
Light Cryptography

Pascal Lafourcade1 , Takaaki Mizuki2 , Atsuki Nagao3 ,
and Kazumasa Shinagawa4,5(B)

1 LIMOS, University Clermont Auvergne, CNRS UMR 6158, Aubière, France
2 Tohoku University, Sendai, Japan

3 Ochanomizu University, Tokyo, Japan
4 Tokyo Institute of Technology, Tokyo, Japan

5 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
shinagawa.k.aa@m.titech.ac.jp

Abstract. Physical cryptography provides cryptographic protocols
using physical objects like cards and envelopes instead of using comput-
ers. In this paper, we introduce a new model for physical cryptography,
called light cryptography. It uses transparent sheets and some properties
of light and shadows. We design several secure light cryptographic pro-
tocols: one for set-intersection (which can solve the scheduling problem),
one for maximum (which can solve the Yao’s Millionaires’ problem), one
for computing the sum of integers. We believe that our protocols using
light cryptography are a powerful tool for information security education
because they are fairly simple and fun to use.

Keywords: Secure computation · Physical cryptography ·
Light cryptography · Information security education

1 Introduction

Suppose that a group of friends wishes to hold a party next month, but they
have not yet decided the date of the party. They wish to choose a date that
suits everyone because they want the presence of everyone. In the usual way
to arrange a schedule, each participant must reveal his convenient dates and
times to other participants. However, for privacy reasons, some participants do
not want to reveal their agendas to other ones because their agendas contain
personal information such as professional meetings, personal appointments or
hobby schedules.

Secure computation is a cryptographic solution for such a problem [2,9,17].
It enables parties to compute some function of their inputs while only revealing
the output value and no information about the input values. It is known that
secure computation for any function is possible based on cryptographic assump-
tions (e.g., the hardness of the enhanced trapdoor permutation [9]) or setup
assumptions (e.g., the existence of secure channel [2]). Various secure computa-
tion protocols have been proposed following these pioneer works [2,9,17]. Despite

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
L. Drevin and M. Theocharidou (Eds.): WISE 2019, IFIP AICT 557, pp. 89–101, 2019.
https://doi.org/10.1007/978-3-030-23451-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23451-5_7&domain=pdf
http://orcid.org/0000-0002-4459-511X
http://orcid.org/0000-0002-8698-1043
http://orcid.org/0000-0002-1370-5240
http://orcid.org/0000-0002-5219-1975
https://doi.org/10.1007/978-3-030-23451-5_7

90 P. Lafourcade et al.

their usefulness, it is difficult for non-experts to understand why they are correct
and secure because these protocols often rely on the knowledge of deep math-
ematics. Moreover, since we cannot check the inside of computers, a program
implementing a protocol behaves like a black box from the user’s point of view.
It is clearly a difficulty to convince the user to trust such a computer-based
system.

Physical cryptography is a suitable solution for secure computation to find a
common date. The goal is to design a secure computation protocol using physical
objects (e.g., cards, boxes, envelopes) instead of using computers. For example,
card-based cryptography [5,7] is a physical cryptographic model using a deck of
cards; information is encoded in a sequence of face-down cards with for example
the rule that ♣♥ represents a 0 and ♥♣ represents a 1, and a protocol consists
of a list of operations like rearrangement, turning over, and shuffles. Because all
computational flows are visible from all parties, it is easy to verify and under-
stand the correctness and the security of protocols without the knowledge of
deep mathematics.

