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Abstract. When formal verification of arithmetic circuits identifies the
presence of a bug in the design, the task of rectification needs to be
performed to correct the function implemented by the circuit so that it
matches the given specification. In our recent work [26], we addressed
the problem of rectification of buggy finite field arithmetic circuits. The
problems are formulated by means of a set of polynomials (ideals) and
solutions are proposed using concepts from computational algebraic
geometry. Single-fix rectification is addressed – i.e. the case where any
set of bugs can be rectified at a single net (gate output). We determine
if single-fix rectification is possible at a particular net, formulated as the
Weak Nullstellensatz test and solved using Gröbner bases. Subsequently,
we introduce the concept of Craig interpolants in polynomial algebra
over finite fields and show that the rectification function can be com-
puted using algebraic interpolants. This article serves as an extension
to our previous work, provides a formal definition of Craig interpolants
in finite fields using algebraic geometry and proves their existence. We
also describe the computation of interpolants using elimination ideals
with Gröbner bases and prove that our procedure computes the smallest
interpolant. As the Gröbner basis algorithm exhibits high computational
complexity, we further propose an efficient approach to compute inter-
polants. Experiments are conducted over a variety of finite field arith-
metic circuits which demonstrate the superiority of our approach against
SAT-based approaches.

Keywords: Rectification · Arithmetic circuits · Gröbner bases ·
Craig interpolants

1 Introduction

The past decade has witnessed extensive investigations into formal verification
of arithmetic circuits. Circuits that implement polynomial computations over
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large bit-vector operands are hard to verify automatically using methods such
as SAT/SMT-solvers, decision diagrams, etc. Recent techniques have investi-
gated the use of polynomial algebra and algebraic geometry techniques for their
verification. These include verification of integer arithmetic circuits [1–3], inte-
ger modulo-arithmetic circuits [4], word-level RTL models of polynomial data-
paths [5,6], finite field combinational circuits [7–9], and also sequential designs
[10]. A common theme among the above approaches is that designs are mod-
eled as sets of polynomials in rings with coefficients from integers Z, finite integer
rings Z2k , finite fields F2k , and more recently also from the field of fractions Q.
Subsequently, the verification checks are formulated using algebraic geometry [11]
(e.g., the Nullstellensatz), and Gröbner basis (GB) theory and technology [12] are
used as decision procedures (ideal membership test) for formal verification.

While these techniques are successful in proving correctness or detecting the
presence of bugs, the task of post-verification debugging, error diagnosis and
rectification of arithmetic circuits has not been satisfactorily addressed. Debug-
ging and rectification of arithmetic circuits is of utmost importance. Arithmetic
circuits are mostly custom designed; this raises the potential for errors in the
implementation, which have to be eventually rectified. Instead of redesigning
the whole circuit, it is desirable to synthesize rectification sub-functions with
minimal topological changes to the existing design – a problem often termed as
partial synthesis. Moreover, the debug, rectification and partial synthesis prob-
lem is analogous to that of synthesis for Engineering Change Orders (ECO),
where the current circuit implementation should be minimally modified (recti-
fied) to match the ECO-modified specification. The partial synthesis approach
also applies here to generate ECO-patches for rectification.

The problem of debug, rectification and ECO synthesis has been addressed
for control-dominated applications and random-logic circuits, where the early
developments of [13–15] were extended by [16] by formulating as CNF-SAT, and
computing rectification functions using Craig Interpolants [17] in propositional
logic.

Craig Interpolation (CI) is a method in automated reasoning to construct and
refine abstractions of functions. It is a logical tool to extract concise explanations
for the infeasibility of a set of mutually inconsistent statements. As an alternative
to quantifier elimination, CI finds application in verification as well as in partial
synthesis – and therefore, in rectification. In propositional logic, they are defined
as follows.

Definition 1.1 (Craig Interpolants). Let (A,B) be a pair of CNF formulas
(sets of clauses) such that A ∧ B is unsatisfiable. Then there exists a formula I
such that: (i) A =⇒ I; (ii) I ∧ B is unsatisfiable; and (iii) I refers only to the
common variables of A and B, i.e. V ar(I) ⊆ V ar(A) ∩ V ar(B). The formula I
is called the interpolant of (A,B).

