to provide
fault tolerance and is the most common replication factor in Hadoop clusters.
Additionally, we experimented with a replication factor one in order to contrasts
against our simulation results. We also compare these results with the ones
obtained from the allocation of datasets using the default Hot policy, in order
to evidence how the use of the studied algorithms and heterogeneous storage
improve substantially the writing and reading throughput.

Testing Using Replication Factor 1. Figure 5 shows the writing and reading
throughput obtained for each dataset, using a replication factor of 1. The GA
algorithm shows the best writing and reading performance. Furthermore, it can
be evidenced that the throughput using the Simplex and GRG algorithms are
very similar. Finally, the Evolutionary algorithm throughput is the slowest of the
four. It is inferred that the throughput changes substantially compared with the
throughput obtained in simulation, due to the different processes that HDFS
performs for the placement of the files. One of those processes is the division



Heterogeneity-Aware Data Placement in Hybrid Clouds 187

(a) Write (b) Read

Fig. 5. Write and read throughput using replication factor 1.

of the files into blocks and the distribution of them through the cluster nodes.
Other factor that influences the disk writing performance is available cache.

Testing Using Replication Factor 3. Figure 6 shows the writing and read-
ing throughput obtained for each dataset, using a replication factor 3. The data
placement used in this test was different to the one used for the test with replica-
tion factor 1, because it was necessary to recalculate the size of the files to ensure
that the files along with their replicas fit into the HDFS. As in the first test, the
GA algorithm kept being the most efficient and the Evolutionary algorithm the
slowest of the four.

(a) Write (b) Read

Fig. 6. Write and read throughput using replication factor 3.

In our datasets, as the number of files increases, the file sizes go smaller. Thus,
the files belonging to the 50-files dataset are smaller than the files belonging the
15-files dataset. In the test with replication factor 3, it was possible to observe
that HDFS is more efficient for big files. Figure 6 shows that for the dataset with
15 files the throughput was better than the dataset with 35 and 50 files.



188 J. D. Marquez et al.

6 Related Work

Several works identify data storage and access as a bottleneck in Hadoop Clus-
ters [4,24–27]. Integrating SSD as an effective storage tier in addition to HDD
in HDFS, has been pointed out as an alternative to store data while the perfor-
mance improves. Some works show this integration [25–30].

In [31], authors propose a new HDFS multi-tier storage design that inte-
grates different heterogeneous technologies such as HDD and SSD. In order to
exploit the advantage of each storage type, they propose data placement policies
that consider SSD high cost and HDD low transmission rate to make placement
decisions.

In [26], authors propose a dynamic data management system for Hadoop,
allowing workloads that are expected to benefit from SSD to be able to use it
as a cache for the HDDs too. They integrate in their data management system
a component called Popularity Predictor, which is responsible for analyzing the
number of accesses to different files in order to decide which files should be moved
to SSD and get less access time to them.

Pan et al. [27], also propose a data access strategy for Hadoop. This strat-
egy focuses in establish some categories for the tasks, taking into account data
locality and available storage types. Both, different speeds of storage types and
reduced access times thought data locality, allow reduce the applications execu-
tion time.

Other authors focused in managing the replication factor in order to guar-
antee the storage availability in HDFS [32]. Other techniques have been used
to improve heterogeneous storage performance [4,33], and some works consider
infrastructure heterogeneity and try to find the best data placement according
with specific machine capabilities [34].

Most of the approaches mentioned above only integrate SSD to the multi-
tier heterogeneous storage, without including RAM DISK. We incorporated it
and designed a new policy for its access. RAM DISK can outperform SSD due
to its transmission rate, but it has limited storage capacity. Authors in [33]
and [4], include the RAM DISK in order to improve HDFS performance. Subra-
manyam [4] consider data temperature to store it, but temperature only means
the access frequency without considering storage types capabilities. Islam [33]
assign a random priority to each dataset to be stored. We instead include the
implementation of an intelligent algorithm based on genetic programming that
solves the ILP problem, allowing to find the optimal mapping of each dataset to
storage types on a HDFS, taking in account the size of datasets and the write
rate of storage types.

