
A User Constraint Awareness Approach
for QoS-Based Service Composition

Zhihui Wu, Piyuan Lin(&), Peijie Huang, Huachong Peng, Yihui He,
and Junan Chen

South China Agricultural University, Guangzhou, China
pyuanlin@scau.edu.cn

Abstract. Web service composition adopts functional features including the
inputs and outputs, and non-functional features including quality of service
(QoS), conditional structure constraints, user preferences, and trusts to compose
homogeneous or heterogeneous services together in order to create value-added
services. However, in some complex practical application scenarios, the web
services with the same function can provide the generous differentiated con-
tents, and there is no approach to focus on the user’s constraints on the content
provided by the web services. In this paper, we focus on handling three com-
position dimensions simultaneously including functional features, QoS and the
user’s constraints on the contents provided by the web services. Therefore, an
improved genetic algorithm to obtain an optimal solution for this task is applied.
In addition, we also take it into consideration that the over-constrained problem
caused by implicit conflicting constraints and improve a constraint correction
approach to solve this problem with less cost of consistency checks. Experi-
mental results using the real datasets about travel demonstrate the effectiveness
of our approach in creating the fully functional and quality-optimized solutions,
on the premise that the users constraints on the content are satisfied.

Keywords: User constraint awareness � Web service composition �
Over-constrained problems � Genetic algorithm � Constraint correction

1 Introduction

Nowadays, Service-Oriented Computing (SOC) has been widely employed in many
fields and plays an important role in practical applications. Considering the complexity
of user requirements, web service composition is an effective and available solution by
composing homogenous or heterogeneous services together in order to create value-
added services that meet user requirements [1]. Thus, promoting automated web ser-
vice composition by considering functional and non-functional features has attracted
the attention of researchers [2].

The complexity of web service composition lies in the number of distinct dimensions
it must simultaneously account for [3]. On the first dimension, servicesmust be combined
so that their inputs and outputs are properly linked. In other words, the output produced by
a given service can be used as an input to the next service in the combination, ultimately
resulting in the desired overall output. On the second dimension, the composition must

© Springer Nature Switzerland AG 2019
J. Miller et al. (Eds.): ICWS 2019, LNCS 11512, pp. 48–62, 2019.
https://doi.org/10.1007/978-3-030-23499-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23499-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23499-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23499-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-23499-7_4

meet any specified user constraint or preference. A constraint is defined as the user
restriction that must be met to make the composited solution valid. On the third
dimension, considering the quality of service (QoS) and service trust, the resulting
combination must achieve the best overall QoS in terms of time, cost, reliability, etc.

Thus, several techniques have been proposed to address this composition problem,
which are QoS-based approaches [4–8], constraint/preference-based approaches [1, 3,
9, 10], and trust-based approaches [1, 11] in the literature. Initially, QoS-based
approaches are committed to building functional and quality-optimized applications
based on non-functional features. Secondly, considering the degree of user preference
for non-functional features (QoS) and user constraint, constraint/preference-based
approaches focus on providing personalized web service compositions to users.
Thirdly, trust-based approaches further recognize the importance of involving trust in
web service composition in generating trustworthy web service compositions. These
above works can effectively meet user complex requirements and generate the most
suitable service compositions. Despite these advantages, one limitation of existing
works is they only consider structure constraints (e.g. the user can specify logical
branching) and neglect the user’s constraints on the content provided by the web
service. For example, a typical composite service is illustrated in Fig. 1 where a user in
Canton plans a trip to attend an international conference held in Beijing. It consists of
three parts: (1) train/flight services from Canton to Beijing; (2) booking a hotel closer to
conference venue; (3) transportation used during the conference period.

We assume that the tuple <Air Service, Hotel Service 1, Taxi Service> is the best
solution whose overall quality of service is maximum. However, the user’s expected cost
does not exceed 1,500 RMB. Obviously, the price of round-trip tickets from Canton to
Beijing exceeds the budget. Additionally, Users can express more constraints on the
content, such as train type, seat type, hotel price, hotel grade, etc. Hence, implicit
conflicting constraints given by the user lead to no solution in this problem. For example,
the user’s expected cost is less than 1,500 RMB and the expected transportation is by
airplane. In this paper, we aim to resolve this problem by integrating the user’s con-
straints on the content provided by the web service into an optimization model.

