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Abstract. Big data analytics typically requires large amounts of resources to
process ever-increasing data volumes. This can be time consuming and result in
considerable expenses. Analytics-as-a-Service (AaaS) platforms provide a way
to tackle expensive resource costs and lengthy data processing times by lever-
aging automatic resource management with a pay-per-use service delivery
model. This paper explores optimization of resource management algorithms for
AaaS platforms to automatically and elastically provision cloud resources to
execute queries with Service Level Agreement (SLA) guarantees. We present
admission control and cloud resource scheduling algorithms that serve multiple
objectives including profit maximization for AaaS platform providers and query
time minimization for users. Moreover, to enable queries that require timely
responses and/or have constrained budgets, we apply data sampling-based
admission control and resource scheduling where accuracy can be traded-off for
reduced costs and quicker responses when necessary. We conduct extensive
experimental evaluations for the algorithm performances compared to state-of-
the-art algorithms. Experiment results show that our proposed algorithms per-
form significantly better in increasing query admission rates, consuming less
resources and hence reducing costs, and ultimately provide a more flexible
resource management solution for fast, cost-effective, and reliable big data
processing.
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1 Introduction

Big data becomes an emerging trend that many organizations and companies are
currently facing. A tremendous amount of data is being produced at an ever-
accelerating rate from a myriad of sources such as IoT sensors, smart mobile devices,
social media platforms amongst many other sources covering all aspects of society
including health, commerce, government, and education. The need for advanced
technologies to tackle data production, processing, and storage is clear. However, big
data can only create values through the help of data analytics technologies to extract
insights from such big datasets. It is fair to say that the success of many organizations,
companies, and individuals lies heavily on big data analytics solutions.

Big data typically refers to massive volumes of structured, semi-structured, un-
structured or real time data that exceed the processing and management capacities of
traditional techniques [1]. Big data analytics is usually associated with cloud computing
technologies. Cloud computing [2] provides a computing paradigm to dynamically
provision resources for big data analytics solutions based on varying numbers of
requests from users. As the data volumes increase to levels that exceed the storage and
processing capabilities of individual computers, clouds allow to automatically and
elastically provision cloud resources such as virtual machines (VMs) on-the-fly to
process datasets for timely decision making as required by users and businesses. Cloud
resources are typically provisioned in a pay-per-use model that enables users to only
pay for the used resources. As such, big data analytics for small enterprises and
individuals is possible, as they do not need to acquire expensive hardware and software
directly or deal with the overheads with the management of such infrastructures.

AaaS platforms provide a way to tackle expensive resource costs and avoid long
query times by leveraging automatic resource management capabilities. AaaS service
delivery should ideally minimize the complexity of the resource management
requirements for in depth knowledge of Big Data Analytics Applications (BDAAs) by
users. It allows users from various domains to process big data with reduced times and
cheaper costs based on SLA agreements between AaaS users and providers. In order to
allow AaaS platforms to deliver SLA guaranteed AaaS for high user satisfactions,
efficient and automatic resource scheduling is essential [3]. Resource scheduling is a
core function of the AaaS platform and a central component to coordinate all the other
AaaS platform components to deliver performance-oriented AaaS solutions. Our
motivation in this paper is to provide optimal resource scheduling algorithms that can,
on the one hand maximize the profits of AaaS providers, while on the other hand
deliver AaaS to users within controllable budgets, factoring in deadline and accuracy
guarantees for timely and reliable decision making.

A number of related research works [3, 11–25] have explored resource manage-
ment in different perspectives and scenarios with support of various techniques in cloud
environments. However, none of these works consider data sampling-based admission
control and cloud resource scheduling algorithms to deliver AaaS with budget, accu-
racy, and deadline guarantees to support cost-efficient, reliable, and fast decision
making. Resource scheduling of AaaS platforms faces several research challenges.
Firstly, elastic and automatic resource provisioning is required to deal with dynamic
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online queries. Such requests can be stochastic in nature and have varying demands on
the underlying cloud resources. Secondly, to support queries on very large datasets that
cannot be processed under limited budgets or deadlines where accuracy can be traded-
off for approximate processing [4], data sampling-based scheduling can be used.
Thirdly, effective admission control should be applied to only admit queries satisfying
Quality of Service (QoS) requirements that meet given SLAs. Finally, profit maxi-
mization and time minimization scheduling under various constraints represent a non-
trivial multi-objective optimization problem, especially for complex BDAAs. This
requires accurate modelling and formulation of the optimization problem.

To tackle the above challenges, the major contribution of our work is providing
efficient and effective admission control and resource scheduling algorithms to elasti-
cally and automatically provision cloud resources to schedule queries that serve the
objectives of profit maximization for AaaS providers and query time minimizations for
users while guaranteeing SLAs. The proposed algorithms apply data sampling-based
admission and scheduling methods for big data processing under tight budget or
deadline constraints. We formulate the resource management problem and implement
the proposed admission and scheduling algorithms in the AaaS framework. To evaluate
the performance of the proposed algorithms, we conduct extensive experiments.
Experiment evaluations show that the proposed admission control and resource
scheduling algorithms outperform the state-of-the-art algorithms in admitting more
queries, creating higher profits, generating less resource costs with efficient resource
configurations, and provide timely AaaS solutions with accuracy guarantees for reliable
decision making under controllable budgets and tight deadlines.

2 Problem Statement

User submit queries Querys ¼ fQuery1; . . .;QueryMg to a given AaaS platform.
A query can be a scan query such as select patient name from patient table where
patient age is greater than 30, or a more complex query such as a deep learning
algorithm used to process large medical datasets to analyze the key factors that lead to
diabetes. These queries request specific BDAAs ¼ fBDAA1; . . .;BDAAPg that utilize a
set of cloud resources Resources ¼ fResource1; . . .;ResourceNg and generating
resource Costs ¼ fCost1; . . .;CostNg. An example BDAA can be a medicare applica-
tion. A resource can be cloud containers, storage, single or clusters of VMs.