Contributions: We introduce a new model for physical cryptography. All pre-
vious papers used physical objects like cards or envelopes and the users have to
perform some computations. We change the paradigm and use light and its prop-
erties to compute the results of some functions securely; we naturally call this
new approach light cryptography. Light cryptography allows us to design physi-
cal light cryptographic protocols. It is a secure computation protocol that uses
transparent sheets and the properties of light and shadow. The idea comes from
ombromanie (also known as shadowgraphy); this is the art of creating shadow
images using hands (e.g., rabbits, birds, old men). The key observation is that it
is sometimes difficult to guess the original shape of hands by watching only the
printed shadow; thus, it has one-wayness in some sense like one-way functions
in cryptography: a one-way function f is easy to compute but it is hard to find
an input x from the output y = f(x). In light cryptography like in ombromanie,
it is hard to find the original shape of hands by giving only the shadow of the
hands. We also believe that light and shadows are familiar physics concepts for
everyone. Moreover, the correctness and the security of our protocols are easy
to understand without the knowledge of deep mathematics.

We first define a model of secure computation based on light cryptography.
Then we construct several protocols that use this concept for secure computa-
tions. We design a protocol to allow participants to determine a common date
without revealing any information about their personal agendas. We also pro-
pose a maximum protocol that allows users to compute the maximum of their
values in a secure way in order to demonstrate that light cryptography can easily
solve the famous Yao’s Millionaires’ problem [16], where two millionaires want to
know which has more money without revealing how much each has. We propose
an extension that also gives the identity of the owner of the maximum. Finally,
we propose a protocol to compute the sum of some integers.

We also believe that light cryptography can be a powerful tool for information
security education which is important but somewhat difficult. Specifically, it is

Light Cryptography 91

Fig. 1. Illustration of our system Fig. 2. Shadow addition.

useful for teaching secure computation, which seems to attempt to achieve an
impossible (or unbelievable) task at the first glance. Light cryptography is a
nice teaching material that gives an intuition that it is possible to do secure
computation in some settings. The correctness and the security of protocols are
also intuitive for students even who are not familiar with deep mathematics
because its computation process is very simple; it just uses light. Moreover, it is
suitable to perform our protocols in a classroom because result images can be
displayed on a screen.

Related Work: There are many works of physical cryptography based on var-
ious physical objects. They are classified by type of input format. The first type
of input format is by private actions like private rearrangements; for instance
secure computations using a PEZ dispenser [1], a dial lock [11], marbles [8] and
a 15 puzzle [12]. The other type of input format, which includes our model, is by
submitting encoded objects like a sequence of face-down cards; such examples
are secure computation protocols using a deck of cards [3–5,7,13], polarizing
cards [15], and visual secret sharing schemes [6]. Polarizing cards [15] is based
on the property of polarizing plates but the basic strategy to construct proto-
cols is similar to other card-based cryptography [13]. D’Arco and De Prisco [6]
proposed a physical cryptographic model, which combines the gate evaluation of
secret sharing [10] and visual secret sharing scheme [14], which also uses trans-
parent sheets for computation. While the paper presented a general protocol,
it is somewhat complex compared to our protocols due to the gate evaluation
from [10].

2 Model of Light Cryptography

In Sect. 2.1, we depict how the principles of light cryptography work. In Sect. 2.2,
we define an important operation, shadow addition, which is an abstract property
of light and shadow. In Sect. 2.3, we formally define protocols in our model of
light cryptography.

2.1 Overview of Our System

Suppose that n players P1, P2, . . . , Pn having secret inputs x1, x2, . . . , xn ∈ X,
respectively, wish to compute a joint function of their inputs f(x1, x2, . . . , xn) ∈
Y , where X and Y are a domain and a range of the function, respectively.

92 P. Lafourcade et al.

Before an execution of a protocol, we have to prepare the following:

– n transparent sheets (e.g., OHP (OverHead Projector) sheets),
– n black pens for transparent sheets,
– a light (e.g., projector),
– a screen,
– a non-transparent box called a hiding box.

Figure 1(a) shows an illustration of our system viewing it directly above (when
n = 2) and Fig. 1(b) shows a blueprint of the hiding box. The hiding box has a
number of holes; the hole A is a hole for inputting light, the hole C is a hole for
outputting light, and n holes B are used for inserting one transparent sheet per
each player Pi.