START

Air Service

Train Service

Coach Service

Hotel Service 1

Hotel Service 2

Hotel Service 3

Taxi Service

Subway Service

Bus Service

END

Fig. 1. A typical composite service for a user’s trip to attend a conference

A User Constraint Awareness Approach for QoS-Based Service Composition 49

We apply the genetic algorithm to obtain an optimal solution in which each service
can return some contents that meet the user’s corresponding constraints. To address the
over-constrained problem, the interactive constraint satisfaction problem (ICSP) is used
[12]. The experimental results on the real data set demonstrate the efficiency and
effectiveness of our method in comparison with other counterparts. In short, we shade
light on a new way to promote web service composition by integrating the user’s
constraints on the content provided by the web service.

In summary, the major contributions of this paper are:

(1) We take it into consideration that the user’s constraints on the content provided by
the web services in order to express user requirement more completely.

(2) We formulate the service composition as a combined optimization problem that
aims to satisfy the user’s constraints and achieve the best overall QoS.

(3) We improve a constraint correction approach for solving over-constrained on user
requirements.

The remainder of this paper is organized as follows: Sect. 2 gives an overview of
related research. Section 3 defines the combined optimization problem addressed in
this paper. Section 4 presents the improved genetic algorithm and constraint correction
approach. Section 5 showed that where our method can achieve superior performance.
Finally, Sect. 6 concludes our present work and outlines future research directions.

2 Related Work

In this section, we discuss previous work related to the two aspects of our approach.

Web Service Composition. In the existing researches, many research works on web
service discovery and composition rely on syntax and semantics-based service
matchmaking [13]. The effective method is to formulate the web service composition
problems as network optimization problems [14]. Service network (SN) approaches
have been put forward to deal with this issue in a cost-effective and agile way [15]. And
various AI planning methods are used to solve these network problems for discovering
optimal solutions with different goals. Wang et al. combined both qualitative and
quantitative preferences as well as service trust together in the process of service
composition and discovered the best solution by genetic algorithm and simulated
annealing algorithm [1]; Rodriguez-Mier et al. used the hybrid local-global search to
extract the optimal QoS with the minimum number of services [4]; Wang et al. pro-
posed a dynamic web service composition method based on automatic hierarchical
reinforcement learning (HRL) that addresses the problem of low efficiency in web
service composition based on traditional reinforcement learning (RL) when applied to
large scale services [5]. And Wang et al. proposed a new service composition solution
based on deep reinforcement learning (DRL) for adaptive and large-scale service
composition problems [6]; Labbaci et al. proposed a deep learning approach for long-
term QoS-based service composition [8]; Zhao et al. used the multi-objective rein-
forcement learning (MORL) algorithm to make trade-offs among user preferences and
recommend a collection of services to achieve the highest objective [9]. Broadly, the

50 Z. Wu et al.

above approaches can be classified into three categories, namely QoS-,
constraints/preference- and trust-based approaches [1], which choose the optimal web
service combination according to QoS, user preference and service trust. Different from
the researches discussed above, we pay attention to the service composition problem in
application scenarios such as in a tour where the user’s constraints on the content
provided by the web service are important and non-ignorable.

User Constraints Problem. User constraints that determine the complexity of the
problem are the root cause for cumbersome burdens of users. Silva et al. presented a
genetic programming approach that addresses the web service composition problems
including conditional constraints. But these conditional constraints are branching
constraints [3]. Najar et al. focused on predicting the user’s future intention based on
his/her context, in order to offer him the most suitable service considering his/her
incoming constraints [16]. But this approach is based on the assumption that, even in a
dynamic and frequently changing pervasive information system, common situations
can be found. Zhao et al. mined user intents using natural language processing tech-
niques [17]. However, in practical application scenarios, users constraints sometimes
are too tight. Therefore, there are maybe over-constrained problems that lead to no
solution. ICSP corrects over-constrained problems by computing maximal satisfiable
subset (MSS) or minimal correction subset (MCS) of users’ constraints, which ensure
that the original constraints are retained as much as possible under the circumstance
that there is at least one solution [18]. Alessandro et al. proposed a novel approach to
speeding up MCS enumeration over conjunctive normal form propositional formulas
by caching of so-called premise sets seen during the enumeration process [19]. And
Nina et al. proposed a new algorithm named FLINT for extracting minimal unsatisfi-
able cores and correction sets simultaneously [20]. But these works are not applicable
to our task by considering that in our context different user preferences for constraints
need the optimal MSS/MCS, not all MSS/MCS enumeration. Therefore, the algorithms
proposed by Li et al. are more suitable, who generate the optimal MSS by taking into
account different user preferences for constraints [18].