Query ¼ fQoS;CR;BDAA;CH;AC;DEg. QoS requirements of a query request
contain budget: the maximum costs to run a query; deadline: the latest time to deliver
query result, accuracy: the confidence interval of the query result. CR is the cloud
resources needed to run a query. BDAA details a specific BDAA requested for big data
analytics. CH details the big data characteristics, such as the data distribution, data size,
data type, accuracy requirement, and data locality. AC indicates whether the accuracy
can be traded-off for reduced times and cheaper costs by applying effective data
sampling methods. DE represents task dependency requirements including execution
logic and sequence. Big data is assumed to be pre-stored in cloud datacenters, where
users pay data transfer and storage costs and hence the costs are not included in the cost
models.
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BDAA ¼ fAT ;Pg. AT denotes the BDAA type and P is the BDAA profile. This
includes mappings of the application cost, resource times required by queries including
the processing and sampling time, and the resource configurations needed for queries.
Obtaining application profiles of heterogeneous BDAAs typically requires expertise
varied by different application domains. Therefore, reliable BDAA profiles are assumed
to be maintained by third-party BDAA providers.

Resource ¼ fRT ;REC;NR;CCg. RT indicates the cloud resource type such as
single or cluster of CPU optimized VMs. REC shows the cloud resource capacity
including CPU, storage, memory. NR is the number of cloud resources needed to
execute a query request. CC represents the cloud resource cost.

Cost ¼ fRC;BC;PC;AC;PRg. RC is the overall cloud resource costs of the AaaS
platform. BC represents the BDAA cost, which is assumed charged by BDAA pro-
viders as a constant value. PC represents the penalty cost that AaaS platforms need to
pay users for SLA violation. AC represents the overall AaaS Cost (AC) that AaaS
platforms charge users for utilizing AaaS, and PR represents the overall profits created
by AaaS platforms. A fixed AaaS cost is assumed charged by AaaS platforms for a
specific query based on its requirements of QoS, BDAA, and resource demands, and
hence AC is a constant value.

The profit optimization problem to maximize the profits of the AaaS platform while
minimizing the query times under various constraints is an NP-complete decision
problem. The problem can be polynomially transformed to a mixed Integer Linear
Programming (ILP) [5] problem with optimization formulation and modeling. We
utilize the ILP modeling to formulate the multi-objective scheduling problem. AC and
BC are constant values based on the cost models and PC is zero if AaaS is delivered
with SLA guarantees. The profit of the AaaS platform is calculated by
PR ¼ AC � RC � BC � PC. Maximization of PR is transformed to minimize RC and
deliver AaaS with minimized times subject to various constraints. We formulate the
multi-objective Z based on a combination of individual optimization Objective X and
Objective Y.

Objective X ¼ minimize ðPn
j¼1 Cj � tjÞ, where j denotes a resource; n represents a

resource set; tj is the number of resource required for j; Cj is the unit cloud resource
cost of j. Objective X targets to minimize the RC, calculated as the product of the
purchased time tj and the unit cost Cj of all cloud resources.

Objective Y ¼ minimize ðPm
i¼1 siÞ, where i is a query i; m represents a set of

queries, and si represent the query start time of i. Objective Y targets at finding an
optimal solution of the resource scheduling to minimize the resource costs with opti-
mized configuration to execute queries at its earliest times. This allows all queries
starting earliest times to minimize tj to save resource costs and improve the query
performances with quickest responses.

Objective Z ¼ minimize ðF0 �
P

j2n ðCj � tjÞþ
P

i2m siÞ is a combination of X and
Y that aims to minimize RC while choosing a time-minimized scheduling plan, subject
to optimization constraints (1)–(37). This combination contributes to a standard lexi-
cographic problem [6]. The importance leading to the profit optimal scheduling solu-
tions of individual objectives is X[ Y . Coefficient F0 ¼ max Yð Þ � min Yð Þþ 1 is
assigned to X to ensure the aggregated optimization with minimized individual
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objectives is consistent to the original optimization problem where changes of
Objective X dominates all the changes in Objective Y .

Query Resource Capacity Constraints guarantee that the overall cloud resource
times needed to process the complete datasets on resource j should be within the
available time remained on resource j, (1), where xij is a variable with binary value that
represents if query i is assigned to run on j; Rij is the cloud resource time needed by i to
process the complete dataset using resource j; tj is the resource time of j that is to be
purchased. For a given resource, Tj represents the remained resource time of j that is
purchased in the previous schedule. For resources that is newly created, Tj is negative
to deduct the resource creation time of j from tj. When i executes on j, xij ¼ 1;
otherwise, xij ¼ 0 shown in (2).

X
i2m;j2n Rij � xij

� �� tj þ Tj ð1Þ

xij ¼ 1; i is assigned to execute on j
0; otherwise

�
; 8i 2 m; j 2 n ð2Þ

Query Execution Sequence Constraints (3) ensure the unique query execution
sequence as required by the optimal scheduling. bik is defined as a binary variable that
defines the query execution sequence of i and k. If query i is scheduled to execute
before k, bik ¼ 1; otherwise, bik ¼ 0.

bik þ bki � 1; 8i; k 2 m ð3Þ

Query Dependency Constraints define query dependencies, bik ¼ 1 when i is a
dependent task requiring the execution results of k or a child task that can only start
after k defined by (4). Query dependency constraints enable the definition of simple to
complex task dependencies including bag of tasks, enterprise workflows, and scientific
dataflows. For queries requiring data sampling for approximate processing, where data
sampling and processing tasks are processed independently, query processing on
sampled datasets can only start after data sampling finishes, as shown in (5).