Despite these advancements in automated debugging and rectification of
control and random logic circuits, the aforementioned SAT and CI-based
approaches are infeasible for rectification of arithmetic circuits.
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1.1 Problem Description, Objectives, and Contributions

We address the problem of rectification of buggy finite field arithmetic circuits.
Our problem setup is as follows:

– A specification model (Spec) is given either as a polynomial description fspec

over a finite field, or as a golden model of a finite field arithmetic circuit.
The finite field considered is the field of 2k elements (denoted by F2k), where
k is the operand-width (bit-vector word length). An implementation (Impl)
circuit C is also given.

– Equivalence checking is performed between the Spec and the Impl circuit C,
and the presence of a bug is detected. No restrictions on the number, type,
or locations of the bugs are assumed.

– We assume that error-diagnosis has been performed, and a subset X of the
nets of the circuit is identified as potential rectification locations, called target
nets.

Given the Spec, the buggy Impl circuit C, the set X of potential rectifiable
locations, our objective is to determine whether or not the buggy circuit can be
rectified at one particular net (location) xi ∈ X. This is called single-fix recti-
fication in literature [16]. If a single-fix rectification does exist at net xi in the
buggy circuit, then our subsequent objective is to derive a polynomial function
U(XPI) in terms of the set of primary input variables XPI . This polynomial
needs to be further translated (synthesized) into a logic sub-circuit such that
xi = U(XPI) acts as the rectification function for the buggy Impl circuit C so
that this modified C matches the specification.

Given the above objective, this article makes the following specific contribu-
tions to solve the debug and rectification problem.

1. We formulate the test for single-fix rectifiability at a net xi using concepts
and techniques from algebraic geometry [12].

– The problem is modeled in polynomial rings of the form F2k [x1, . . . , xn],
where k corresponds to the operand-width and the variables x1, . . . , xn

are the nets of the circuit.
– The rectification test is formulated using elimination ideals and the Weak

Nullstellensatz, and solved using Gröbner basis as a decision procedure.
2. If rectification is feasible at xi, then we compute a rectification function xi =

U(XPI).
– We show that the rectification function U(XPI) can be determined based

on the concept of Craig interpolants in algebraic geometry. While Craig
interpolation is a well-studied concept in propositional and first-order
logic theories, to the best of our knowledge, it has not been investigated
in algebraic geometry.

– We define Craig interpolants in polynomial algebra in finite fields and
prove their existence. We also show how to compute such an interpolant
using Gröbner bases.
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3. The rectification function U(XPI) obtained using Craig interpolants is a poly-
nomial in F2k [x1, . . . , xn]. We subsequently show how a logic circuit can be
obtained from this polynomial.

4. We use Gröbner basis not only as a decision procedure for the rectification
test, but also as a quantification procedure for computing the rectification
function. Computation of Gröbner bases exhibits very high complexity. To
make our approach scalable, we further show how to exploit the topological
structure of the given circuit to improve this computation.

We demonstrate the application of our techniques to rectify finite field arith-
metic circuits with large operand sizes, where conventional SAT-solver based
rectification approaches are infeasible.

The paper is organized as follows. The following section reviews previous
work in automated diagnosis and rectification, and recent applications of Craig
interpolants. Section 3 describes concepts from computer algebra and algebraic
geometry. Section 4 describes an equivalence checking framework using the Weak
Nullstellensatz over finite fields. Section 5 presents results that ascertain the
single-fix rectifiability of the circuit. Section 6 introduces Craig interpolants in
finite fields using Gröbner basis methods, and gives a procedure for obtain-
ing the rectification function through algebraic interpolants. Section 7 addresses
improvements to the Gröbner basis computation. Section 8 presents our experi-
mental results and Sect. 9 concludes the paper.

2 Review of Previous Work

Automated diagnosis and rectification of digital circuits has been addressed
in [13,18]. The paper [14] presents algorithms for synthesizing Engineering
Change Order (ECO) patches. The partial equivalence checking problem has
been addressed in [15,19] that checks whether a partial implementation can be
extended to a complete design so that it becomes equivalent to a given specifi-
cation. The partial implementation comprises black-boxes for which some func-
tions fi’s need to be computed. The problem is formulated as Quantified Boolean
Formula (QBF) solving: does there exist a function fi, such that for all primary
input assignments, the Impl circuit is equivalent to the Spec circuit. Incremental
SAT-solving based approach has been presented in [20] in lieu of solving the QBF
problem. This approach has been extended in [21,22] to generate rectification
functions when the Impl circuit topology is fixed. The use of Craig interpolation
as an alternative to quantifier elimination has been presented in [16,23,24] for
ECO applications. The single-fix rectification function approach in [23] has been
extended in [16] to generate multiple partial-fix functions. Recently, an efficient
approach on resource aware ECO patch generation has been presented in [25].