3 Problem Description

The objective of web service composition is to create a new, composite service that
accomplishes a given task. A user sends a composition request that is automatically
processed by a system that then returns an application assembled using a set of atomic
services. In the web service composition, an atomic web service can be represented as
S ¼ ðinput; output;QoSðq1,. . .,qnÞÞ, where n is the number of QoS attributes consid-
ered. Services are selected from a service repository SR ¼ fS1; . . .; Smg(where m is the
number of services in the repository) and combined according to the specifications of a
composition request R ¼ ðinput; outputÞ in order to produce a solution with the desired
overall outputs. In certain cases, however, the customer may have specific constraints
C ¼ fC1; . . .;Cgg on the content returned by the web service (where g is the number of
constraints). For example, the customer’s preferred class of airline ticket is likely to
depend on his/her current budget: if the customer has enough money to pay for the

A User Constraint Awareness Approach for QoS-Based Service Composition 51

book, then he/she would like to book the first-class cabin. However, if no first class
tickets available in the flight service A. In this case, the flight service A is not a good
choice. Specifically, we divide the constraints into 2 parts: the local constraints and the
global constraints. The local constraints apply only to a single service, like the hotel
price. And the global constraints work on the web services combination, such as the
expected total cost. On the premise that the user’s constraints on the content returned
by the web service are satisfied, the objective is to produce a composition solution with
the highest possible quality, which is optimized by calculating the weighted sum of a
set of objective functions f1; . . .; fn, corresponding to the different QoS attributes
considered.

In our work, three popularly considered attributes [21] have been considered:
availability (A), the probability of a service immediately responding to a request;
reliability (R), the probability that the response produced by the service is accurate;
time (T), the overall execution time for responding a request. Besides, we apply the
number of solutions provided by a composition which satisfies the user constraints as a
new QoS index, named N.

The overall QoS for a composition is determined by two aspects: the QoS values of
the single services within it and the structure of the workflow, which are based on
existing composition languages [22]. In our work, two constructs, sequence and par-
allel [21] are considered.

(1) Sequence construct. The services in this construct are chained together so that the
outputs of the preceding service can fulfill the inputs of the next one, as shown in
Fig. 2. The overall A and R probabilities are calculated by multiplying the
individual values associated with each service in the construct, and the overall T is
calculated by adding up the individual values. And N is calculated by the fol-
lowing methods. Firstly, considering the local constraints, the overall N is cal-
culated by multiplying the number of the content provided by each service in the
construct. Therefore, nk must be greater than 0. Next, we will remove some
solutions that do not meet the global constraints. Finally, we will normalize N to
[0, 1] by the maximum and minimum normalization.

(2) Parallel construct. As seen in Fig. 3, the parallel constructs allow the services to
be executed in parallel, which means that their inputs are independent, so their
outputs are also independent. While A, R, and N are still calculated in the same
way as the sequence construct, T is obtained by the longest service execution time
in the construct.

4 Design of Proposed Approach

4.1 Overview of the Framework

Figure 4 shows the overview of our framework. At a high level, the three components
of our proposed approach are the service network graph, the genetic programming for
generating an optimal solution, and the over-constrained problems solver.

52 Z. Wu et al.

The process begins when the user provides a composition request R and the
expression of user constraints. First, we use the composition request R to identify the
service layers and extract related service network graph. In this graph, the single web
service is represented by the big orange circle when the small cyan circle represents the
input/output of a service or the parameters of composition request R. Then, the
expression of user constraints is considered when generating the solution with the
optimal overall QoS for the service composition task. However, if there is no solution
due to too tight constraints, the over-constrained problems solver will detect conflicts
among user constraints and computing maximal relaxation of user original constraints
based on user’s preference on constraints. Thus, the user original constraints are

S1 Sm...