7 Conclusions and Future Work

In this paper we have shown how leveraging the Hadoop heterogeneous storage
support in combination with intelligent algorithms to perform data placement
can help to optimize the performance of applications by improving reading and



Heterogeneity-Aware Data Placement in Hybrid Clouds 189

writing rates in HDFS. All the studied algorithms outperformed the default hot
storage policy used by HDFS, while our proposed GA solution showed the best
results among all of them.

Genetic algorithms are not generally considered to work in a model with con-
straints. This is because the search or selection operators, crossover and mutation
does not take into count constraints. Hence, there is no guarantee that if a par-
ent chromosome satisfies the constraints the children will satisfy them as well. It
is for this reason that some authors suggest not to work with GAs in problems
with constraints [35]. We decided to tackle this by working with a penalization
system which does not allow wrong chromosomes to be selected as parents due to
its resulting fitness function value. This mechanism also provides faster solutions
that chromosome repairing methods. As a result of this strategy, our proposed
GA took less than 100 iterations to find the best value for our objective function
even though it was configured to iterate 1000 times.

One direction for future work is to propose a complete model for data place-
ment in HDFS clusters considering different characteristics of the input data
such as arrival frequency, size, priority, among others; becoming a multi-objective
optimization problem. Considering internal HDFS operations such as the divi-
sion of the files into blocks and the distribution and replication of them through
cluster nodes would make the model more accurate. Another direction for future
work is to include in the model the monetary cost that generates the use of each
one of the storage types as a criterion to decide mapping.

Acknowledgements. Results presented in this paper were obtained using the
Chameleon testbed supported by the U.S. National Science Foundation.

References

1. Zhou, K., Fu, C., Yang, S.: Big data driven smart energy management: from big
data to big insights. Renew. Sustain. Energy Rev. 56, 215–225 (2016)

2. Li, H., Li, H., Wen, Z., Mo, J., Wu, J.: Distributed heterogeneous storage based
on data value. In: 2017 IEEE 2nd Information Technology, Networking, Electronic
and Automation Control Conference (ITNEC), pp. 264–271 (2017)

3. Bezerra, A., Hernandez, P., Espinosa, A., Moure, J.C.: Job scheduling in Hadoop
with shared input policy and RAMDISK, pp. 355–363 (2014)

4. Subramanyam, R.: HDFS heterogeneous storage resource management based on
data temperature, pp. 232–235 (2015)

5. Welcome to apache hadoop!
6. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file

system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10 (2010)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107 (2008)

8. Xiong, R., Luo, J., Dong, F.: Optimizing data placement in heterogeneous hadoop
clusters. Clust. Comput. 18(4), 1465–1480 (2015)

9. Archival storage, SSD & memory



190 J. D. Marquez et al.

10. Yoon, M.S., Kamal, A.E.: Optimal dataset allocation in distributed heterogeneous
clouds. In: Globecom Workshops (GC Wkshps), 2014, pp. 75–80. IEEE (2014)

11. Klein, D., Hannan, E.: An algorithm for the multiple objective integer linear pro-
gramming problem. Eur. J. Oper. Res. 9(4), 378–385 (1982)

12. Apers, P.M.: Data allocation in distributed database systems. ACM Trans.
Database Syst. (TODS) 13(3), 263–304 (1988)

13. Guzek, M., Bouvry, P., Talbi, E.G.: A survey of evolutionary computation for
resource management of processing in cloud computing. IEEE Comput. Intell.
Mag. 10(2), 53–67 (2015)

14. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J.
7(4), 308–313 (1965)

15. Lasdon, L., Waren, A.: Generalized reduced gradient software for linearly and
nonlinearly constrained problems. Graduate School of Business, University of Texas
at Austin Austin, TX (1977)

16. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary Algo-
rithms for Solving Multi-objective Problems, vol. 5. Springer, Boston (2007).
https://doi.org/10.1007/978-0-387-36797-2

17. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Optimization, vol. 7.
Wiley, Hoboken (2000)

18. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in
genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

19. Chiroma, H., Abdulkareem, S., Abubakar, A., Zeki, A., Gital, A.Y., Usman, M.J.:
Correlation study of genetic algorithm operators: crossover and mutation proba-
bilities. In: Proceedings of the International Symposium on Mathematical Sciences
and Computing Research, pp. 6–7 (2013)

20. About Chameleon | Chameleon
21. Gen, M., Cheng, R.: A survey of penalty techniques in genetic algorithms. In:

Proceedings of IEEE International Conference on Evolutionary Computation, pp.
804–809. IEEE (1996)

