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Abstract. AI, machine learning, and deep learning tools have now
become easily accessible on the cloud. However, the adoption of these
cloud-based services for heavy industries has been limited due to the
gap between general purpose AI tools and operational requirements for
production industries. There are three fundamentals gaps. The first is
the lack of purpose built solution pipelines designed for common indus-
trial problem types, the second is the lack of tools for automating the
learning from noisy sensor data and the third is the lack of platforms
which help practitioners leverage cloud-based environment for build-
ing and deploying custom modeling pipelines. In this paper, we present
ThunderML, a toolkit that addresses these gaps by providing powerful
programming model that allows rapid authoring, training and deploy-
ment for Industry 4.0 applications. Importantly, the system also facili-
tates cloud-based deployments by providing a vendor agnostic pipeline
execution and deployment layer.

Keywords: Cognitive computing · IoT sensor data ·
Machine learning · Deep learning · Purpose built AI pipelines

1 Introduction

The single biggest transformation on the horizon for heavy capital, large man-
ufacturing and industrial companies is Industry 4.0 [14]. The promise of this
transformation is to provide a digital semantic representation of the physical
manufacturing world consisting of the production plant, the heavy capital assets,
and the supply chain network (inventory and warehouse systems, and logistics).
This representation is continuously replenished with real time sensor data using
high bandwidth, low cost networks to provide up-to-date situational awareness
of the enterprise. This, in turn, supports improved operational efficiency and
production yields, as well as a deeper understanding of the enterprise’s effect
on the demand-supply dynamics of the manufacturing ecosystem. The key to
leveraging the transformation to Industry 4.0 is developing models to utilize the
available data to forecast and optimize enterprise operation.
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Although AI technologies are now mature enough to provide industrial-
strength solutions that bring better efficiencies and asset availability [3,5,20],
adoption within the heavy industries still lags behind that of several other
domains. There are three main obstacles to more widespread adoption of AI.
The first is the lack of purpose-built AI solutions designed to improve indus-
trial operations. The second is the lack of tools for automating the construction
of AI models over IoT sensor data which are often highly non-linear, contain
dynamic state transitions, exhibit lag relationships, and require a great deal of
specialized feature extraction before being useful for AI modeling. The third is
the lack of toolkits that help AI practitioners leverage cloud-based environments
for building and deploying custom modeling pipelines.

The system we have developed, ThunderML, attempts to address these issues.
Firstly, it provides pre-built solution templates in industrial domain for expe-
diting the creation of AI models. Next, it aims to provide AI practitioners with
a toolkit to translate their industrial problem statements into a well defined
and executable pipeline. Lastly, it presents the settings to facilitate cloud-based
AI environments including the management of training experiments and model
deployment in a vendor agnostic way. In this paper we will focus almost exclu-
sively on the latter two capabilities as we think these are the most broadly
applicable.

1.1 Challenges of Using Existing Cloud-Based AI Platforms

While cloud-based AI platforms have done much to facilitate adoption of AI
by alleviating many of the infrastructure provisioning and maintenance chal-
lenges associated with on-premises enterprise AI initiatives, they have not done
enough to abstract away some of the complexity of running AI workflows in
vendor agnostic ways. Current platforms expect practitioners to know a given
vendor’s means and methods of interacting with the computing resources with-
out consideration given to providing a common programming model that makes
the job of an AI practitioner easier. Cloud-based AI environments, by their
very nature, push users towards batch training modes to facilitate data center
resource management via a queued execution model. Such batch training modes
are problematic for many data scientists who wish to see errors or results in real
or near real time in order to make their modeling workflow more efficient.1

Another issue is that cloud-offerings typically approach AI from either a
black-box perspective which offers users simplicity at the cost of flexibility or
through a more complex runtime environment that requires users maintain code
artifacts that often have nothing to do with the actual AI tasks at hand2. Even
with a diverse set of offerings in the market, we feel a gap remains for the AI
practitioner community. Cloud AI offerings should be easy to learn and use and
provide the right level of complexity and flexibility AI practitioners need.