1

m

n
n

A a
=

= ∏
1

r
m

n
n

R
=

= ∏
1

m

n
n

T t
=

= ∑

1

, 0
m

k k
k

N n n
=

= >∏ removeByGlobalContraints()N N=

normalize()N N=

Fig. 2. Sequence construct and formulae for calculating its traditional QoS properties [21].

S1

Sm

...

1

m

n
n

A a
=

= ∏
1

r
m

n
n

R
=

= ∏ { | {1,..., }}nT Max t n m= ∈

1

, 0
m

k k
k

N n n
=

= >∏ removeByGlobalContraints()N N=

normalize()N N=

Fig. 3. Parallel construct and formulae for calculating its traditional QoS properties [21].

A User Constraint Awareness Approach for QoS-Based Service Composition 53

updated by the new constraints and applied when generating the optimal solution for
the service composition task again. Finally, the optimal solution that meets the user
original/new constraints is returned to users.

4.2 Genetic Programming to Generate an Optimal Solution

Our proposed approach employs Genetic Programming to evolve solutions according
to their overall QoS while maintaining their functional correctness. Specifically, it
consists of three important parts: the identification of service layers, the population
initialization and the genetic operators.

Identification of Service Layers. Before the composition process takes place, it is
necessary to determine which layer each candidate service belongs to. This is done to
prevent cycles from forming during the solution decoding process when using a
backward graph-building algorithm. The identification process is detailed in [23]. The
overall idea is to iteratively classify services in sets, each time finding a new set of
services (i.e. new layer) whose inputs can be entirely fulfilled by the previously found
services.

Identify service layers

Population initialization

Genetic Programming

Selection, Crossover and
Mutation

Check stopping criteria

Obtain user preference
order for constraints

Detect conflicts among
user constraints

Over-constrained
problems Solver

Compute maximal
relaxations of user
original constraints

Update user
constraints

If no solution
A composition request

R <input, output>

The expression of user
constraints

Returning an optimal
solution

Fig. 4. An overview of our proposed framework.

54 Z. Wu et al.

Fitness Function. The fitness function is used to measure the overall quality of a
candidate composition. The traditional function is to calculating the weighted sum of
the several overall composition QoS attributes [24]. In this paper, we apply the number
of solutions provided by a composition satisfied by the user constraints as a new QoS
attributes, named S. Therefore, our fitness function must take this new QoS attribute
into account, as the following equation shown:

fitnessi ¼ W1ð1� AiÞþW2ð1� RiÞþW3Ti þW4ð1� NiÞ ð1Þ

where
P4

i¼0 wi ¼ 1: The value of the function is in the range of 0 to 1, and the smaller
the better. The A, R, T and S values for each candidate composition are computed by
the formula shown in Figs. 2 and 3. And S describes the number of solutions and are
normalized by using the smallest (Min) and largest (Max) respective values, as the
Eq. 2 shown. Norig is the number of solutions provided by the service composition
under the user constraints before normalization. Especially, the smallest value of N is 0
corresponding to over-constraints problems and the largest value of N is corresponding
to the unconstrained problem and determined by the dataset.

N ¼ normalizeðNÞ ¼ Norig � Nmin

Nmax � Nmin
ð2Þ

Population Initialization. As opposed to generating a composition candidate purely
based on a set of available inputs and another of desired outputs, when handing user
constraints on the content returned by the web service it is necessary to ensure that
selected web services can return content that meets user constraints. Thus, when facing
a web service, we first check the consistency between user constraints and the web
service. If false, remove it directly. Otherwise, the fitness value will be considered.
When choosing the web service in the zeroth layer, a random strategy is adapted to
select the service from a set of services that satisfy user constraints. Then, we use a
greedy strategy to select services on the remaining layers. Specifically, we traverse all
the available services in this layer and then calculate the fitness of the current service
composition. After selecting n service combinations with the lowest fitness as candi-
dates, the roulette strategy is adopted to randomly select one from candidates.