At the beginning of a protocol, each player Pi has a transparent sheet (which
is called an input sheet) and a black pen, and he/she writes a black image on
the transparent sheet with the black pen according to his/her input xi. Each
player Pi covertly puts the sheet into the i-th hole of holes B of the hiding box.
Finally, the hole A of the hiding box is illuminated by the light, and then, an
output image corresponding to f(x1, x2, . . . , xn) is displayed on the screen (see
Fig. 1(a)).

2.2 Shadow Addition

Imagine that we have two transparent sheets (e.g., OHP sheets), on each of
which black images are drawn. By superimposing them, we have a new image
which is the union of two original images. We call it shadow addition and denote
it by the symbol +.

We now formally define this operator. Let U be a set of all black-and-white
images of fixed size. The shadow addition + : U×U → U is defined by A+B = C,
where A,B,C ∈ U and the black area of C is the union of the black areas of A
and B. Figure 2 shows an example of shadow addition of two images: the input
images are a circle and a triangle, and the resulting image is a keyhole. It is
easy to observe that the shadow addition satisfies the commutative law and the
associative law, i.e., it holds that A+B = B +A and A+(B +C) = (A+B)+C
for any A,B,C ∈ U . We also have the idempotence property: A + A = A.

2.3 Defining Protocols

Formally, a light cryptogrpahic protocol is defined by a 7-tuple (n,U, I,X, Y, g, h),
where n is the number of players, U is a set of all black-and-white images of the
same size, I ∈ U is an initial image which is drawn on every input sheet, X is
the domain of the players’ secret inputs, Y is the range of the output, g : X → U
is an input function, and h : U → Y is an output function. The protocol proceeds
as follows:

1. At the beginning of the protocol, each player has a black pen and an input
sheet. On the input sheet, the initial image I has already been drawn.

Light Cryptography 93

2. According to his/her input xi ∈ X, each player draws an image g(xi) on
his/her input sheet; the new image is I ′

i = I + g(xi).
3. Each player covertly puts his/her input sheet into a black box in turns.
4. By switching on light, every player knows the union image Iresult ∈ U of their

input sheets, where Iresult = I ′
1 + I ′

2 + · · · + I ′
n. The output of the protocol is

h(Iresult) ∈ Y .

Correctness. We say that a protocol correctly computes a function f if for any
x1, x2, . . . , xn ∈ X, the value h(Iresult) of the output function h for the union
image Iresult = I ′

1+I ′
2+ · · ·+I ′

n is equal to f(x1, x2, . . . , xn), where I ′
i = I +g(xi)

for all i ∈ {1, 2, . . . , n}.

Security. A protocol is secure if the output function h restricted on UX ⊂ U is
injective, where UX is the set of all images generated by the inputs.

We assume that all players are semi-honest, i.e., they follow the protocol spec-
ification, and they cannot see the input sheets in the hiding box even after the
computation. In order to achieve such a hiding property, we can use a shredder to
destroy the input sheets after the computation. Now let us explain the meaning
of the security defined above. Suppose that a protocol Π correctly computes a
function f . The security definition requires that for any pair of input-sequences
X = (x1, x2, . . . , xn),X ′ = (x′

1, x
′
2, . . . , x

′
n) ∈ Xn such that f(X) = f(X ′) = y,

the output images Iresult and I ′
result induced by X and X ′, respectively, are the

same image, i.e., it holds that Iresult = I ′
result. Otherwise, the output function h

is not injective because h(Iresult) = h(I ′
result) = y holds from the correctness.

Enhancing Security. In our security model, all players are assumed to be
semi-honest and they must not see the other players’ input sheets. It can be
accomplished by shredding the input sheets with a shredder just after the end
of the protocol, but occasionally the input sheets may be seen by other players
due to a mistake in operation. The idea for hiding the inputs even when such
an accident occurs is applying a shuffle to the input sheets before putting them
into the hiding box. Specifically, each player puts his own input sheet into an
envelope and places it on a public table, and then all players together apply a
shuffle on the envelopes in order to hide the order of the input sheets. Of course,
when the input sheets are revealed after the computation, even if we applied
the shuffle to them, some of input information is leaked. But in this case, an
adversary cannot guess the correspondence between the input sheets and the
players, while our original model leaks all inputs in the case of such an accident.