1 https://cloud.google.com/blog/topics/research/new-study-the-state-of-ai-in-the-
enterprise.

2 https://aws.amazon.com/blogs/aws/iot-analytics-now-generally-available/.

https://cloud.google.com/blog/topics/research/new-study-the-state-of-ai-in-the-enterprise
https://cloud.google.com/blog/topics/research/new-study-the-state-of-ai-in-the-enterprise
https://aws.amazon.com/blogs/aws/iot-analytics-now-generally-available/
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In order to address these issues, we have developed ThunderML, a Python-
based toolkit that makes the creation and deployment of purpose built AI mod-
els for industrial applications easier. ThunderML leverages many open source
frameworks such as scikit-learn, Tensorflow, and Keras. The extension points
are predominantly in terms of how we have built out a series of useful modeling
functions and industrial solution templates to expedite the task of building and
deploying AI for industrial applications. ThunderML is flexible enough to run
on local hardware as well as providing an easier path to using common cloud
service provider platforms for enhanced scalability in training and convenient
model deployment services.

Before we proceed, it’s worth briefly giving a few examples of purpose built
industrial solution templates available in ThunderML:

– Time Series Prediction (TSPred): Flexible solution for forecasting time series
from historical data in industries.

– Failure Pattern Analysis (FPA): Predicting imminent failures for assets using
IoT sensor data and past failure history data;

– Root Cause Analysis (RCA): Building interpretable models to assist plant
operators track down the root causes for product quality deviances on batch
or continuous process lines;

– Anomaly Analysis: Building unsupervised/semi-supervised models to identify
anomalous behaviors of manufacturing assets;

– Cognitive Plant Advisor (CPA): Combines advanced AI to build a predictive
model of one or more key process outputs such as throughput and yield and
uses these models within a business objective optimization problem to suggest
optimal process settings to plant operators.

In summary, ThunderML can also help alleviate the skills gap issue that has
hampered AI adoption in many industries. In our experience, technically adept
(but not necessarily experts in AI personnel) can use ThunderML’s industry
templates and programming interface to enable industry AI models.

1.2 Contribution

Our contribution in this paper is the design and implementation of ThunderML.
We elaborately discuss how ThunderML expedites the AI modeling workflow by
giving practitioners an easier path for doing advanced modeling work leveraging
cloud-based platforms for training and deployment. We then provide a use case
to demonstrate the benefits of ThunderML in practice for a very general and
widely applicable problem.

Figure 1 shows a high-level schematic representation of ThunderML’s compo-
nent architecture. At the lowest level, “Core AI Toolkits”, we leverage common
AI frameworks like scikit-learn [17], tensorflow, and keras for building modular
AI functions that our purpose built solutions either utilize directly or extend.
The next layer, “Pipeline Management”, exposes an API that allows users to
stitch these modular AI functions and compose multiple path pipelines. This
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layer also manages the execution metadata like- the choice of target runtimes
(e.g., a local machine, a spark cluster, or a remote cloud vendor execution envi-
ronment), hyperparameter tuning, the maximum allowable training time, and
the model scoring metric. In the next layer, “Pipeline Path Decomposer”, the
large number of possible modeling pipelines and hyperparameter combinations
are decomposed to make them trainable in an parallel fashion (e.g., on a cloud
vendor elastic compute service which can queue very large numbers of indepen-
dent user jobs in an asynchronous fashion). In the final layer, “Cloud Vendor
Interaction API”, decomposed pipeline paths get packaged and transferred in
a way suitable for job submission to a cloud-vendor’s remote execution service.
This layer handles the particulars of a vendor’s platform API requirements to
liberate users from the laborious task of learning the details of how to inter-
act with a particular vendor’s compute and storage services. It submits jobs,
monitors progress, retrieves results, selects among the best of these (based on
user-supplied metric) and manages the final deployment of models to the vendor
deployment services.

Fig. 1. High-level schematic representation of ThunderML’s component architecture.