Crossover and Mutation. The crossover operator employed in the evolutionary
process exchanges node fragments from two individuals with common service nodes. If
the generated offsprings are satisfied with the user constraints, they are retained,
otherwise, the parents are retained. In the mutation operation, we first traverse all the
service nodes on the current service composition and check the consistency between
user constraints and the web service and calculates the fitness of each available service
on the layer where the service node is located. If the user constraints are satisfied and
the fitness is higher than the original fitness, the original service node is replaced with
the new node.

A User Constraint Awareness Approach for QoS-Based Service Composition 55

4.3 Solving Over-Constrained Problems

The main cause of the over-constrained problems is that the user constraints are too
tight in the actual application scenarios. An effective way to solve this problems is that
the user should modify or remove some constraints. However, user is not familiar with
the main cause of the over-constraint problem. In other word, users do not know which
constraints resulted to the over-constrained problems. Therefore, it may occur that the
over-constrained problems still exist even though the users have modified or removed
certain irrelevant constraints. In order to ensure that the original constraints of users are
not changed as much as possible and accelerate user planning by reducing retrieval
burdens, the interactive constraint satisfaction problem (ICSP) is adopted to describe
and solve the over-constrained problems in this paper.

ICSP has many applications in Artificial Intelligence. Its interactive applications
often require suggestions from a system to help a user solve the problem. It was
developed from a constraint satisfaction problem (CSP) [25]. ICSP consists of four
fundamental components denoted as (X, D, U [B). X is a set of n variables X = {x1,
x2,…, xn}, D is a set of domains D = {dom(x1), dom(x2),…, dom(xn)} where dom(xi)
is a finite set of possible values for variable xi, B is the set of background constraints
which are generated from the technical characteristics of the problem and cannot be
modified and U is the set of user constraints which represent users constraints and can
be modified [18]. There are two main strategies for ICSP to solve over-constrained
problems: Junker U computed the minimal and preferred conflicts for solving over-
constrained problems [26] and Li et al. proposed two algorithms to generate Corrective
Explanations by computing maximal relaxations called CORRECTIVER-
ELAXREDUCED (CER) and CORRECTIVERELAXDC (CEDC) respectively [18].
And the CEDC algorithm performs best in reducing consistency checks when gener-
ating corrective explanations. In this paper, we have improved the algorithm CEDC to
make it outperformed than other algorithms.

Compared to CEDC, the improved CEDC, named Imp_CEDC which uses an extra
space to record the consistency status of previously checked constraints. This strategy
effectively reduces duplicate checks and therefore the number of consistency checks is
less than CER. We used the Imp_CEDC algorithm to compute maximal relaxations of
user constraints when facing the over-constrained problems. At the same time,
Imp_CEDC takes it into account that different user preferences for constraints.
Therefore, Imp_CEDC will preserve the user preferred constraints as much as possible.

The method Imp_CEDC is depicted in Fig. 5. Users give a set of user constraints U
which result in over-constrained problems. The algorithm first checks if the RECORD
contains the consistency state of the current constraint U. If true, then skip the method
Consistent. U is divided into D1 and D2 by Imp_CEDC. Then, it calculates the
relaxation of D1 and D2 respectively, and ultimately combines them to obtain the
relaxation of U. The method named Split is to divide the user’s constraint set into two
equal parts. And the method named Consistent is aimed to check the consistency of a
set C of constraints. Based on the current constraints, it returns true if at least one
solution can be generated.

56 Z. Wu et al.

5 Experiments

5.1 Datasets

To evaluate the performance of our proposed approach, we applied it to real datasets
about travel crawled from Ctirp, 12306, Nuomi, Elong, etc. This datasets are composed
of the information of transportation, restaurants, hotels, and attractions. In this exper-
iment, we assume that a user in Guangzhou is planning a day trip to Hangzhou.
Therefore, there are three types of transport tool from Guangzhou to Hangzhou: coach,
trains and airplanes. In addition, based on some attributes of the content like seat type, a
user can have dozens of choices for transportation. Then, we have collected 635
restaurants information, 2164 hotels information and 436 attractions information.
They have a variety of different attributes, including price, user rating, location, style,
tags, etc.

global RECORD

Algorithm: Imp_CEDC (R, U, B)

Input: The current relaxation R; the ordered set of constraints being tested in this

invocation U; and the set of background constraints B.