bki ¼ 1; if i is a child=dependent task of k; 8 i; k 2 m ð4Þ

bki ¼ 1; if i processes data sample of k; 8 i; k 2 m ð5Þ

Query Deadline Constraints ensure scheduling solutions are generated before
query deadlines for SLA guarantee purposes, as shown in Constraints (6)–(11). Con-
straint (6) guarantee the unique query execution sequence of i and k that allows either
bik or bki to be 1. Task i must execute either before or after task k when they are
assigned to the same resource j as guaranteed by (7). Non-linear relationship (12) is
transformed to linear relationship (7) through linearization, which guarantees if both i
and k are scheduled to execute on j, bik ¼ 1; bki ¼ 0 when i is executed before k, or
bik ¼ 0; bki ¼ 1 when i is executed after k. Big M method is utilized to derive Con-
straint (8) from non-linear constraint (13) to guarantee i should end before k starts if
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bik ¼ 1. F1 serves as a sufficient large constant that satisfies (14) [3]. Constraint (9)
ensure query i finishes before its deadline Di when executes on j at starting time si,
derived from (15), which is non-linear constraint where F2 serves as a sufficient large
constant that satisfies (16). Non-linear relationship (17) is used to derive (10). F3 serves
as a sufficient large constant value that satisfies (18) to guarantee i finishes earlier than
the purchased time of j to process the full dataset. The purchased time is accumulated
from previous End of Purchased Time, EPTj, and newly purchased time as tj. Con-
straint (11) is generated based on the non-linear constraint (19). F4 guarantees i starts at
Earliest Available Time, EATj, of j, which satisfies (20) as a sufficient small constant.
For an already created j with executing tasks, EATj represents the query finish time of j;
otherwise, EATj represents the current clock time. If j has not been created, EATj is the
sum of creation time and clock time of resource j.

bik ¼ 1; i is executed before k
0; otherwise

; 8i; k 2 m

�
ð6Þ

bik þ bki � xij � xkj � � 1; 8i; k 2 m; j 2 n ð7Þ

si � sk þF1 � bik �F1 � Rij; 8i; k 2 m; j 2 n ð8Þ

si þF2 � xij �F2 þDi � Rij; 8i 2 m; j 2 n ð9Þ

si � tj þF3 � xij �F3 � Rij þEPTj; 8i 2 m; j 2 n ð10Þ

si þ xij � F4 �F4 þEATj; 8i 2 m; j 2 n ð11Þ

xij ¼ 1
xkj ¼ 1

�
)either bik ¼ 1; bki ¼ 0

bik ¼ 0; bki ¼ 1

�
; 8i; k 2 m; j 2 n ð12Þ

bik ¼ 1) si þRij � sk; 8i; k 2 m; j 2 n ð13Þ

F1 �maxðsi þRij � skÞþ 1; 8i; k 2 m; j 2 n ð14Þ

si � xij þRij �Di; 8i 2 m; j 2 n ð15Þ

F2 �max ðsi þRij � DiÞþ 1; 8i 2 m; j 2 n ð16Þ

xij ¼ 1) si þRij � tj þEPTj; 8i 2 m; j 2 n ð17Þ

F3 �max ðsi � tj þRij � EPTjÞþ 1; 8i 2 m; j 2 n ð18Þ

xij ¼ 1) si �EATj; 8i 2 m; j 2 n ð19Þ

F4 �min si � EATj
� �� 1; 8i 2 m; j 2 n ð20Þ

Data Sampling-based Query Budget Constraints guarantee that the resource cost
to execute i on j is within the budget of Bi. If the entire dataset of query is to be processed
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in full, as shown in (21), Cij represents the execution cost of query i on j that is within Bi.
Otherwise, the accuracy of query may have to be sacrificed due to time and budget
constraints, as shown in (22). SCij is the cost to sample and execute i on the data samples
on j. This should be less than the budget of the query as Bi. Constraint (24) ensure if the
cost of j exceeds the Bi j will be eliminated from the resource pool to enable the ILP
solver to reduce the solution space and improve the algorithm performance.

Cij � xij �Bi;8i 2 m; j 2 n ð21Þ

SCij � xij �Bi;8i 2 m; j 2 n ð22Þ

xij ¼ 0; if j cannot satisfy deadline of i; 8 i 2 m; j 2 n ð23Þ

xij ¼ 0; if j cannot satisfy budget of i; 8 i 2 m; j 2 n ð24Þ

Query Scheduling Times Constraints (25) guarantee the scheduling times of a
query by specifying xij as 1 so that i is guaranteed to be scheduled to one cloud resource
for execution in order to satisfy SLAs defined with users.

X
i2m;j2n xij ¼ 1 ð25Þ

Data Locality Constraints ensure that queries can only execute on resources
where datasets can be accessed. The aim is to avoid lengthy big data transfer times and
expensive big data transfer costs, as shown in (26). If a resource j has no access to the
large datasets to be processed by i, xij ¼ 0 guarantees i is not scheduled to j for SLA
guarantees. While xij ¼ 1 is set where the scheduling is required for the optimal
scheduling solution.

xij ¼ 0; if j has no access to data of i; 8 i 2 m; j 2 n ð26Þ

Data Sampling-based Query Resource Constraints, as shown in (27), ensure that
the sum of data sampling time to obtain samples and the processing time to execute
task on samples using j can be satisfied by available time of j. STij represents the
required Sampling Time (ST) to sample large dataset and process query i using j.

X
i2m;j2n STij � xij

� �� tj þ Tj ð27Þ

Query Accuracy Constraints determine the available resource configurations
needed to execute queries without violating query deadlines and budgets. The accuracy
of queries determines the data sample size and associated resources to execute the data
sample. Increased accuracy requires that a larger data size will be selected and more
computing resources will be consumed to process the larger sample. Resource j with a
configuration not satisfying the accuracy requirements of queries will be eliminated
from the selectable resource pool, as shown in Constraint (28), to enable the ILP solver
to obtain the optimized solution in a reduced search space.
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xij ¼ 0; if j cannot satisfy accuracy of i; 8 i 2 m; j 2 n ð28Þ

Data Sampling-based Query Deadline Constraints (29) guarantee if bik ¼ 1, i
should finish sampling data and executing query on data sample no later than the start
time of query k. Non-linear constraint (32) is used to generates (29) with F5 satisfies
(33) as a sufficient large constant. Constraint (30) ensure if i executes on j at si, they
should finish sampling and execution no later than Di. Non-linear constraint (34) is
used to generate (30) with F6 as a constant that is sufficient large satisfies (35). Non-
linear relationship (36) is used to generate (31) with F7 satisfies (37) as a sufficient
large constant. This restricts if i executes on j, the data sampling and processing time of
i should not exceeds the purchased resource time of j as the sum of EPTj and tj.