As these approaches are SAT based, they work well for random logic circuits
but are not efficient for arithmetic circuits. In contrast, this article presents
a word-level formulation for single-fix rectification using algebraic geometry
techniques. Computer algebra has been utilized for circuit debugging and recti-
fication in [27–29]. These approaches rely heavily on the structure of the circuit
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for debugging, and in general, are incomplete. If the arithmetic circuit contains
redundancies, the approach may not identify the buggy gate, nor compute the
rectification function. On the other hand, our approach is complete, as it can
always compute a single-fix rectification function, if one exists. Although our
polynomial algebra based approach is applicable to any circuit in general, it is
more efficient and practical for finite field arithmetic circuits.

The concept of Craig interpolants has been extensively investigated in many
first order theories for various applications in synthesis and verification. Given
the pair (A,B) of two mutually inconsistent formulas (cf. Definition 1.1) and a
proof of their unsatisfiability, a procedure called the interpolation system con-
structs the interpolant in linear time and space in the size of the proof [30].
As the abilities of SAT solvers for proof refutation have improved, interpolants
have been exploited as abstractions in various problems that can be formulated
as unsatisfiable instances, e.g. model checking [30], logic synthesis [31], etc. Their
use as abstractions have also been replicated in other (combinations of) theo-
ries [32–35], etc. However, the problem has been insufficiently investigated over
polynomial ideals in finite fields from an algebraic geometry perspective. In that
regard, the works that come closest to ours are by Gao et al. [36] and [37]. While
they do not address the interpolation problem per se, they do describe impor-
tant results of Nullstellensatz, projections of varieties and quantifier elimination
over finite fields that we utilize to develop the theory and algorithms for our
approach. Moreover, prior to debugging, our approach requires that verification
be performed to detect the presence of a bug. For this purpose, we make use of
techniques presented in [7,8,38].

We have described the notion of Craig interpolants in finite fields in our
work [26]. This article is an extended version of that work where we formally
define Craig interpolants in finite fields and prove their existence. Moreover, we
describe a procedure for computing an interpolant and prove that the computed
interpolant is the smallest. The computation of interpolants uses Gröbner basis
based algorithms which have high computational complexity. In contrast to [26],
we further propose an efficient approach to compute interpolants based on the
given circuit topology.

3 Preliminaries: Notation and Background Results

Let Fq denote the finite field of q elements where q = 2k, Fq be its algebraic
closure, and k is the operand width. The field F2k is constructed as F2k ≡
F2[x] (mod P (x)), where F2 = {0, 1}, and P (x) is a primitive polynomial of
degree k. Let α be a primitive element of F2k , so that P (α) = 0. Let R =
Fq[x1, . . . , xn] be the polynomial ring in n variables x1, . . . , xn, with coefficients
from Fq. A monomial is a power product of variables xe1

1 · xe2
2 · · · xen

n , where
ei ∈ Z≥0, i ∈ {1, . . . , n}. A polynomial f ∈ R is written as a finite sum of terms
f = c1X1+c2X2+ · · ·+ctXt, where c1, . . . , ct are coefficients and X1, . . . , Xt are
monomials. A monomial order > (or a term order) is imposed on the ring – i.e.
a total order and a well-order on all the monomials of R s.t. multiplication with
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another monomial preserves the order. Then the monomials of all polynomials
f = c1X1+c2X2+· · ·+ctXt are ordered w.r.t. >, such that X1 > X2 > · · · > Xt,
where lm(f) = X1, lt(f) = c1X1, and lc(f) = c1 are called the leading monomial,
leading term, and leading coefficient of f , respectively. In this work, we employ
lexicographic (lex) term orders (see Definition 1.4.3 in [12]).