Output: A maximal relaxation of U.

if R U in RECORD.keys then

status = RECORD [(R U)]

else

RECORD [(R U)] = Consistent (R U B)

status = RECORD [(R U)]

end if

if status then

return R U

else if len(U) > 1 then

Let(Δ1,Δ2)! Split (U) ,

R = Imp_CEDC (R, Δ1, B),

R = Imp_CEDC (R, Δ2, B)

end if

return R

∪
∪

∪ ∪ ∪
∪

∪

Fig. 5. Imp_CEDC Algorithm.

A User Constraint Awareness Approach for QoS-Based Service Composition 57

5.2 Experiment Results

The QoS-based Composition Tasks. In order to show the efficiency of the proposed
algorithm, we compare our proposed algorithm with the state-of-the-art algorithms
named GP, proposed by Silva et al. [3]. In this experiments, we generate K web
services with the inputs, outputs, and additional QoS attributes automatically whose
type belongs to one of the transportation, restaurant, hotel, and interest. And we ran-
domly assign the contents to these services. The range of K is 100–1000. Experiment
results are shown in Figs. 6 and 7. Figures 6 and 7 display the mean best fitness values
and the mean best numbers of solutions separately when running the QoS-based
composition tasks over 20 runs with the horizontal ordinate showing the number of
web services.

Solving Over-constrained Problems. In this experiment, to verify the effectiveness of
the approach to solve over-constrained problems, firstly, we created dozens of user
constraints sets, each of which leads to over-constrained problems. Specifically, M user

0.5

0.502

0.504

0.506

0.508

0.51

100 200 300 400 500 600 700 800 900 1000

Th
e

m
ea

n
fit

ne
ss

The number of Services

GP
OURS

Fig. 6. Mean for the fitness of each approach.

200

400

600

800

1000

1200

1400

1600

100 200 300 400 500 600 700 800 900 1000

Th
e

m
ea

n
nu

m
be

rs
 o

f
so

lu
on

s

The number of Services

GP
OURS

Fig. 7. Mean for the numbers of solutions of each approach.

58 Z. Wu et al.

constraints on the contents are generated randomly, and the range of M is 3-10 in our
experiment. And we assume that, users will correct some of the constraints by
cumulatively removing constraints just based on their own preference for the con-
straints when facing the over-constraint problem in practice. Therefore, we simulated
user’s actual operation only using the user’s preference for constraints as the strategy of
removing the requirements, called User_TRY approach. The Figs. 8 and 9 contain the
results for running the over-constrained tasks, and the effectiveness is compared among
our algorithm Imp_CEDC, the algorithm CEDC and User_TRY. The average number
of remaining constraints is shown in Fig. 7 while Fig. 8 showing the mean number of
consistency checks and their abscissas both represent the number of user original
constraints.

Discussions. For the QoS-based composition tasks, we assume that these fitness values
are quite close to the global optimal solution for each task, though the exact optimal
values are not known. The fitness of GP and ours are calculated using the same
function, and the results shown in Fig. 6 indicate that our algorithm performs better
with the better fitness than GP on each dataset. In terms of the mean numbers of

2

3

4

5

6

7

8

9

3 4 5 6 7 8 9 10

Th
e

nu
m

be
r o

f r
em

ai
ni

ng

co
ns

tr
ai

nt
s

The number of user original constraints

CEDC
Imp_CEDC
User_TRY

Fig. 8. Mean for the number of remaining constraints of each approach.

2

7

12

17

22

27

32

3 4 5 6 7 8 9 10

Th
e

nu
m

be
r o

f c
on

sis
te

nt

ch
ec

ks

The number of user original constraints

CEDC
Imp_CEDC
User_TRY

Fig. 9. Mean for the number of consistency checks of each approach.

A User Constraint Awareness Approach for QoS-Based Service Composition 59

solutions, we can see that more solutions are generated by our algorithm compared to
GP from Fig. 7.