3 Set-Intersection (SI) Protocol

Suppose that n friends wish to decide the date of a party next month. They wish
to make it a convenient schedule for everyone without revealing the convenient
schedule of each participant.

94 P. Lafourcade et al.

Fig. 3. Input sheet
for set-intersection.

Fig. 4. Example of set intersection.

Our SI Protocol
Let D be a set of possible dates with � elements and assume that each par-
ticipant Pi has a subset xi ⊂ D as input. A set-intersection function for n
inputs over D takes n subsets x1, x2, . . . , xn ⊂ D and outputs their intersection
x1 ∩ x2 ∩ · · · ∩ xn. Our set-intersection protocol is defined by the following tuple
(n,USI, ISI, 2D, 2D, gSI, hSI), where :

– The initial image ISI is an image with |D| holes (white circles). Figure 3 shows
an example of ISI with 35 holes, i.e, 5 weeks of 7 days, � = 35 = 5 × 7.

– USI is the set of all images of the same size as the initial image ISI.
– The domain and the range are 2D, i.e., the set of all subsets of D.
– The input function gSI takes an input x ∈ 2D and outputs a set of black circles

corresponding to D \x. For example, if it holds D \x = {1, 2, 3}, gSI(x) is the
set of three black circles corresponding to {1, 2, 3}.

– The output function hSI is the inverse function of g′
SI, where g′

SI(x) = gSI(x)+
ISI; it returns a set of elements corresponding to white circles.

SI protocol proceeds as follows:

– Each player has a black pen and the input sheet.
– Using a black pen, each player Pi fills a set of holes which corresponds to

D \ xi. Namely, he/she fills a hole corresponding to d with a black pen if and
only if d �∈ xi. It means that he/she is not avaible at the date xi.

– Each player puts his/her input sheet into the hiding box.
– The output is obtained by switching on the light. Namely, lighting holes are

a set of holes corresponding to x1 ∩ x2 ∩ · · · ∩ xn.

Figure 4 shows an example execution of our set-intersection protocol for two
players. White circles in the input sheet of each of P1 and P2 are available dates
for the party. The function gSI returns a set of black circles corresponding to
unavailable dates. The rightmost image is the resulting image Iresult, which has
a set of white circles corresponding to available dates for both parties.

The correctness holds from the fact that the resulting image Iresult has a set
of holes corresponding to the dates available for all players. The security holds
from the fact that each result image is unique for each output value.

Fine-grained Scheduling Protocol
The situation is almost the same as that of set-intersection but now each par-
ticipant has a yes/no/maybe schedule.

Light Cryptography 95

Fig. 5. Input circles. Fig. 6. Execution of fine-grained scheduling protocol.

Let D be the set of possible dates with � elements. Now each Pi has an input
xi = (x(1)

i , . . . , x
(�)
i) with x

(j)
i ∈ {“yes”, “no”, “maybe”}. The output function

that they wish to compute is y = (y(1), . . . , y(�)) defined as follows:

– y(j) = “yes” if x
(j)
i = “yes” for all i ∈ {1, 2, . . . , n},

– y(j) = “maybe” else if x
(j)
i ∈ {“yes”, “maybe”} for all i ∈ {1, 2, . . . , n},

– y(j) = “no” otherwise.

Our fine-grained scheduling protocol is defined by (n,UFS, IFS,X,X, gFS, hFS):

– UFS and IFS are the same as USI and ISI of our set-intersection protocol,
respectively.

– The domain and the range are X = {“yes”, “no”, “maybe”}�, i.e., the list of
� elements of “yes”/“no”/“maybe”.

– The input function gFS takes an input xi = (x(1)
i , x

(2)
i , . . . , x

(�)
i) and outputs

a set of (at most �) black circles, where at the j-th position, a circle is put if
x
(j)
i = “no”, a circle with triangle is put if x

(j)
i = “maybe” (see Fig. 5).