Polynomial Reduction via Division: Let f, g be polynomials. If lm(f) is
divisible by lm(g), then we say that f is reducible to r modulo g, denoted f

g−→ r,
where r = f − lt(f)

lt(g) · g. This operation forms the core operation of polynomial
division algorithms and it has the effect of canceling the leading term of f .
Similarly, f can be reduced w.r.t. a set of polynomials F = {f1, . . . , fs} to obtain
a remainder r. This reduction is denoted as f

F−→+ r, and the remainder r has
the property that no term in r is divisible (i.e. cannot be canceled) by the leading
term of any polynomial fi in F .

We model the given circuit C by a set of multivariate polynomials f1, . . . , fs ∈
F2k [x1, . . . , xn]; here x1, . . . , xn denote the nets (signals) of the circuit. Every
Boolean logic gate of C is represented by a polynomial in F2, as F2 ⊂ F2k . This
is shown below. Note that in F2k , −1 = +1.

z = ¬a → z + a + 1 (mod 2)
z = a ∧ b → z + a · b (mod 2)
z = a ∨ b → z + a + b + a · b (mod 2)
z = a ⊕ b → z + a + b (mod 2)

(1)

Definition 3.1 (Ideal of polynomials). Given a set of polynomials F = {f1, . . . ,
fs} in Fq[x1, . . . , xn], the ideal J ⊆ R generated by F is,

J = 〈f1, . . . , fs〉 = {
s∑

i=1

hi · fi : hi ∈ Fq[x1, . . . , xn]}.

The polynomials f1, . . . , fs form the basis or the generators of J .

Let a = (a1, . . . , an) ∈ F
n
q be a point in the affine space, and f a polynomial

in R. If f(a) = 0, we say that f vanishes on a. In verification, we have to analyze
the set of all common zeros of the polynomials of F that lie within the field Fq. In
other words, we need to analyze solutions to the system of polynomial equations
f1 = f2 = · · · = fs = 0. This zero set is called the variety. It depends not just
on the given set of polynomials but rather on the ideal generated by them. We
denote it by V(J) = V(f1, . . . , fs), and it is defined as follows:

Definition 3.2 (Variety of an ideal). Given a set of polynomials F = {f1, . . . ,
fs} in Fq[x1, . . . , xn], their variety

V (J) = V (f1, . . . , fs) = {a ∈ F
n
q : ∀f ∈ J, f(a) = 0}
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We denote the complement of a variety, Fn
q \ V(J), by V(J).

The Weak Nullstellensatz: To ascertain whether V (J) = ∅, we employ the
Weak Nullstellensatz over Fq, for which we use the following notations.

Definition 3.3 (Sum and Product of Ideals). Given two ideals J1 =
〈f1, . . . , fs〉, J2 = 〈h1, . . . , hr〉, their sum and product are

J1 + J2 = 〈f1, . . . , fs, h1 . . . , hr〉
J1 · J2 = 〈fi · hj : 1 ≤ i ≤ s, 1 ≤ j ≤ r〉

Ideals and varieties are dual concepts: V (J1 + J2) = V (J1) ∩ V (J2), and
V (J1 · J2) = V (J1) ∪ V (J2). Moreover, if J1 ⊆ J2 then V (J1) ⊇ V (J2).

For all elements α ∈ Fq, α
q = α. Therefore, the polynomial xq − x van-

ishes everywhere in Fq, and is called the vanishing polynomial of the field. Let
J0 = 〈xq

1 − x1, . . . , x
q
n − xn〉 be the ideal of all vanishing polynomials in R. Then

the variety of ideal J0 is the entire affine space, i.e. V (J0) = F
n
q . Moreover, by

extending any ideal J ∈ R = Fq[x1, . . . , xn] by the ideal of all vanishing polyno-
mials in R, the variety is restricted to points within F

n
q , i.e. V (J + J0) ⊂ F

n
q .

Theorem 3.1 (The Weak Nullstellensatz over finite fields (from Theorem 3.3 in
[37])). For a finite field Fq and the ring R = Fq[x1, . . . , xn], let J = 〈f1, . . . , fs〉
⊆ R, and let J0 = 〈xq

1 − x1, . . . , x
q
n − xn〉 be the ideal of vanishing polynomials.

Then V(J) = ∅ ⇐⇒ 1 ∈ J + J0.

To determine whether V (J) = ∅, we need to test whether or not the unit
element 1 is a member of the ideal J + J0. For this ideal membership test, we
need to compute a Gröbner basis of J + J0.