si � sk þF5 � bik �F5 � STij; 8i; k 2 m; j 2 n ð29Þ

si þF6 � xij �F6 þDi � STij;8i 2 m; j 2 n ð30Þ

si � tj þF7 � xij �F7 � STij þEPTj; 8i 2 m; j 2 n ð31Þ

bik ¼ 1) si þ STij � sk; 8i; k 2 m; j 2 n ð32Þ

F5 �max ðsi þ STij � skÞþ 1; 8i; k 2 m; j 2 n ð33Þ

si � xij þ STij �Di; 8i 2 m; j 2 n ð34Þ

F6 �maxðsi þ STij � DiÞþ 1; 8i 2 m; j 2 n ð35Þ

xij ¼ 1) si þ STij � tj þEPTj; 8i 2 m; j 2 n ð36Þ

F7 �maxðsi � tj þ STij � EPTjÞþ 1; 8i 2 m; j 2 n ð37Þ

3 Admission Control and Resource Scheduling

Big data analytics faces the challenges of tight budgets and/or deadlines, where queries
cannot always be fully admitted whilst satisfying all QoS requirements with SLA
guarantees during AaaS delivery. To tackle such research challenges, data sampling-
based optimization algorithms are proposed that process data samples and return AaaS
solutions in a faster manner with significantly reduced resource costs and enhanced
profits.

3.1 Admission Control

Queries are submitted online to the AaaS platform from various domain users. The
admission controller iteratively admits each query. The pseudo code of the admission
control algorithm is shown in Algorithm 1. The admission controller first checks if
BDAA is available and the associated dataset is accessible. If so, it further estimates if
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the QoS requirements of budget, deadline, and accuracy can be satisfied by any existing
cloud resource configuration in the AaaS platform or whether it can be brokered from
third party resource providers. It searches all resource configurations in the registry of
cloud resources. The admission controller calculates the Estimated Cost (EC) and
Estimated Time (ET) for each configuration to execute a query satisfying the given
QoS requirements. If such configuration is found, the admission controller admits the
query as fullQuery and adds the query to the admission queue (Lines 1–11).

If the admission controller cannot admit a query with tight budgets and/or dead-
lines, approximate processing of the query is considered only if the results are
meaningful without affecting reliable decision making. The admission controller esti-
mates if QoS requirements can be satisfied through the support of data sampling
considering the overall query cost that is calculated as the sum of the Sampling Cost
(SC) and the Data Processing Cost (DPC). The overall query time is calculated as the
sum of data Sampling Time (ST) and Processing Times (PT). Furthermore, the
admission controller estimates whether the query Accuracy (A) can be fulfilled by
processing the data samples on given resource configuration (Lines 12–19).

BDAA profiles provisioned by third-party providers contain information of the
BDAA costs, the required resource times including sampling times and query times, as
well as the resource configurations for different query requests. BDAA application

Algorithm 1: Query Admission Control Algorithm 
Input: big data analytics requests/ queries, BDAAs, cloud resources, resource configurations
Output: query acceptance or rejection decisions 
1: for every submitted query submitted big data analytics requests
2:     requested BDAA by the query broker/search the BDAA registry
3:     if the BDAA is brokerable/available && big data can be accessed
4:        configurations search the resource registry for all configurations 
5:        if configurations > 0
6:           for every configuration all available resource configurations
7:               ET estimate the execution time on the resource configuration
8:               EC estimate the query cost on the resource configuration
9:               if EC < budget && ET < deadline
10:         admQueries query admission as fullQuery 
11:             end if
12:             else if the query request allows sacrificing accuracy for reduced times and costs 
13:                apprQueries get queries support approximate processing 
14:                for every query request in the apprQueries
15:                    SC estimate the cloud resource cost of data sampling 
16:                    ST estimate the required time of data sampling
17:                    DPC estimate the cloud resource cost to process data samples 
18:                    PT estimate the time to process data samples 
19:                    QA estimate data accuracy to process data samples
20:                    if SC + DPC < budget && ST + PT < deadline && A > accuracy
21:                       admQueries query admission as apprQuery
22:                       avaiResources update the available cloud resources 
23:                    end if
24:                 end for
25:             end if
26:       end for
27: if the query request is not successfully admitted
28:          reject the data analytics request with rejection details
29:       end if
30:    end if
31:end for
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profiles are the bases for the AaaS platform to make accurate estimation of query
processing time, accuracy, and cost for admission and scheduling decisions. BDAA
costs for the same BDAA can be different for different versions, e.g. sequential pro-
cessing versions usually costs less than parallel processing versions.

Based on the application profiles, we can obtain the query processing times for
given resource configurations, the accuracy on given resource configurations, and the
BDAA costs to decide whether QoS requirements of queries can be fulfilled. This is
achieved by using estimation method in the following way: for a given query, based on
the accuracy requirement, profiles satisfying accuracy can be preliminarily selected.
After considering budget requirements, all of the profiles that are still possible to be
selected to execute a given query within user specified budgets are selected. The
admission controller further calculates the overall costs including BDAA costs and
resource costs for available BDAA profiles to satisfy the budget constraints of queries.

For a given query that supports approximate processing, if all QoS requirements
can be satisfied by at least one cloud resource configuration, such a query is acceptable
and executable as apprQuery and the SLAs are established by the SLA manager;
otherwise, the query has to be rejected to avoid significant penalty costs caused by SLA
violations. Afterwards, the AaaS platform utilizes optimization algorithm to make
scheduling decisions to maximize the profits while minimizing query response times in
the AaaS platform. After the data sampling-based admission control, rejection reasons
are given to users to subsequently modify query specifications for potential resub-
mission (Lines 20–31).

Admitted queries can be assigned to existing resources for execution if the current
resources have sufficient capacity; otherwise, new cloud resources are created to exe-
cute the query following the SLA agreements. The optimal query assignment and
resource provision decisions are ultimately provided by the resource scheduler for
profit maximization and query time minimization.

3.2 Resource Scheduling

To provide timely, reliable, and cost-effective scheduling solutions for the AaaS
platform, a data SAmpling-based Profit Optimization (SAPO) scheduling algorithm is
put forward. SAPO offers scheduling with SLA aware and data sampling-based
methods to provision resources to query processing on data samples to meet QoS
requirements of budget, deadline, and accuracy. The pseudo code of the SAPO
resource scheduling algorithm is shown in Algorithm 2.