22. Michalewicz, Z., Janikow, C.Z.: Handling constraints in genetic algorithms. In:
ICGA, pp. 151–157 (1991)

23. Kolen, A.: A genetic algorithm for the partial binary constraint satisfaction prob-
lem: an application to a frequency assignment problem. Stat. Neerl. 61(1), 4–15
(2007)

24. Li, H., Li, H., Wen, Z., Mo, J., Wu, J.: Distributed heterogeneous storage based
on data value. In: 2017 IEEE 2nd Information Technology, Networking, Electronic
and Automation Control Conference (ITNEC), pp. 264–271. IEEE (2017)

25. Krish, K., Anwar, A., Butt, A.R.: hatS: a heterogeneity-aware tiered storage for
Hadoop. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, pp. 502–511. IEEE (2014)

26. Krish, K., Iqbal, M.S., Butt, A.R.: VENU: orchestrating SSDs in Hadoop storage.
In: 2014 IEEE International Conference on Big Data (Big Data), pp. 207–212 IEEE
(2014)

27. Pan, F., Xiong, J., Shen, Y., Wang, T., Jiang, D.: H-scheduler: storage-aware task
scheduling for heterogeneous-storage spark clusters. In: 2018 IEEE 24th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), pp. 1–9. IEEE
(2018)

28. Krish, K., Wadhwa, B., Iqbal, M.S., Rafique, M.M., Butt, A.R.: On efficient hier-
archical storage for big data processing. In: 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 403–408. IEEE
(2016)

https://doi.org/10.1007/978-0-387-36797-2


Heterogeneity-Aware Data Placement in Hybrid Clouds 191

29. Kambatla, K., Chen, Y.: The truth about mapreduce performance on SSDs. In:
28th Large Installation System Administration Conference (LISA14), pp. 118–126
(2014)

30. Narayanan, D., Thereska, E., Donnelly, A., Elnikety, S., Rowstron, A.: Migrating
server storage to SSDs: analysis of tradeoffs. In: Proceedings of the 4th ACM
European Conference on Computer Systems, pp. 145–158 ACM (2009)

31. Kang, S.H., Koo, D.H., Kang, W.H., Lee, S.W.: A case for flash memory SSD in
Hadoop applications. Int. J. Control. Autom. 6(1), 201–210 (2013)

32. Wei, Q., Veeravalli, B., Gong, B., Zeng, L., Feng, D.: CDRM: a cost-effective
dynamic replication management scheme for cloud storage cluster. In: 2010 IEEE
International Conference on Cluster Computing, pp. 188–196. IEEE (2010)

33. Islam, N.S., Lu, X., Wasi-ur Rahman, M., Shankar, D., Panda, D.K.: Triple-H:
a hybrid approach to accelerate HDFS on HPC clusters with heterogeneous stor-
age architecture. In: 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), p. 101. IEEE (2015)

34. Xiong, R., Luo, J., Dong, F.: Optimizing data placement in heterogeneous Hadoop
clusters. Clust. Comput. 18(4), 1465–1480 (2015)

35. Coello, C.A.C., Montes, E.M.: Constraint-handling in genetic algorithms through
the use of dominance-based tournament selection. Adv. Eng. Inform. 16(3), 193–
203 (2002)


	Heterogeneity-Aware Data Placement in Hybrid Clouds
	1 Introduction
	2 Background
	2.1 Hadoop Heterogeneous Storage Support
	2.2 HDFS Storage Policies

	3 Modeling Data Placement on Heterogeneous Storage
	3.1 Resource Constraints
	3.2 Optimization Objective
	3.3 Data Placement Model

	4 Solving the Optimization Problem Using Genetic Programming
	4.1 Chromosome Representation
	4.2 Initialization
	4.3 Fitness Function and Selection
	4.4 Crossover and Mutation Operators
	4.5 Genetic Algorithm Parameters

	5 Allocating Storage in a Hadoop Cluster
	5.1 Experiment Setup
	5.2 A New HDFS Storage Policy
	5.3 Using the Genetic Algorithm Model to Simulate Data Placement
	5.4 Placing Datasets into a Real HDFS Cluster

	6 Related Work
	7 Conclusions and Future Work
	References