Gröbner Basis of Ideals: An ideal may have many different sets of generators:
J = 〈f1, . . . , fs〉 = · · · = 〈g1, . . . , gt〉. Given a non-zero ideal J , a Gröbner basis
(GB) for J is one such set G = {g1, . . . , gt} that possesses important properties
that allow to solve many polynomial decision problems.

Definition 3.4 (Gröbner basis [12]). For a monomial ordering >, a set of non-
zero polynomials G = {g1, g2, . . . , gt} contained in an ideal J , is called a Gröbner
basis of J iff ∀f ∈ J , f �= 0, there exists gi ∈ {g1, . . . , gt} such that lm(gi) divides
lm(f); i.e., G = GB(J) ⇔ ∀f ∈ J : f �= 0, ∃gi ∈ G : lm(gi) | lm(f).

Then J = 〈G〉 holds and so G = GB(J) forms a basis for J . Buchberger’s
algorithm [39] is used to compute a Gröbner basis. The algorithm, shown in
Algorithm 1, takes as input the set of polynomial F = {f1, . . . , fs} and computes
their Gröbner basis G = {g1, . . . , gt} such that J = 〈F 〉 = 〈G〉, where the variety
V (〈F 〉) = V (〈G〉) = V (J). In the algorithm,

Spoly(fi, fj) =
L

lt(fi)
· fi − L

lt(fj)
· fj (2)

where L = LCM(lm(fi), lm(fj)).
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Algorithm 1. Buchberger’s Algorithm
Require: F = {f1, . . . , fs}
Ensure: G = {g1, . . . , gt}
1: G := F ;
2: while G′ �= G do
3: G′ := G
4: for each pair {fi, fj}, i �= j in G′ do

5: Spoly(fi, fj)
G′−→+ h

6: if h �= 0 then
7: G := G ∪ {h}

A GB may contain redundant polynomials, and it can be reduced to eliminate
these redundant polynomials from the basis. A reduced GB is a canonical repre-
sentation of the ideal. Moreover, when 1 ∈ J , then G = reduced GB(J) = {1}.
Therefore, to check if V (J) = ∅, from Theorem 3.1 we compute a reduced GB G
of J + J0 and see if G = GB(J + J0) = {1}. If so, the generators of ideal J do
not have any common zeros in F

n
q .

Craig Interpolation: The Weak Nullstellensatz is the polynomial analog of
SAT checking. For UNSAT problems, the formal logic and verification commu-
nities have explored the notion of abstraction of functions by means of Craig
interpolants, which has been applied to circuit rectification [16].

Given the pair (A,B) and their refutation proof, a procedure called the inter-
polation system constructs the interpolant in linear time and space in the size
of the proof [30]. We introduce the notion of Craig interpolants in polynomial
algebra over finite fields, based on the results of the Nullstellensatz. We make
use of the following definitions and theorems for describing the results on Craig
interpolants in finite fields.

Definition 3.5. Given an ideal J ⊂ R and V (J) ⊆ F
n
q , the ideal of polynomials

that vanish on V (J) is I(V (J)) = {f ∈ R : ∀a ∈ V (J), f(a) = 0}.

If I1 ⊂ I2 are ideals then V (I1) ⊃ V (I2), and similarly if V1 ⊂ V2 are varieties,
then I(V1) ⊃ I(V2).

Definition 3.6. For any ideal J ⊂ R, the radical of J is defined as
√

J = {f ∈
R : ∃m ∈ N s.t.fm ∈ J}.

When J =
√

J , then J is called a radical ideal. Over algebraically closed
fields, the Strong Nullstellensatz establishes the correspondence between radical
ideals and varieties. Over finite fields, it has a special form.

Lemma 3.1 (From [36]). For an arbitrary ideal J ⊂ Fq[x1, . . . , xn], and J0 =
〈xq

1 − x1, . . . , x
q
n − xn〉, the ideal J + J0 is radical; i.e.

√
J + J0 = J + J0.

Theorem 3.2 (The Strong Nullstellensatz over finite fields (Theorem 3.2 in
[36])). For any ideal J ⊂ Fq[x1, . . . , xn], I(V(J)) = J + J0.
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Definition 3.7. Given an ideal J ⊂ Fq[x1, . . . , xn], the l-th elimination ideal Jl

is an ideal in R defined as Jl = J ∩ Fq[xl+1, . . . , xn].