SAPO allows data analytics results to be returned in a time-efficient and reliable
manner with controllable resource costs that can benefit users with limited budgets and
with timely decision making requirements where accuracy bounds is necessary for
reliable decision making. Resource scheduling is the core function of the AaaS plat-
form required to coordinate all the other components to deliver satisfactory services to
users through the SAPO algorithm.

The AaaS service delivery scenario starts when users submit queries to the AaaS
platform. Each query requests for specific BDAA to analyze the data. For a BDAA, the
SAPO scheduler first obtains information from all queries and resources supporting the
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BDAA, along with the up-to-date information on the resource configurations from the
AaaS platform as the input to the scheduler.

The SAPO scheduler calls the admission controller to admit query requests. Queries
are admitted by the admission controller in the following two scenarios. Scenario 1:
sufficient budgets as well as deadlines are given by users to execute the queries that can
meet SLA guarantees on AaaS delivery based on processing the full datasets, named as
fullQueries. Scenario 2: tight deadlines and/or limited budgets are given by users. In
this way, processing the entire dataset is not permitted. If accuracy of queries can be
traded-off where effective approximate processing is supported for reliable data ana-
lytics results, data sampling is used to approximately process smaller sampled datasets
to tackle the time and cost challenges with reliable accuracy bounds presented to users,
such queries are named as apprQueries. SAPO schedules queries by applying the
SAPOOptimization method that adopts and implements the formulation of the opti-
mization scheduling problem by applying the ILP programming model with Objec-
tive Z subjecting to a range of optimization scheduling constraints (1)–(37).

For queries that cannot be executed in full by processing the entire datasets under
tight budgets and/or deadlines, the admission controller attempts to admit apprQueries.
If the sampling technique can deliver satisfactory AaaS services, such apprQueries are
admitted to the AaaS platform. The SAPO scheduler then generates anaQueries from
all admitted analytics tasks. The scheduler then provisions heuCloudResources
applying the selectSampledResHeuristic method. Furthermore, the SAPO scheduler
utilizes the proposed SAPOOptimization algorithm by applying the ILP programming
model to create profit-maximization and cost-minimization scheduling solutions (Lines
1–12).

If the generated optimization solutions are feasible that is returned before system-
defined scheduling timeout, the optimal solution is then utilized to guide query exe-
cution and resource provisioning in the AaaS platform (Lines 13–16). If no scheduling
solution is generated before the timeout setting of the optimization algorithm, a
heuristic approach named as DTHeuristic is used to generate alternative heuristic
solutions to avoid SLA violations caused by the failure of query execution. After the
scheduling solution is created for the current schedule, the SAPO scheduler triggers
auto-scaling to downgrade the capacity by terminating active cloud resources that are
idle to save costs at checkpoints by the scaleDown method (Lines 17–23).

The SAPOOptimization method (Lines 24–30) first obtains the current platform
information regarding the queries, resources, and BDAAs that are used as the input to
the ILP solver. SAPO defines and implements the optimization objectives and con-
straints. SAPO enables the objective function to maximize the profits and minimize
query responses for the AaaS platform. SAPO is subject to various constraints (1)–(37)
based on the mixed ILP formulation of the optimization problem. SAPO support data
sampling and SLA aware resource scheduling solutions that are designed to tackle the
resource scheduling challenges for fast, reliable, and cost-effective optimization solu-
tions to improve the performance and quality of service delivery by the AaaS platform.

The DTHeuristic method (Lines 31–33) applies a maximum delay time-based
heuristic algorithm to map admQueries to exeCloudResources and executes queries at
the earliest available start time on the selected cloud resources.
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The selectSampledResourceHeuristic method (Lines 34–38) significantly reduces
the Algorithm Running Time (ART) of SAPOOptimization by reducing the problem
search space to efficiently generate data sampling-based optimized resource scheduling
solutions. The method first selects avaiCloudResources as the available cloud resources
selected from the existing cloud resources. It then selects cloud resources with the
capacity to execute at least a fullQuery or an apprQuery satisfying its QoS require-
ments utilizing avaiCloudResources that is defined as exeCloudResources. The
selectResourceHeuristic further generates new resources to execute the submitted
queries if the platform does not have sufficient resource capacity to execute newly
submitted query requests. The method finally generates heuCloudResources as the

Algorithm 2: SAPO Cloud Resource Scheduling Algorithm
Input: user submitted big data analytics requests, cloud configurations, all available BDAAs, 
cloud resources.
Output: optimized | heuristic resource scheduling solution.
1: for each requested BDAA all available BDAAs
2: admQueries  admissionControl (queries, resourceConfigurations, BDAA)
3:     fullProcessingTasks obtain all fullQueries from admitted queries
4:     apprQueries obtain all approximate queries from admitted queries
5:     for every query request in apprQueries
6:           dataSamplingTasks create data sampling tasks
7:     end for
8:     anaQueries fullProcessingTasks + dataSamplingTasks 
9:     if (anaQueries > 0)
10:         resources  obtain all existing cloud resources running BDAA
11:         heuCloudResources selectSampledResourceHeuristic (resources, configura-
tions, anaQueries, BDAA)
12:        optimalSolution SAPOOptimization (anaQueries, BDAAs, heuCloudRe-
sources)
13: if a feasible solution is obtained before timeout setting
14: apply the optimal solution to provision resources for query execution
15: end if
16: else
17:                heuristicSolution DTHeuristic (heuCloudResources, anaQueries, BDAA)
18:                apply the heuristic solution to run queries 
19: end else
20:       activeResources update existing active resources running BDAA
21: scaleDown (activeResources)
22: end if
23: end for
24: Procedure: SAPOOptimization (anaQueries, heuCloudResources, BDAA)
25:     getUpdateToDateInfo (anaQueries, heuCloudResources, BDAA)
26:     defineOptimizationScheduleObjectives (Objective Z)
27:     defineOptimizationScheduleConstraints (Constraints (1)-(37))
28:     defineOptimizationTimeOut (schedulingTimeout)
29:     solveOptimizationScheduleProblem ()
30:     optimalSolution getOptimizationScheduleSolution ()
31:  Procedure:  DTHeuristic (admQueries, heuCloudResources, BDAA)
32:      sort admQueries based on maximum delay time
33:      schedule admQueries to resources with minimized earliest start time
34: Procedure: selectSampledResHeuristic (resources, BDAAs, configurations, ad-
mQueries)
35:      avaiCloudResources obtain all available cloud resources
36:      exeCloudResources obtain resources from avaiCloudResources
37:      newCloudResources generate new resources to execute queries
38:      heuCloudResources exeCloudResources + newCloudResources
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summation of exeCloudResources and newCloudResources that are then input to the
SAPOOptimization method. The heuCloudResources is able to provision sufficient
resources that enable SAPOOptimization to find feasible solutions to schedule queries
satisfying SLAs. The heuCloudResources method provisions sufficient resources with
capacity close to the optimal configuration created by SAPOOptimization. The aim is to
reduce the search space to enable SAPOOptimization to return optimal solutions in a
timely, reliable, cost-effective way.