When solving the over-constrained problems, it is observed that as the number of
user original constraints grows, the number of user constraints to be remained are equal
between CEDC and Imp_CEDC from the Fig. 8. However, Fig. 9 shows that the
number of consistency checks of Imp_CEDC is less than CEDC. In other words,
Imp_CEDC can give users the same suggestions at less cost and faster speed than
CEDC. In addition, we can observe that when the number of user original constraints is
small, the user can find the conflicts among their constraints with less number of trial.
But with the number of user original constraints grows, the cost for users to correct
their original constraints without any system suggestion became increasingly expen-
sive, that shown by the higher number of consistency checks and the lower number of
remained user constraints.

6 Conclusion

In this paper, we presented an improved genetic algorithm to QoS-aware automated
Web service composition. The novelty of this approach is that it addresses three
composition dimensions simultaneously: functional features, QoS and the user’s con-
straints on the content provided by the web services. In addition, we also took it into
consideration which the over-constrained problem caused by implicit conflicting
constraints and an improved constraint correction approach with less cost of consis-
tency checks was proposed to address this problem. No dataset with conditional tasks
was available to test this approach, therefore the real datasets about travel crawled from
the Internet were extended and used for this purpose. Results showed that the proposed
approach was capable of identifying solutions that are fully functional and quality-
optimized, on the premise that the user’s constraints on the content are satisfied. While
facing the over-constrained problem, the experimental results show that the efficiency
of our method in reducing the cost of consistency checks, compared with other
counterparts.

Acknowledgments. The research work was supported by National Natural Science Foundation
of China under Grant No. 71472068.

References

1. Wang, H., Zou, B., Guo, G., Zhang, J., Yang, Z.: Optimal and effective web service
composition with trust and user preference. In: Proceedings of the 22th IEEE International
Conference on Web Services (ICWS 2015), pp. 329–336 (2015)

2. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of highly
configurable web services. In: Proceedings of the 16th International Conference on World
Wide Web, pp. 1013–1022 (2007)

3. da Silva, A., Ma, H., Zhang, M.: A GP approach to QoS-aware web service composition
including conditional constraints. In: Proceedings of the 2015 IEEE Congress on
Evolutionary Computation (CEC 2015), pp. 2113–2120 (2015)

60 Z. Wu et al.

4. Rodriguez-Mier, P., Mucientes, M., Lama, M.: A hybrid local-global optimization strategy
for QoS-aware service composition. In: Proceedings of the 22th IEEE International
Conference on Web Services (ICWS 2015), pp. 735–738 (2015)

5. Wang, H., Huang, G., Yu, Q.: Automatic hierarchical reinforcement learning for efficient
large-scale service composition. In: Proceedings of the 23th IEEE International Conference
on Web Services (ICWS 2016), pp. 57–64 (2016)

6. Wang, H., Gu, M., Yu, Q., Fei, H., Li, J., Tao, Y.: Large-scale and adaptive service
composition using deep reinforcement learning. In: Maximilien, M., Vallecillo, A., Wang, J.,
Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 383–391. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3_27

7. Wang, H., Chen, X., Wu, Q., Yu, Q., Zheng, Z., Bouguettaya, A.: Integrating on-policy
reinforcement learning with multi-agent techniques for adaptive service composition. In:
Franch, X., Ghose, Aditya K., Lewis, GraceA., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831,
pp. 154–168. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45391-9_11

8. Labbaci, H., Medjahed, B., Aklouf, Y.: A deep learning approach for long term qos-
compliant service composition. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.)
ICSOC 2017. LNCS, vol. 10601, pp. 287–294. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69035-3_20

9. Zhao, Y., Wang, S., Zou, Y., Ng, J., Ng, T.: Automatically learning user preferences for
personalized service composition. In: Proceedings of the 24th IEEE International Conference
on Web Services (ICWS 2017), pp. 776–783 (2017)

10. Mistry, S., Bouguettaya, A., Dong, H., Erradi, A.: Probabilistic qualitative preference
matching in long-term iaas composition. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 256–271. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69035-3_18

11. Paradesi, S., Doshi, P., Swaika, S.: Integrating behavioral trust in web service compositions.
In: Proceedings of the 16th IEEE International Conference on Web Services (ICWS 2009),
pp. 453–460 (2009)