– The output function hFS is the inverse function of g′
FS, where g′

FS(x) = gFS(x)+
IFS.

Figure 6 shows an example execution of our fine-grained scheduling protocol
for two players when � = 35. White circles and triangles in the input sheet of P1

and P2 are “yes” dates and “maybe” dates for the party. The rightmost image
is the resulting image Iresult.

The correctness and the security hold from a similar observation to the case
of our set-intersection protocol.

4 Min/Max Protocol

Suppose that n students wish to know the highest score among all the students
in an examination without revealing each score to other students.

Our Max Protocol
Let � ∈ N be the highest score (e.g., � = 100) and let X = {0, 1, 2, . . . , �}
be the input domain. Assume that each student Pi has a score xi ∈ X as
input. The function they wish to compute is the max (resp. min) function that
takes n integers x1, x2, . . . , xn ∈ X as input and outputs the maximum number
max(x1, x2, . . . , xn) ∈ X (resp. the minimum number min(x1, x2, . . . , xn) ∈ X).

Our max protocol is defined by (n,Umax, Imax,X,X, gmax, hmax), where:

96 P. Lafourcade et al.

Fig. 7. Input sheet for min/max. Fig. 8. Input sheet for max with name.

Fig. 9. Executions of max/min proto-
col.

Fig. 10. Execution of max with
name protocol when (x1, x2, x3) =
(33, 50, 15).

– Umax is the set of all black-and-white images of the same size as the one in
Fig. 7.

– The initial image Imax is given in Fig. 7.
– The input function gmax takes an input x ∈ X and outputs a black rectangle

from 0 to x.
– The output function hmax is the inverse function of g′

max, where g′
max(x) =

gmax(x) + Imax; it outputs the value of the scale at the boundary between
black and white.

Figure 9 (a) shows an example execution of our max protocol when x1 = 33
and x2 = 16. The function gmax with the input x1 = 33 (resp. x2 = 16) returns a
black rectangle from 0 to 33 (resp. 16). Because the output image has a rectangle
from 0 to 33, the output value is 33; it is correct because 33 = max(33, 16).

The correctness holds from the above observation. The security holds from
the fact that each resulting image is unique for each output value.

Light Cryptography 97

Our Min Protocol. Our min protocol is obtained by the analogy with our
max protocol. Figure 9 (b) shows an example execution of our min protocol
when x1 = 70 and x2 = 24.

Max with Name Protocol
The situation is almost the same as that of max but now there are three students
Alice, Bob, and Carol having x1, x2, x3 ∈ {0, 1, . . . , 100}, respectively, and they
want to know the owner of the maximum together with the value of maximum.

Let N = {A,B,C} be a set of names and suppose that Alice, Bob, and
Carol have (A, x1), (B, x2), and (C, x3). The function that they want to compute
is MN : (N × X)n → 2N × X that takes the inputs as above and outputs
(S,max(x1, x2, x3)), where S ⊂ 2N is a set of all names who have the maximum
value. For instance, if x1 = 10 and x2 = x3 = 20, then S = {B,C}.

Our protocol is defined by (n,UMN, IMN, N × X, 2N × X, gMN, hMN), where:

– UMN is the set of all black-and-white images of the same size as the one in
Fig. 8.

– The initial image IMN is given in Fig. 8. There are three lines, each of which
corresponds to Alice, Bob, and Carol, respectively.

– The input function gMN is defined as follows: for an input (name, x) ∈ N ×X,
the output gMN(name, x) is three black rectangles from 0 to x in the name’s
line and 0 to x − 1 in other two lines.

– The output function hMN is the inverse function of g′
MN, where g′

MN : 2N ×X →
UMN takes a set S = {n1, . . . , nk} and x ∈ X for k ≤ 3 as input and outputs
the union of the images gMN(n1, x) + · · · + gMN(nk, x) + IMN.