We compare the performance of SAPO to a Profit Optimization (PO) scheduling
algorithm. PO [3] serves as a suitable comparison algorithm as it serves the same
objective as SAPO to maximize the profits for the AaaS platform while providing AaaS
with minimized queries times for users. Moreover, PO also builds on ILP-based for-
mulation and provides optimal resource scheduling solutions in the AaaS platform. PO
applies SLA-based scheduling mechanisms that are able to deliver optimal solutions
subject to different constraints, which are: resource capacities, budget requirements,
deadline requirements, task execution times and sequences, task dependencies, and
data locality constraints [3]. Since PO is not able to support sampling-based scheduling
solutions to process big data under constraints of tight deadlines and budgets, it has the
limitations in only admitting and scheduling queries with sufficient budgets and
deadlines. Thus, PO is not able to tackle big data challenges incurring expensive costs
or lengthy processing times where fast, cost-effective, and reliable AaaS is required by
decision making in BDAA domains such as banking and stock market. To face such
challenges, SAPO serves as the ideal optimization resource scheduling algorithm that is
able to deliver optimal solutions not only support big data analytics scenarios enabled
by PO but also support big data analytics within tight deadline and limited budget
constraints by applying data sampling-based scheduling for timely, cost-efficient, and
reliable AaaS solutions in the cloud computing environments.

4 Performance Evaluation

We conducted experimental evaluations to analyze the efficiency of the profit maxi-
mization and cost minimization algorithms including SLA guarantees, query admission
control, cost saving, resource configuration, profit enhancement, accuracy analysis, and
ART analysis.

Experiment Setup: We built the AaaS framework using Cloudsim [7] and utilize
IBM CPlex 5.5 as the optimization ILP solver [8]. We conducted experiments for real
time and periodic cloud resource scheduling with different Scheduling Intervals (SIs).

Resource Configuration: 4 datacenters are simulated. Each datacenter consists of
500 nodes while each node contains 400 CPU, 10 PB storage, 30 TB memory, and
bandwidth of 10 GB/s. Six types of VMs are considered as memory optimized Amazon
EC2 VMs: r4.large, r4.xlarge, r4.2xlarge, r4.4xlarge, r4.8xlarge, and r4.16xlarge [9].
A resource can be a CPU core, a single or a cluster of VMs. The unit for memory,
storage, cost, and SI is GiB, GB, dollar, minute accordingly.

Data Analytics Workload utilizes Big Data Benchmark [10] and BlinkDB data
sampling workload [11]. The big data benchmark provides query response times and
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the cloud resource configurations using Amazon EC2 VMs to execute on big data
analytic frameworks with detailed data size, data location, and data type of datasets.
The BlinkDB technique samples the original datasets for sampling processing of the
data. The BlinkDB workload provides the resource times, configurations to sample big
data with query times and error bounds on accuracies. Based on the big data benchmark
and BlinkDB, the times for data sampling and query processing on various configu-
rations using BDAAs are modeled.

Query Information: Submission time is generated using one-minute mean Poisson
arrival interval. Query type has 4 types including scan, join, aggregation, and user
defined function. BDAAs has 3 types including Hive on Hadoop as BDAA 1, Hive on
Spark without caching as BDAA 2, and Hive on Spark with caching as BDAA 3.
Resource time contains the resource requirements of queries. Two types of deadline
and budgets are considered: tight, which are generated with a Normal Distribution of
(3, 1.4), and loose, which are generated with a Normal Distribution of (8, 3). Accuracy
is generated-based on the BlinkDB sampling workload which details the guaranteed
accuracy with given response times and cloud resource costs to execute the approxi-
mate queries with error bounds of results. 5 types of accuracy are considered that are
100%, 99%, 95%, 90%, and 85%.

1. Admission Control and SLA Guarantees: To evaluate the algorithm performance
of efficient and effective admission control, we conduct experiments for real time and
periodic scheduling where SI is in the range of [1, 10]. We compare the algorithm
performance of SAPO compared to PO with results shown in Fig. 1. We can see that
the SAPO is able to admit more queries for processing for both real time and periodic
resource scheduling with an increased query admission rate in the interval of [12%,
17%]. Higher admission rate for processing queries can creates higher profits, increase
user satisfactory levels, and enlarge markets by processing more data analytics
requests, and hence is highly preferred. Moreover, results also show that all admitted
queries by SAPO and PO are processed with SLA guarantees, which proves the
effectiveness of the admission control.

2. Profit Enhancement: We evaluate the profit enhancement advantages of SAPO
for real time and periodic scheduling scenarios, as shown in Fig. 2. Results show that
SAPO creates significantly higher profit than PO for all scheduling scenarios. The

Fig. 1. Admission rates of SAPO and PO. Fig. 2. Profits of SAPO and PO.
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increased profit interval is [27.5%, 38.6%]. The enhanced profits come from higher
query admission rates and reduced resource consumption from data sampling-based
query processing. The profits show a decreasing trend for both SAPO and PO due to
the rejection of queries with tight deadlines for periodic SIs. Real time scheduling is not
realistic for all online resources since it would generate unnecessarily large computing
usage and hence periodic scheduling approaches are supported to schedule queries that
arrive during specified SIs. We find SI = 1 is the most suitable periodic SI that can, on
the one hand admit more queries, while on the other hand it reduces frequent
scheduling computations, which is important for higher admission rates and higher
profit enhancements. We further analyze the data processing methods of SAPO and PO
and provide details of the data processing methods. We find that the SAPO algorithm
supports both full data processing and sampling-based processing of the datasets while
the PO scheduling algorithm only supports full data processing. The percentage of
queries that are processed using data sampling methods for the SAPO algorithms are in
the interval of [16.6%, 22.4%], which shows an increased query rate that benefits
creating higher profits for SAPO.