2 ThunderML: Background

In this section, we establish a few concepts at the abstraction level of activity
being performed. ThunderML is based on the foundation of scikit-learn’s frame-
work [17] as it is the most commonly used framework in the community, both
in academia and industry. We will use one of our purpose built industrial solu-
tion templates - Time Series Prediction (TSPred) as an example and give
concrete examples of the terminology in the context of this problem.

The TSPred is a very pertinent and complex problem in the industry and
forms the basis of other time series problems. It provides a good use case for
ThunderML for two reasons. Firstly, it demonstrates how a AI problem state-
ments can be converted into a AI pipelines using the ThunderML’s unique and
flexible programming model (Sect. 2). Secondly, we show how the TSPred ben-
efits from the ThunderML’s cloud based execution architectures in a vendor
agnostic manner (Sect. 3).
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2.1 AI Functions

A function is defined as the task surrounding the development of an AI model.
This involves transformations on a dataset, training a model on the given dataset,
and model performance evaluation. This usually involves the model, and the con-
figuration associated with the modeling activity, like a single set of parameters.
Since our focus for ThunderML is it being a toolkit for AI, functions are the fun-
damental units in higher-level AI tasks. We have created a programming model
which allows users to easily define Directed acyclic graphs (DAGs) for controlling
the sequence of operation for these AI functions. In the context of TSPred, the
AI functions have been defined in four categories- transformers, models, model
evaluation, cross-validation.

Fig. 2. Architecture of AI pipeline for time series prediction problem.

Custom Transformations: These transformation functions appropriately pre-
pare the data for the modeling activity and it becomes specially important in
the TSPred since training time series models requires well-defined time-ordered
input and output training data. The time series prediction problem uses a fixed-
width sliding window called the lookback window and tries to predict the
value for future timestamps. For example, in a time series, we can take a sliding
window of length n from time t to t− n+ 1 (inclusive) and predict the value at
the future timestamp t + 1 for the case of 1-step ahead prediction. In this case,
the 3-dimensional vector of multivariate sliding windows is referred to as a time
tensor and is the input to the model. Whereas the vector consisting of values at
t+ 1 is the output for training purposes. The custom transformer has the job of
creation of such input-output pairs for training models in time series prediction
problems brings new challenges. The two main challenges which we address are:
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1. The temporal nature of the data needs to be retained when creating features
from the time series.

2. Different models require different formats of input and output data during
modeling.

The Custom Transformer handles the first challenge by considering multiple
feature-processing AI functions for time series data. As mentioned above, we
have implemented five types of transformer function: identity mapping, time-
tensor preparation, window-based feature summary extraction, window-based
flattened feature vectors, and time series as-it-is, as shown in Fig. 2. These cover
elaborate cases for the use case of time series feature extraction. Depending on
the model input, we provide different features to the models. It gives users the
flexibility to try different pre-processing combinations for different models and
choose the best one suited for their data.

The second challenge with time series is the restriction on each model to
ingest the time series data. Since statistical, machine learning and deep learn-
ing models have their respective data ingestion policies, we use ThunderML’s
flexible DAG based programming models to define the flow between the trans-
formers and models show in Fig. 2. This way, we are able to automate the task of
data processing and model training easily with discrete functions defined in the
pipeline configuration. In TSPred, this eliminates the need for users to deal with
the time series data transformations for each model. This process can become
even more cumbersome with new feature engineering methods, increasing vari-
ety of models and other time series settings. For example, statistical models like
zero order and ARIMA take the entire time, whereas other models like CNN,
LSTM, etc. require different lookback windows depending on the setting.

Models: In TSPred, we utilize various time series prediction models such as
Zero Order model, ARIMA model, Long Short-Term Memory (LSTM) model
[9,13], Multilayer Perceptron (MLP) Regressor [18], Random Forest Regres-
sor, Deep Neural Network (DNN), Convolutional neural network (CNN) [12],
WaveNet [19] and SeriesNet [11].

Model Evaluation: We also use some AI functions which provide model evalu-
ation capabilities. Our framework leverages scikit-learn’s as well as custom model
evaluation methods and the pipeline is flexible to use any of them if the models
in the pipeline support it.