12. Freuder, E., Mackworth, A.: Constraint satisfaction: an emerging paradigm. Found. Artif.
Intell. 2, 13–27 (2006)

13. Zhang, J., et al.: A bloom filter-powered technique supporting scalable semantic service
discovery in service networks. In: Proceedings of the 23th IEEE International Conference on
Web Services (ICWS 2016), pp. 81–90 (2016)

14. Oh, S., Lee, D., Kumara, S.: Effective web service composition in diverse and large-scale
service networks. IEEE Trans. Serv. Comput. 1, 15–32 (2008)

15. Wang, S., Wang, Z., Xu, X.: Mining bilateral patterns as priori knowledge for efficient
service composition. In: Proceedings of the 23th IEEE International Conference on Web
Services (ICWS 2016), pp. 65–72 (2016)

16. Najar, S., Pinheiro, M.K., Souveyet, C.: A context-aware intentional service prediction
mechanism in PIS. In: Proceedings of the 21th IEEE International Conference on Web
Services (ICWS 2014), pp. 662–669 (2014)

17. Zhao, Y., Wang, S., Zou, Y., Ng, J., Ng, T.: Mining user intents to compose services for end-
users. In: Proceedings of the 23th IEEE International Conference on Web Services (ICWS
2016), pp. 348–355 (2016)

18. Li, H., Shen, H., Li, Z., Guo, J.: Reducing consistency checks in generating corrective
explanations for interactive constraint satisfaction. Knowl.-Based Syst. 43, 103–111 (2013)

19. Alessandro, P., Carlos, M., Matti, J., Joao, M.: Premise set caching for enumerating minimal
correction subsets. In: Proceedings of the 32nd National Conference on Artificial
Intelligence (AAAI 2018), pp. 6633–6640 (2018)

A User Constraint Awareness Approach for QoS-Based Service Composition 61

http://dx.doi.org/10.1007/978-3-319-69035-3_27
http://dx.doi.org/10.1007/978-3-662-45391-9_11
http://dx.doi.org/10.1007/978-3-319-69035-3_20
http://dx.doi.org/10.1007/978-3-319-69035-3_20
http://dx.doi.org/10.1007/978-3-319-69035-3_18
http://dx.doi.org/10.1007/978-3-319-69035-3_18

20. Nina, N., Nikolaj, B., Maria-Cristina, M., Mooly S.: Core-guided minimal correction set and
core enumeration. In: Proceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI 2018), pp. 1353–1361 (2018)

21. Al-Masri, E., Mahmoud, Q.H.: QoS-based discovery and ranking of web services. In:
Proceedings of the 16th International Conference on Computer Communications and
Networks (ICCCN 2007), pp. 529–534 (2007)

22. Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A.: Analysis of web services
composition languages: the case of BPEL4WS. In: Proceedings of the 22th International
Conference on Conceptual Modeling (ER 2003), pp. 200–215 (2003)

23. da Silva, A., Mei, Y., Ma, H., Zhang, M.: A memetic algorithm-based indirect approach to
web service composition. In: Proceedings of the 2016 IEEE Congress on Evolutionary
Computation (CEC 2016), pp. 3385–3392 (2016)

24. da Silva, A., Hui, M., Zhang, M.: A graph-based particle swarm optimisation approach to
QoS-aware web service composition and selection. In: Proceedings of the 2014 IEEE
Congress on Evolutionary Computation (CEC 2014), pp. 3127–3134 (2014)

25. Jannach, D., Zanker, M., Fuchs, M.: Constraint-based recommendation in tourism: a
multiperspective case study. Inf. Technol. Tourism 11, 139–155 (2009)

26. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-constrained
problems. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI
2004), pp. 167–172 (2004)

62 Z. Wu et al.

	A User Constraint Awareness Approach for QoS-Based Service Composition
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Description
	4 Design of Proposed Approach
	4.1 Overview of the Framework
	4.2 Genetic Programming to Generate an Optimal Solution
	4.3 Solving Over-Constrained Problems

	5 Experiments
	5.1 Datasets
	5.2 Experiment Results

	6 Conclusion
	Acknowledgments
	References