3. Cost Savings: Resource cost is another key performance indicator for algorithm
performance. As shown in Fig. 3, we can see that the resource costs of both SAPO and
PO are similar. The increased cost rates of SAPO compared to PO are in the interval of
[−0.02%, −0.3%]. Under the condition that SAPO admits [12%, 17%] more queries
and creates higher profits of [27.5%, 38.6%], such similar resource consumptions and
costs clearly indicate the performance advantages of SAPO in cost saving. SAPO is
able to reduce costs and increase profits through better optimal decision making. SAPO
allows to better utilize resources on larger number of queries with a more compre-
hensive optimization solution.

4. Resource Configuration: The resource configurations of SAPO and PO for real
time and periodic scheduling are shown in Fig. 4. There is a trend whereby r4.large and
r4.16xlarge are more frequently utilized by both SAPO and PO. This is consistent with
the query workload property whereby the workload is generated with query deadlines
and budgets in two categories: tight and loose. For tight deadlines, r4.16xlarge can offer
higher processing capacity to meet deadline requirements while r4.large can reduce unit

Fig. 3. Resource costs of SAPO and PO. Fig. 4. Resource configurations of SAPO
and PO.
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resource waste for tight budgets when VMs are idle, hence both r4.large and
r4.16xlarge are utilized more frequently. We can also see that the SAPO algorithm has
an overall higher number of VMs utilization due to the higher number of admitted
queries that require more cloud resources to provide the required computing power for
the query workload. We notice the decrease in resource consumption trend for both PO
and SAPO due to the decreased query admission rates and hence decreased resource
requirements. Decreased resource consumption also comes from the higher number of
queries to be scheduled in increased SIs with resultant improvements in resource
utilizations.

5. Data Processing Method Analysis: We further analyze the data processing
methods of SAPO and PO for better understanding of the performance advantages of
SAPO. We obtain the data processing methods of all queries for both SAPO and PO.
Results show that the SAPO algorithm supports both full data processing and data
sampling-based processing of the datasets while the PO scheduling algorithm only
supports full data processing for all BDAAs, as shown in Fig. 5. The percentage of
queries that are processed using data sampling methods for the SAPO algorithms are in
the interval of [16.6%, 22.4%], which shows that increased query rates create higher
profits for SAPO.

After the overall analysis of the algorithm performance for all BDAAs, we further
analyze the algorithm performance of SAPO for each BDAA. The number of queries
processed by different BDAAs for SAPO and the details of the data processing method
are shown in Fig. 6. The number of queries with approximate processing is shown in
Fig. 7. We can see that although admitted queries that support approximate processing
are in the interval [80.4%, 81.2%] in Fig. 8, SAPO only applies sampling-based
scheduling on queries when the QoS requirements cannot be fulfilled to prioritize
highly accurate query processing needed for reliable decision making. As a result,
approximately processed queries are in the interval [16.5%, 22.4%]. SAPO prioritizes
the processing of the entire datasets to provide full accuracy of data analytics results to
help users make better strategies and decisions while it deprioritizes the profit gaining

Fig. 5. Query number of data sampling and
non sampling processing of SAPO and PO.

Fig. 6. Query number of sampling and non
sampling processing for each BDAA.
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created by approximate processing. SAPO aims to help the AaaS platform to achieve
the best performance for higher user satisfaction and enlarge market share by higher
quality AaaS delivery.

6. BDAA Analysis: After the algorithm performance analysis for the entire query
workload processed by all BDAAs, we further detail the performance evaluation results
for each BDAA to show the performance advantages of SAPO. The results show that
SAPO outperforms PO for each BDAA with real time scheduling and periodic
scheduling using real time scheduling and SI = 1 as examples. The results also show
that SAPO is able to admit more queries for both real time and SI = 1 with an increased
query acceptance rate in the interval of [15.8%, 42.4%] for BDAA 1-3. The profits
created by the SAPO algorithm for BDAA 1-3 are [22.4%, 41.7%] significantly higher
than PO as shown in Fig. 9. Moreover, we further analyze the resource costs for SAPO
in Fig. 10. With all above performance advantage for query admission and profit
enhancement, the resource cost of SAPO is only [0.01%, 0.03%] higher than the PO
algorithms for BDAA 1-3, resulting in a significant performance advantage and cost
saving. The results also show that SAPO is able to significantly outperform PO for the
entire query workload with higher admission rates, higher profits, and lower resource
costs. Experimental evaluations also show SAPO significantly outperforms PO for each
BDAA for both real time and periodic scheduling.

Fig. 7. Approximate query processing
number for each BDAA.

Fig. 8. Query acceptance number for
BDAAs.

Fig. 9. Profits of SAPO and PO for different
BDAAs.

Fig. 10. Resource costs of BDAAs of
SAPO and PO for real time and SI = 1
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7. Accuracy Analysis: We further analyze the accuracy of queries for different query
processing methods with results shown in Fig. 11. We can see that for data Sampling
(S)-based processing, Non-Sampling (NS)-based processing, and SAPO processing
queries with both S and NS-based methods, the number of queries processed with
different accuracy requirements varies for different BDAAs. All of the accuracy
requirements of the queries are fulfilled with 100% SLA guarantees for both SAPO and
PO algorithms. For NS-based processing, we notice that though the query percentage
with full accuracy requirements is in the interval of [17%, 36%], NS-based processing
method of SAPO does not support approximate processing but only supports full
processing of queries. Furthermore, for SAPO, despite [75%, 86%] queries supporting
approximate processing, SAPO only process [14%, 30%] of queries with the data
sampling-based processing method. The reason is that SAPO prioritizes fully accurate
query processing for better decision making though approximate query processing
thereby creating higher profits and reducing resource costs. SAPO aims to help the
AaaS platform to improve the quality of AaaS delivery for efficient and reliable
problem solving and decision making for users in various application domains.