Theorem 3.3 (Elimination Theorem (from Theorem 2.3.4 [12])). Given an
ideal J ⊂ R and its GB G w.r.t. the lexicographical (lex) order on the vari-
ables where x1 > x2 > · · · > xn, then for every 0 ≤ l ≤ n we denote by Gl the
GB of l-th elimination ideal of J and compute it as:

Gl = G ∩ Fq[xl+1, . . . , xn].

Jl is called the l-th elimination ideal as it eliminates the first l variables from J .

Example 3.1 (from [11]). Consider polynomials f1 : x2 − y − z − 1, f2 : x −
y2 − z − 1, and f3 : x − y − z2 − 1 and the ideal J = 〈f1, f2, f3〉 ⊂ C[x, y, z].
GB(J) with lex term order x > y > z equals to {g1 : x − y − z2 − 1, g2 :
y2 − y − z2 − z, g3 : 2yz2 − z4 − z2, g4 : z6 −4z4 −4z3 − z2}. Then, the GB of 2nd

elimination ideal of J is G2 = GB(J) ∩ C[z] = {g4} and GB of 1st elimination
ideal is G1 = GB(J) ∩ C[y, z] = {g2, g3, g4}.
Definition 3.8. Given an ideal J = 〈f1, . . . , fs〉 ⊂ R and its variety V (J) ⊂ F

n
q ,

the l-th projection of V (J) denoted as Prl(V (J)) is the mapping

Prl(V (J)) : Fn
q → F

n−l
q , P rl(a1, . . . , an) = (al+1, . . . , an),

for every a = (a1, . . . , an) ∈ V (J).

In a general setting, the projection of a variety is a subset of the variety of
an elimination ideal: Prl(V (J)) ⊆ V (Jl). However, operating over finite fields,
when the ideals contain the vanishing polynomials, then the above set inclusion
turns into an equality.

Lemma 3.2 (Lemma 3.4 in [36]). Given an ideal J ⊂ R that contains the van-
ishing polynomials of the field, then Prl(V (J)) = V (Jl), i.e. the l-th projection
of the variety of ideal J is equal to the variety of its l-th elimination ideal.

4 Algebraic Miter for Equivalence Checking

Given fspec as the Spec polynomial and an Impl circuit C, we need to construct
an algebraic miter between fspec and C. For equivalence checking, we need to
prove that the miter is infeasible. Figure 1 depicts how a word-level algebraic
miter is setup. Suppose that A = {a0, . . . , ak−1} and Z = {z0 . . . , zk−1} denote
the k-bit primary inputs and outputs of the finite field circuit, respectively. Then
A =

∑k−1
i=0 aiα

i, Z =
∑k−1

i=0 ziα
i correspond to polynomials that relate the word-

level and bit-level inputs and outputs of C. Here α is the primitive element of
F2k . Let ZS be the word-level output for fspec, which computes some polynomial
function F(A) of A, so that fspec : ZS +F(A). The word-level outputs Z,ZS are
mitered to check if for all inputs, Z �= ZS is infeasible.
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Specification Polynomial

Circuit Implementation C

Word-Level
Miter

Fig. 1. Word-level miter

The logic gates of C are modeled as the set of polynomials F = {f1, . . . , fs}
according to Eq. (1). In finite fields, the disequality Z �= ZS can be modeled as a
single polynomial fm, called the miter polynomial, where fm = t·(Z−ZS)−1, and
t is introduced as a free variable. If Z = ZS , then Z−ZS = 0. So fm : t ·0+1 = 0
has no solutions (miter is infeasible). Whereas if for some input A, Z �= ZS , then
Z − ZS �= 0. Let t−1 = (Z − ZS) �= 0. Then fm : t · t−1 − 1 = 0 has a solution as
(t, t−1) are multiplicative inverses of each other. Thus the miter becomes feasible.