Figure 10 shows an example execution of our max with name protocol when
x1 = 33, x2 = 50, and x3 = 15. The function gMN with the input (A, x1) returns
a black rectangle from 0 to 33 in Alice’s line and a black rectangle from 0 to 32
in others’ lines. Because the output image has a rectangle from 0 to 50 in Bob’s
line and a rectangle from 0 to 49 in others’ lines, the output value is ({B}, 33);
it is correct because ({B}, 33) = MN((A, 33), (B, 50), (C, 15)).

The correctness and the security hold from a similar observation to the case
of our max protocol.

5 Extension to Randomized Input

Our model defined in Sect. 2.3 does not allow to use randomness in computa-
tion, thus all of our protocols are deterministic. Of course, deterministic is a
nice property in order to make protocols simple, but randomness enables us to
construct protocols for a larger class of functions. In this section, we extend our
model to the randomized input setting.

5.1 Defining Protocols in the Randomized Input Setting

In the randomized input setting, a protocol is defined as in the same in Sect. 2.3
except that the deterministic input function g(xi) is replaced by a randomized

98 P. Lafourcade et al.

Fig. 11. Example of addition.

input function g(xi; ri) that takes a random coin ri ∈ {0, 1}∗ together with an
input xi ∈ X. In the following, we define a relaxed variant of correctness and a
randomized version of the security.

p-Correctness. A protocol is p-correct if for any x1, x2, . . . , xn ∈ X, the value
h(Iresult) of the output function h for the union image Iresult = I ′

1 + I ′
2 + · · · + I ′

n

is equal to f(x1, x2, . . . , xn) with a probability of at least p, where I ′
i = I +g(xi)

for all i ∈ {1, 2, . . . , n}.

Simulation Security. A protocol is secure if there exists a probabilistic
polynomial-time simulator S such that the following two random variables are
equal:

– A random variable Iresult over U : it is generated honestly when all parties’
random tapes are chosen uniformly and independently at random.

– A random variable Isim over U : it is generated by S given only the output
value f(x1, x2, . . . , xn).

5.2 Addition Protocol

Suppose that n students wish to know the average score among them without
revealing each score to other students. Assume that each student Pi has a score
xi ∈ {0, 1, 2 . . . , �} as input. The function they wish to compute is the summation
among them x1, x2, . . . , xn. (Note that the average can be obtained from the
summation just by dividing by n.)

Our addition protocol is defined by (n,UAD, IAD,X,X, gAD, hAD), where:

– UAD is the set of all square images of a fixed size with M ×M pixels for some
integer M .

– The initial image IAD is just a white image.
– The input domain is X = {0, 1, . . . , �}.
– The input function gAD(x; r) takes a value x ∈ X with a random coin r and

outputs a set of x pixels chosen uniformly random by the use of r.
– The output function hAD is the inverse function of gAD(·, r), where r is a fixed

value; it just counts the number of pixels.

Light Cryptography 99

Figure 11 shows an example execution of our addition protocol when x1 = 6,
x2 = 14, and x3 = 3. The function gAD with the input x1 = 6 (resp. x2 = 14
or x3 = 3) returns a set of 6 (resp. 14 or 3) black pixels randomly. The total
number of points in the resulting image is 23.

Our addition protocol has (1 − δ)-correctness if it holds (n�)2

2M2 < δ.

Proof. Let colli be the event that at least one collision exists among
{P1, P2, · · · , Pi}’s input sheets (i ∈ {1, 2, . . . , n}). From a simple observation,
we have

Pr[colln] = Pr[coll2]+Pr[coll3 | ¬coll2]+Pr[coll4 | ¬coll3]+· · ·+Pr[colln | ¬colln−1].

For a fixed � points in P1’s sheet, the probability that a P2’s single point colludes
one of the P1’s points is exact �

M2 . By union bound, we have

Pr[coll2] ≤ �2

M2
and Pr[collk+1 | ¬collk] ≤ k�2

M2
.