Cross Validation: We implement the usage of different cross validation (CV)
techniques in the form of AI functions. Similar to specifying models and trans-
formers, CV objects can also be provided by the user. CV is critical in the
case of time series data as we need to maintain the sequential order. We have
implemented several time series CV functions which are illustrated in Fig. 3
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Fig. 3. Comparison of cross validation approaches used for time series models

2.2 AI Flows

An AI flow extends the functionality of the AI functions by connecting
sequences of tasks like preprocessing the data and post processing the results
in ‘flows’. Although similar to the machine learning pipelines defined in scikit-
learn’s framework, AI Flow expands this definition by introducing ThunderML’s
unique DAG based programming model, providing very high flexibility while
defining pipelines. This includes modeling functions, and just like scikit-learn’s
pipeline, it includes other steps like pre-processing (dimension reduction, scal-
ing, etc.). The AI flow usually consists of multiple sets of parameters for each
transformer and estimator, as well as a scoring method (classification-accuracy,
ROC, AUC, etc.; regression-r2, mean absolute error, etc.) based on which the
best set of parameters are chosen. Each path from start to end in the Fig. 2 is
an example of a AI flow in the context of TSPred.

The process by which the parameters are chosen, or hyperparameter opti-
mization, is conducted by one of the following methods: complete grid search,
random grid search and RBFOpt. The parameter grid chosen are model depen-
dent and it consists of values that are known to give better performance. One
example of parameter grid specification for ThunderML is described below:

Listing 1.1. Param grid sample

keras param gr id = { ‘ opt imize r ’ : [ { ‘ adam ’ :{ ‘ amsgrad ’ : [ Fa l se ] ,
‘ beta 1 ’ : [ 0 . 9 ] ,
‘ beta 2 ’ : [ 0 . 9 9 9 ] ,
‘ decay ’ : [ 0 . 0 ] ,
‘ e p s i l o n ’ : [ None ] ,
‘ l r ’ : [ 0 . 0 0 1 , 0 . 0 1 ] } } ] ,
‘ k e r n e l i n i t i a l i z e r ’ : [ ‘ g l o r o t un i f o rm ’ ] ,
‘ d ropout ra te ’ : [ 0 , 0 . 2 , 0 . 5 ] ,
‘ l o s s ’ : [ ‘ mean squared error ’ ]}
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2.3 AI Pipelines

We will define our AI pipeline as a high-level experiment which is capable of
exploring and learning from the data by building the best model among a large
combination of AI flows. This means trying different AI Flows with parameter
space exploration, along with diverse data transformation techniques and eval-
uation strategies. With the flexible programming model in ThunderML, it is
very easy to define and organize large combinations of AI flows very easily. The
results from these experiments gives the best AI flow along with the best set
of parameters for the given dataset. Apart from TSPred, ThunderML provides
AI pipelines for general problems like supervised learning (classification, regres-
sion etc.) and unsupervised learning (clustering, outlier detection, etc.) as well
as purpose built pipelines mentioned above. The TSPred AI pipeline consists of
three major stages:

1. The custom transformation stage
2. In the local modeling stage stage, the model for different flows run inde-

pendent from each other and produce independent scores.
3. In the model combining stage, we output the results either by providing

the top scoring AI flow or the combination of top AI flows using ensemble
techniques.

In summary, there are many different ways to build models for time series
prediction problems, and the best method may vary from dataset to dataset.
Thus, a tool for automatic discovery of best prediction model is needed, which
AI practitioners can easily configure based on their problem statement.