8. ART Analysis: The average ART of SAPO and PO algorithms for real time and
periodic scheduling are shown in Fig. 12. The results show an overall increasing trend
for ART as more queries are scheduled and more optimization constraints need to be
applied for more complex optimization problems with larger inputs and hence a larger
solution space. Both SAPO and PO can deliver resource scheduling solutions within 6–
10 ms that illustrates the efficiency of the scheduling algorithms. As such, ART does
not limit the SAPO scheduling algorithm in delivering effective and efficient resource
scheduling solutions. In order to prevent an unexpected large number of queries
arriving so that the solution space and input scale exceed the capacity of the opti-
mization algorithms to deliver solutions within SIs, heuristic algorithms are applied as
backup solutions. These are able to make near optimal scheduling solutions to guar-
antee SLAs for the AaaS delivery. The backup heuristics enable the AaaS platform to
provide comprehensive scheduling solutions for unexpectedly large query arrivals to
mitigate risks and support AaaS delivery with SLA guarantees.

Fig. 11. Accuracy analysis Fig. 12. ART analysis.
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5 Related Work

We focus on providing optimization algorithms to support AaaS platforms to deliver
cost-effective, timely, and reliable AaaS for better problem solving in various appli-
cation domains.

Zhao et al. [12] study an SLA-based admission control and resource scheduling
algorithm that offers a cost-effective solution to increase profits for AaaS providers.
However, the solution can be sub-optimal due to two-phase resource scheduling. Zhao
et al. [3] propose a profit optimization cloud resource scheduling algorithm that is able
to maximize profits for AaaS providers with minimized query processing times with
SLA guarantees for users, however, this solution cannot tackle big data challenges with
limited times and costs. Zhao et al. [13] addresses the big data analytics challenge of
resource scheduling under limited deadlines and budgets where accuracy can be traded-
off by applying data splitting-based query admission control and profit optimization
cloud resource scheduling algorithms. The approach trades-off accuracy for reduced
costs and quicker times while guaranteeing budget and deadline requirements of
queries, however, it does not provide accuracy guarantees during AaaS delivery that are
essential to support reliable and accurate decision making.

There are related works that diverse the BDAAs for the AaaS platforms. Agarwal
et al. [11] propose BlinkDB to approximately process large datasets for reliable results
with response time error bounds. Zhang et al. [14] build an ND-based solution to split
large medical data in clouds providing faster responses with reduced costs and higher
flexibility. Tordini et al. [15] process sequencing datasets of complex workflows
applying data splitting techniques while maintaining high accuracy.

Mian et al. [16] apply heuristics to provision resources for data analytics workloads
with effective resource configuration in a public cloud, however, they sacrifice SLAs to
reduce resource costs. This is different from our SLA guarantee purpose as satisfactory
AaaS delivery is the fundamental for user satisfaction. Wang et al. [17] support data-
aware scheduling for efficient load balancing, however, they do not consider QoS, SLA
guarantee, or cost optimization. Xia et al. [18] support a fair and collaborative way to
place big data into distributed datacenters, however, they do not consider QoS, SLAs,
or indeed AaaS delivery.

Garg et al. [19] manage resources for general cloud applications instead of big data
analytics applications. Gu et al. [20] support cost-minimized big data analytics in
distributed datacenters, however, does not support cost-optimization and SLA guar-
antees. Zheng et al. [21] proposed a variety of algorithms to schedule big data work-
flows on clouds to minimize the costs under deadlines. However, they do not provide
automatic scheduling, nor consider budget constraints or consider admission control
satisfying SLAs. Dai et al. [22] propose a multi-objective resource allocation approach
for big data applications to obtain optimal deployment of VMs in clouds. However,
they neither consider admission control nor tackle the time challenges for big data
processing.

Zhou et al. [23] propose a declarative optimization engine to provision cloud
resources for workflows utilizing available GPU power for timely solutions. They
neither consider QoS requirements nor SLA guarantees. Mao et al. [24] propose an
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auto-scaling mechanism for traditional workflow scheduling to satisfy task deadlines
while minimizing financial costs. However, their approach does not target big data
analytics or consider budget or accuracy requirements of requests. Chen et al. [25]
propose a utility model-based scheduling mechanism for cloud service provider to
optimize profits or user satisfaction. However, they do not consider budget, deadline,
accuracy as the key QoS factors of tasks. They trade-off customer satisfaction while we
aim to maximize user satisfaction by providing high quality AaaS satisfying query QoS
requirements.

The novelty of our research work is proposing data sampling-based admission
control and cloud resource scheduling algorithms with SLA guarantees on budget and
deadline requirements to support big data analytics solutions under limited times and
tight budgets. Moreover, we provide accuracy bounds for big data analytics results to
support reliable and accurate decisions. Our proposed algorithms are able to provide
profit optimized and time minimized AaaS solutions for fast, cost-effective, and reliable
problem solving and decision making in various BDAA domains, which cannot be
supported by the above related works.

6 Conclusion and Future Works

Admission control and resource scheduling serve as the key functions to maximize
profits and minimize query response times for AaaS platforms to deliver SLA-
guaranteed AaaS to various domains of users. We proposed timely, cost-efficient, and
reliable query admission control and resource scheduling solutions by modeling, for-
mulating, and implementing the data sampling-based multi-objective optimization
solutions. Experimental evaluation shows the admission control and scheduling algo-
rithms significantly increase admission rates, increase profits, and reduce resource costs
with efficient resource configurations for the entire the query workloads and for dif-
ferent BDAAs under real time and periodic scheduling scenarios compared to the state-
of-the-art algorithms. Furthermore, our proposed algorithms significantly benefit big
data analytics under tight deadlines and limited budgets by supporting fully accurate
query processing as well as sampling-based query processing that enable users to
obtain cost and time effective big data solutions with accuracy guaranteed AaaS for
timely, cost-efficient, and reliable decision making.

As part of the future research works, we will continue investigating and proposing
automatic and efficient optimization algorithms to tackle big data analytics challenges
under various QoS requirements. We will keep working on proposing effective and
efficient sampling and splitting-based optimization algorithms to help AaaS platforms
to deliver satisfactory AaaS to various domains of users offering faster query response
times and reduced cloud resource costs without compromising the reliability of big data
analytics solutions.
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