Thus, combining them and the assumption, we have

Pr[colln] ≤ �2

M2
+

2�2

M2
+ · · · +

(n − 1)�2

M2
≤ (n�)2

2M2
< δ.

This completes the proof. �
In order to prove the security, we have to construct a simulator S that can

generate a simulated resulting image Isim. Given an output value y = x1 +
x2 + · · · + xn, S draws a set of random y pixels on the input sheet and sets it as
simulated resulting image Isim. Because it is the same distribution as the original
resulting image Iresult, we can conclude that our addition protocol is secure.

Idea for Enhancing Correctness
Using a circle with line “
” instead of a pixel “·” improves the probability of
the correctness. Now a random coin is used to determine a position of a circle
and an angle of the line. If there are L possible angles, then the probability p of
the p-correctness is roughly 1 − δ

L . (We can not place the center of the circle

at the edge of input sheets, so the number of possible “positions” is reduced a
little. However, this is not a problem because the “angle” effect is much greater.)

6 Conclusion

In this paper, we introduce a new physical cryptography, light cryptography,
which uses the property of light. We also give some simple protocols in order to
solve some problems that are complex to solve and to understand using classical
cryptography. These examples can be explained to non-experts and clearly show
the power of our light and shadow model. The next future step is to design more
protocols and also to provide practical lecture material for information security
education and use it in our cryptography courses.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant
Numbers 17J01169 and 17K00001.

100 P. Lafourcade et al.

References

1. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a
PEZ dispenser. Theor. Comput. Sci. 306(1–3), 69–84 (2003)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago,
Illinois, USA, 2–4 May 1988, pp. 1–10 (1988)

3. Bultel, X., Dreier, J., Dumas, J., Lafourcade: P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and Kenken. In: 8th International Conference on Fun
with Algorithms, FUN 2016, Vol. 49 of LIPIcs, pp. 8:1–8:20 (2016)

4. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

5. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 27

6. D’Arco, P., Prisco, R.D.: Secure computation without computers. Theor. Comput.
Sci. 651, 11–36 (2016)

7. den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

8. Dreier, J., Jonker, H., Lafourcade, P.: Secure auctions without cryptography. In:
Ferro, A., Luccio, F., Widmayer, P. (eds.) Fun with Algorithms FUN 2014. LNCS,
vol. 8496, pp. 158–170. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07890-8 14

9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, pp. 218–229 (1987)

10. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155.
Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 8

11. Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using a dial
lock. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp.
499–510. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-
6 45

12. Mizuki, T., Kugimoto, Y., Sone, H.: Secure multiparty computations using the 15
puzzle. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp.
255–266. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-
4 28

13. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

14. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995). https://doi.org/10.
1007/BFb0053419

15. Shinagawa, K., et al.: Secure computation protocols using polarizing cards. IEICE
Trans. 99(6), 1122–1131 (2016)

16. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, SFCS 1982, pp. 160–164. IEEE
Computer Society, Washington (1982)

https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/978-3-319-07890-8_14
https://doi.org/10.1007/978-3-319-07890-8_14
https://doi.org/10.1007/11593447_8
https://doi.org/10.1007/978-3-540-72504-6_45
https://doi.org/10.1007/978-3-540-72504-6_45
https://doi.org/10.1007/978-3-540-73556-4_28
https://doi.org/10.1007/978-3-540-73556-4_28
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/BFb0053419
https://doi.org/10.1007/BFb0053419

Light Cryptography 101

17. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29
October 1986, pp. 162–167 (1986)

	Light Cryptography
	1 Introduction
	2 Model of Light Cryptography
	2.1 Overview of Our System
	2.2 Shadow Addition
	2.3 Defining Protocols

	3 Set-Intersection (SI) Protocol
	4 Min/Max Protocol
	5 Extension to Randomized Input
	5.1 Defining Protocols in the Randomized Input Setting
	5.2 Addition Protocol

	6 Conclusion
	References