2.4 Practical AI Using ThunderML

The ThunderML toolkit leverages popular machine learning frameworks like
scikit-learn, Tensorflow, Keras etc. to allow users to define distinct AI flows and
quickly build complex AI pipelines. Along with the pipelines, the users can create
AI solution templates by defining other stages surrounding the AI pipelines in
a modular fashion. To demonstrate the flexibility and easy of ThunderML, a
simple pseudo code for TSPred (Fig. 2) has been provided below:

Listing 1.2. Pseudo code for Fig. 2

def pu r p o s e bu i l t p i p e l i n e ( ) :
Task = AIPipe l ine ( )

Task . add f low ( flow name=’ temporta l ’
[ [ TimeTensor ( ) ] , #Transformer AI Functions
[LSTM( ) , DNN( ) , CNN( ) ] ] #Model AI Functions

)
Task . add f low ( flow name=’ i i d ’ ,

[ [ IdentityMapping ( ) , WindowFeatures ( ) ,
WindowFlattening ( ) ] ,
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[DNN( ) , RandomForest ( ) , MLP( ) ] ]
)

Task . add f low ( flow name=’ s t a t i s t i c a l ’ ,
[ [ NoOperation ( ) ] ,
[ARIMA( ) , Zero ( ) ] ]

)

Task . s c o r i ng ( [ ’ bes t ’ , ’ s tack ing ensemble ’ ] )
Task . c r ea t e g raph ( )
return Task

TSPred = pu r p o s e bu i l t p i p e l i n e ( )
TSPred . execute ( )

The next advantage ThunderML provides the user is in terms of the flexi-
bility of execution. Once an AI practitioner pragmatically defines their problem
statement in the form of AI Pipelines as shown above, ThunderML provides the
flexibility of using local hardware for execution as well as option to going through
the cloud route with common cloud service provider platforms for enhanced scal-
ability. These are described in greater detail in the next Section.

3 ThunderML: Cloud-Based Execution Architectures

ThunderML is one of the first systems which allows you to interact with enter-
prise cloud services to perform comprehensive machine learning experiments in
a programmatic way. The system developed wraps the interfaces between the
user and the cloud services API, allowing users to use the cloud services trans-
parently and train models easily.

In any AI tasks, the basic components are the dataset and the AI pipeline
definitions. With the introduction of cloud, it adds another requirement for the
cloud services. Hence in a cloud based architecture for ThunderML, these are
the main components:

– Cloud Service:
• ML training and deployment services: With the addition of cloud platform

as the machine learning runtime, the user need to have an account on the
respective enterprise cloud offerings and valid ’user-credentials’ to access
the cloud runtime services.

• Cloud storage service: Most of the ML services use an internal cloud
storage service where the results of the training experiment are stored.

– Component provided by the user:
• AI pipeline definition and configuration: An AI pipeline definition pro-

vides details on how to execute the AI flows in the cloud runtime envi-
ronment. The ThunderML enables users to define a complex AI pipeline
in a programmatic manner.

• User data: This can be provided through local execution environment or
it can be uploaded to the cloud storage service depending the cloud ML
service specification.
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• Credential to cloud services: This is the access key to the cloud service and
needs to be provisioned by the user once the services have been created.

The steps for setting up the cloud services (services for training, deployment and
storage) are generally very well documented in all enterprise cloud offerings. Once
the setup for the above components is done correctly, the user can start defining
and executing of their AI pipelines with their data seamlessly with ThunderML’s
execution architecture. The interaction diagram of how ThunderML leverages
enterprise cloud service is shown in Fig. 4.

Fig. 4. Interaction diagrams shows how the users can leverage cloud services to run AI
pipeline with the help of ThunderML toolkit

The first step in the interaction diagram is providing ThunderML with the
training data, AI pipeline and cloud service credentials. ThunderML uses the
credentials to connect with the cloud services and creates a client for both the
ML and storage services in local execution environment. Using the cloud storage
client, ThunderML uploads the user’s data to the cloud storage space so that the
ML service can use it. Once the data is uploaded, ThunderML configures the AI
pipeline to be executed at the ML instance with different settings. There are two
architectures proposed here, which provide different execution styles for running
AI pipelines. The basic difference between these two architectures are in the
following aspects: time, cost, and flexibility. The two execution styles, coarse and
fine execution, are described in greater detail below. ThunderML processes the
pipeline configuration before sending them to the ML service. Once the pipeline
configuration reaches the ML service, it obtains the data from the storage system
and executes the AI pipeline. The training results are generated and stored in
the cloud storage. These include the result summary files, log files, trained AI
function (for getting trained model weights in the case of deep learning models)
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and the parameters. Once this process is completed, ThunderML retrieves the
training results from the storage service. Lastly, the cleaning of the cloud storage,
removal of any temporary files as well as terminating the kernel is handled by
ThunderML.