Corresponding to the miter, we construct the ideal J = 〈fspec, f1, . . . , fs, fm〉.
In our formulation, we need to also include the ideal J0 corresponding to the
vanishing polynomials in variables Z,Zs, A, t, and xi; here Z,Zs, A, t are the
word-level variables that take values in F2k , and xi corresponds to the bit level
(Boolean) variables in the miter. In fact, it was shown in [7] that in J0 it is
sufficient to include vanishing polynomials for only the primary input bits (xi ∈
XPI). Therefore, J0 = 〈x2

i − xi : xi ∈ XPI〉.
In this way, equivalence checking using the algebraic model is solved as fol-

lows: Construct an ideal J = 〈fspec, f1, . . . , fs, fm〉, as described above. Add to
it the ideal J0 = 〈x2

i − xi : xi ∈ XPI〉. Determine if the variety V (J + J0) = ∅,
i.e. if reduced GB(J + J0) = {1}? If V (J + J0) = ∅, the miter is infeasible, and
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Fig. 2. Correct (a) and buggy (b) 2-bit modulo multiplier circuit implementations
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C implements fspec. If V (J + J0) �= ∅, the miter is feasible, and there exists a
bug in the design.

Example 4.1. Consider a modulo multiplier with output Z and inputs A,B.
The Spec polynomial is given as fspec : Z + A · B (mod P (X)), where P (X) is
a primitive polynomial of the field. An implementation of such a multiplier with
operand (Z,A,B) bit-width = 2 is shown in Fig. 2(a).

Now let’s say that the designer has introduced a bug, and the XOR gate with
output net r0 has been replaced with an AND gate in the actual implementation
in the circuit of Fig. 2(b). The polynomials for the gates of the correct circuit
implementation are,

f1 : c0 + a0 · b0, f2 : c1 + a0 · b1, f3 : c2 + a1 · b0, f4 : c3 + a1 · b1,

f5 : r0 + c1 + c2, f6 : z0 + c0 + c3, f7 : z1 + r0 + c3,

whereas for the buggy implementation, the polynomial f5 is f ′
5 : r0 + c1c2. The

problem is modeled over F4 and let α be a primitive element of F4. The word-
level polynomials are f8 : Z + z0 + z1α, f9 : A+a0 +a1α, and f10 : B + b0 + b1α.
The specification polynomial is fspec : Zs + AB. We create a miter polynomial
against this specification as fm : t(Z − Zs) − 1.

To perform equivalence checking of the correct implementation and the speci-
fication polynomial, we construct ideal J = 〈fspec, f1, . . . , f5, . . . , f10, fm〉. Com-
puting GB of J + J0 (J0 is the ideal of vanishing polynomials) results in {1},
implying the the circuit in Fig. 2(a) is equivalent to the specification. However,
computing GB of the ideal J ′ + J0 where J ′ = 〈fspec, f1, . . . , f

′
5, . . . , f10, fm〉

results in a set of polynomials G = {g1, . . . , gt} �= {1}, implying the presence of
a bug(s) in the design.

5 Formulating the Rectification Check

Equivalence checking is performed between the Spec and Impl circuit C, and it
reveals the presence of a bug in the design. Post-verification, we assume that
error diagnosis has been performed, and a set of nets X has been identified as
potential single-fix rectifiable locations. While the nets in X might be target nets
for single-fix, the circuit may or may not be rectifiable at any xi ∈ X. We have
to first ascertain that the circuit is indeed single-fix rectifiable at some xi ∈ X,
and subsequently compute a rectification function U(XPI), so that xi = U(XPI)
rectifies the circuit at that net.

5.1 Single Fix Rectification

Using the Weak Nullstellensatz (Theorem 3.1), we formulate the test for rectifi-
ability of C at a net xi in the circuit. For this purpose, we state and prove the
following result, which is utilized later.
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Proposition 5.1. Given two ideals J1 and J2 over some finite field such that
V (J1)∩V (J2) = ∅, there exists a polynomial U which satisfies V (J1) ⊆ V (U) ⊆
V (J2).

Proof. Over finite fields Fq, V (J1) and V (J2) are finite sets of points. Every
finite set of points is a variety of some ideal. Therefore, given V (J1)∩V (J2) = ∅,
there exists a set of points (a variety) which contains V (J1), and which does
not intersect with V (J2). Let this variety be denoted by V (JI), where JI is
the corresponding ideal. Then V (J1) ⊆ V (JI) ⊆ V (J2). In addition, we can
construct a polynomial U that vanishes exactly on the points in V (JI) by means
of the Lagrange’s interpolation formula. ��

We now present the result that ascertains the circuit’s rectifiability at a
target net. Let the net xi ∈ X (i.e. ith gate) be the rectification target, and a
possible rectification function be xi = U(XPI). Then the ith gate is represented
by a polynomial fi : xi + U(XPI). Consider the ideal J corresponding to the
algebraic miter – the polynomials f1, . . . , fi, . . . , fs representing the gates of the
circuit, the specification polynomial fspec, and the miter polynomial fm:

J = 〈fspec, f1, . . . , fi : xi + U(XPI), . . . , fs, fm〉.