The results of the AI pipeline is returned from the cloud storage and stored
locally for the user. The details of the entire process are hidden from the user;
they never have to directly interact with the cloud, and the process is essentially
the same as running local python code.

3.1 Coarse Execution

Coarse execution refers to executing a AI pipelines in a more traditional way,
i.e. sequentially on the cloud’s processing power. As shown in Fig. 5, the Thun-
derML takes the pipeline and its configurations and bundles them as a single
package at step 3. This package contains the AI pipeline definition along with
the supporting configurations.

Fig. 5. Coarse execution

Once the AI pipeline definitions reach the ML service, the ThunderML con-
figures the ML service to instantiate a container with on the cloud for executing
the pipelines. The container has specific resources allocated to it as defined by
the ML service. The pipeline runs in this container and each of the AI flows run
one after other in a sequential fashion as shown by the step 4 in Fig. 5.

3.2 Fine Execution

The fine execution architecture leverages the cloud’s processing power in a par-
allel manner. ThunderML takes the AI pipeline and splits them into multiple
parts, one for each AI flow along with it’s associated configurations and creates
individual packages for them as shown in step 3 of Fig. 6. Then ThunderML
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configures the ML service to instantiate multiple containers, one container per
AI flow on the cloud. Since each AI flow receives independent resources, the
execution process is expedited as shown in step 4 of Fig. 6. The improvement
in execution time might come at the cost of less efficient resource management
at the enterprise cloud back-end. Although the resource utilization does not
differ much due to the fact that number of calculations in the AI pipeline are
independent of the type of execution.

Fig. 6. Fine execution

4 Case Study: Time Series Prediction

In this section, we dive deeper into our implementation of the Time Series Pre-
diction(TSPred) pipeline and provide a concrete example of its utility. We will
formally define the time series prediction problem providing some background,
then we discuss the different experiments we conducted and the corresponding
results.

4.1 Background and Motivation

A time series is a sequence of real valued observations that are captured over
a period of time. The time series prediction problem typically takes the form
of predicting the future values of some observations over some time horizon,
given historical values of those observations. The inputs and outputs may be
multivariate or univariate in nature and additional control variables may be
present. For simplicity we will focus on the univariate case, but the proposed
framework can easily adapt to other settings.

Among all the interesting work on time series analysis such as anomaly detec-
tion to root cause analysis, time series prediction (forecasting) is an extremely
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common problem studied in numerous domains, including weather forecasting,
web traffic forecasting, and stock market prediction. With the increasing deploy-
ment of IoT sensors for monitoring industrial assets and manufacturing pro-
cesses, a huge amount of in-operation time series sensor data is now available.

One distinct characteristic of time series data is that they generally do not
follow the IID (independent and identically distributed) assumption, i.e., the
data points in time series are correlated to each other in the time domain. The
non-IID assumption for time series data makes existing off-the-shelf machine
learning solutions such as Google’s Cloud AutoML3, Auto-scikit-learn [7], TPOT
[16] less applicable, since extra care needs to be taken when performing cross
validation and feature engineering for time series data. Thus, there is a need for
a framework that specifically supports time series prediction problems.

4.2 Experiment 1: Coarse and Fine Execution

The purpose of the experiment is to analyze the performance of the two cloud
based execution architectures discussed in the Sect. 3 on out TSPred pipeline.
Since the purpose of this experiment is to compare the two architectures and
not evaluate the accuracy, we will apply some constraints to our experiment.
We only use 12 models in the pipeline (listed in Table 1), we run this experi-
ment with only two univariate time-series datasets and each model uses default
parameters only. Models with ‘ 10’ in their name utilize a lookback window of 10
otherwise it is a lookback of 1, which is basically a model which treats the pre-
vious day’s reading as an IID point discarding the temporal characteristics. The
cross-validation strategy used here is TimeSeriesTrainTestSplit (as shown in
Fig. 3) with fraction of train, validation and test portions set to 0.8, 0.1, 0.1. The
scoring method for evaluating the model performance in the validation set as well
as test set is done using Mean Absolute Error. The results of this experiment
are provided in the Table 1.

One thing to consider in this experiment is that while using cloud based ser-
vices, there is an additional cost associated with packaging the AI pipeline and
dataset (if the data is not on cloud services initially) and sending these packages
to the cloud ML services through rest API calls. The fine execution splits each
AI pipeline into a different package as compared to the coarse execution which
just sends a single package for the entire pipeline. This means that fine execution
has greater time cost associated with managing execution. From our experiments
on the three datasets, we have seen that for uploading the package for an AI
pipeline with 12 models, the fine execution takes around 80–90 s, whereas the
coarse execution takes around 12–14 s which only sends one package. There is a
difference of 70–80 s when running 12 models. Similarly, a cost is added while
retrieving the results for each AI flow post execution and coarse execution and
adding a difference of 70–80 s. This suggests that the fine execution has an over-
head of 150 s when compared to coarse execution of AI pipeline with 12 flows.
We run this experiment with 2 epoch values for deep learning models - 500 and

3 https://cloud.google.com/automl/.

https://cloud.google.com/automl/
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Table 1. Coarse vs. fine performance results

Univariate dataset 1 (length = 229)

Epochs = 500

Model Coarse (609 s) Fine (515 s)

MAE Time (s) MAE Time (s)

simple LSTM 10 0.5 39.35 0.51 38.8

Zero model 0.91 0.01 0.91 0.01

mlpregressor 0.56 0.11 0.56 0.12

randomforestregressor 0.57 0.02 0.57 0.05

DNN 0.56 2.91 0.56 2.62

DNN 10 0.55 3.24 0.55 2.66

Wavenet CNN 10 0.21 172.36 0.21 168.36

Simple CNN 10 0.33 7.05 0.34 4.74

deep CNN 10 0.23 12.91 0.21 11.75

SeriesNet CNN 10 0.48 75.61 0.51 72.0

mlpregressor 10 0.22 0.2 0.22 0.19

randomforestregressor 10 0.55 0.03 0.55 0.06

Univariate dataset 2 (length = 494)

Epochs = 500

Model Coarse (770 s) Fine (696 s)

MAE Time (s) MAE Time (s)

simple LSTM 10 0.44 21.26 0.41 22.16

Zero model 0.52 0.0 0.52 0.0

mlpregressor 0.4 0.1 0.4 0.11

randomforestregressor 1.07 0.03 1.07 0.05

DNN 0.3 2.93 0.31 2.5

DNN 10 0.24 2.89 0.24 2.44

Wavenet CNN 10 0.28 78.71 0.25 81.62

Simple CNN 10 0.28 5.61 0.29 4.49

deep CNN 10 0.36 9.65 0.35 6.44

SeriesNet CNN 10 0.73 49.46 0.71 49.9

mlpregressor 10 0.23 0.15 0.25 0.17

randomforestregressor 10 0.96 0.03 0.96 0.05

1000 and see if any difference is present. The observations from this experiment
are noted below:

– Model Performance: The score for a model for a given dataset in both
Coarse and Fine execution is similar, suggesting that execution architectures
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do not affect the accuracy of the models. Sometimes in deep learning models,
the scores of a model are drastically different (performing like the baseline
model). This can be attributed to random weight initialization in deep learn-
ing models.

– Time of Execution: The coarse execution take more time than the fine
execution in each case. For smallest dataset, the difference between coarse and
fine execution (total time) is 80–95 s. With larger datasets this time increase
to 90–130 s. Along with the overhead of fine execution, the fine execution
is faster than the coarse execution by 220 s–280 s which is one-third of the
execution time of the average execution time. This difference will increase
with increased data size and larger training run.

4.3 Experiment 2: Univariate Time Series Prediction

In this section we focus on the univariate time series prediction problem, where
the task is to predict the value of the time series at the next time step. This
demonstrates the ability of the ThunderML toolkit to run flexible AI pipelines
for a particular learning problem. Since the primary objective is to demonstrate
the utility of the pipeline, we will not aggressively search for the best algorithm
for the time series prediction problem. Rather, we will demonstrate how multiple
models can be explored with the AI pipeline. With proper parameter tuning and
training (larger number of epochs for deep learning models), it would be easier
to run the same pipeline for surveying which model is the best for the particular
problem. We also want to comment on the size of the lookback window which is
best for time series prediction for the datasets.

We run this experiment on 15 univariate time-series datasets and 28 mod-
els (CNNs, LSTMs, DNNs, Random Forest Regressors, MLP Regressors). Each
model is using default parameters and we choose model with either look-
back window of 5, 10 or 20 timestamps. Otherwise it is lookback of size 1,
which means treating previous day’s reading as an IID point and discard-
ing the temporal characteristics. The cross-validation strategy used here is
TimeSeriesTrainTestSplit (as shown in Fig. 3) with fraction of train, valida-
tion and test portions set to 0.8, 0.1, 0.1. The scoring method for evaluating the
model performance in the validation set as well as test set is done using Mean
Absolute Error (MAE). The summary of the results is provided in the Fig. 7.
The 5, 10 and 20 indicate respective lookback window size.

We observed the top five models for each dataset based on the validation
score. Since the difference among the top 5 models for each dataset was very
small (MAE difference of around 0.01–0.1), we decided to evaluate them on the
basis of the top 5 ranking models for a dataset. The observations made from this
experiment are intriguing since they allow users to get a deeper understanding
of the problem and their data. The main observations that can be made from
this experiment are:



178 S. Shrivastava et al.

Fig. 7. Results of experiment 2: model-wise occurrence in top-5 ranks from cross-
validation score

– Deep learning models outperform traditional machine learning models.
– It is seen that greater historical window size have higher rankings. The top

10 models in the rankings have window size of 20 or 10. The deep learning
models with smaller lookback are at the bottom of the table with the reason
being overfitting to local trends.

– It can be seen that with sufficient temporal information, even machine learn-
ing models can perform better than their IID counterparts.

5 Related Work

In the recent years, there have been many AI and ML frameworks proposed to
relieve the pain points of data scientists. Frameworks like Scikit-learn [17], Ten-
sorFlow [1], Keras, PyTorch based on Torch [6], Theano [4], etc. provide API to
define AI and ML experiments in python. Whereas cloud vendors like IBM [10],
Amazon [2], Google [8], and Microsoft [15] provide infrastructure platforms and
related APIs to execute machine learning jobs as a service on their respective
platforms. These solutions provide many benefits to data scientists, however,
they don’t bridge the aforementioned gaps that are present for adoption of AI
in Industries.

Our Solution, ThunderML, bridges these gaps by providing AI practitioners
in the industry with a flexible and easy-to-use framework for defining high-
level AI solutions built on top of other widely used open source frameworks like



ThunderML: A Toolkit for Enabling AI/ML Models on Cloud 179

Sklearn, Tensorflow, etc. It also provides a common interface for executing these
AI solutions on different cloud vendors like IBM Cloud, Google Cloud, etc. with
relative ease.

6 Conclusion

We have proposed ThunderML, a versatile toolkit for bridging fundamental gaps
present in the adoption of AI in heavy industries. ThunderML aims to provide an
easy yet flexible programming model which allows data scientists and AI prac-
titioners to convert their unique problem statements into a purpose built and
scalable AI pipelines quickly. It also helps practitioners leverage cloud-based
environment for enabling AI pipelines with greater control using the two execu-
tion architectures. Finally, the case study attempts to provide evidence of the
feasibility of ThunderML as a powerful and flexible toolkit which can prove vital
in the hands of AI practitioners, as the time series prediction which forms the
backbone of many industry solutions.
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