The following theorem checks whether the circuit is indeed single-fix rectifiable
at the net xi.

Theorem 5.1. Construct two ideals:

– JL = 〈fspec, f1, . . . , fi : xi + 1, . . . , fs, fm〉 where fi : xi + U(XPI) in J is
replaced with fi : xi + 1.

– JH = 〈fspec, f1, . . . , fi : xi, . . . , fs, fm〉 where fi : xi+U(XPI) in J is replaced
with fi : xi.

Compute EL = (JL + J0) ∩ F2k [XPI ] and EH = (JH + J0) ∩ F2k [XPI ] to be
the respective elimination ideals, where all the non-primary input variables have
been eliminated. Then the circuit can be single-fix rectified at net xi with the
polynomial function fi : xi + U(XPI) to implement the specification iff 1 ∈
EL + EH .

Proof. We will first prove the if case of the theorem. Assume 1 ∈ EL + EH , or
equivalently VXPI

(EL)∩VXPI
(EH) = ∅. The subscript XPI in VXPI

denotes that
the variety is being considered over XPI variables, as the non-primary inputs
have been eliminated from EL and EH . Using Proposition 5.1, we can find a
polynomial U(XPI) such that,

VXPI
(EL) ⊆ VXPI

(U(XPI)) ⊆ VXPI
(EH). (3)
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Note, however, that since VXPI
(EL), VXPI

(EH) are considered over only primary
input bits, they contain points from F

|XPI |
2 . Therefore, there exists a polynomial

U(XPI) as in Eq. (3) with coefficients only in F2.
Let us consider a point p in V (J). Point p is an assignment to every variable

in J such that all the generators of J are satisfied. We denote by a, the projection
of p on the primary inputs (i.e. the primary input assignments under p). There
are only two possibilities for U(XPI),

1. U(a) = 1, or in other words a �∈ VXPI
(U(XPI)). It also implies that the

value of xi under p must be 1 because xi +U(XPI) = 0 needs to be satisfied.
Since the generator fi of JL also forces xi to be 1 and all other generators
are exactly the same as those of J , p is also a point in V (JL). Moreover,
EL is the elimination ideal of JL, and therefore, a ∈ VXPI

(EL). But this a
contradiction to our assumption that VXPI

(EL) ⊆ VXPI
(U(XPI)) and such

a point a (and p) does not exist.
2. U(a) = 0, or in other words a ∈ VXPI

(U(XPI)). Using similar argument as
the previous case, we can show that a ∈ VXPI

(EH). This is again a contra-
diction to our assumption VXPI

(U(XPI)) ⊆ VXPI
(EH).

In conclusion, there exists no point in V (J) (or the miter is infeasible) when
U(XPI) satisfies Eq. 3, and therefore, circuit can be rectified at xi.

Now we will prove the only if direction of the proof. We show that if 1 �∈
EL + EH , then there exists no polynomial U(XPI) that can rectify the circuit.
If 1 �∈ EL + EH , then EL and EH have a common zero. Let a be a point in
VXPI

(EL) and VXPI
(EH). This point can be extended to some points p′ and p′′

in V (JL) and V (JH), respectively. Notice that in point p′ the value of xi will be
1, and in p′′ xi will be 0. Any polynomial U(XPI) will either evaluate to 0 or 1
for the assignment a to the primary inputs. If it evaluates to 1, then we can say
that p′ is in V (J) as fi in J forces xi = 1 and all other generators of J and JL

are same. This implies that fm(p′) = 0 (fm: miter polynomial is feasible) and
this choice of U(XPI) will not rectify the circuit. If U(XPI) evaluates to 0, then
p′′ is a point in V (J).

Therefore, no choice of U(XPI) can rectify the circuit if 1 �∈ EL + EH . ��
Example 5.1. Consider the buggy modulo multiplier circuit of Fig. 2(b) (repro-
duced in Fig. 3), where the gate output r0 should have been the output of an
XOR gate, but an AND gate is incorrectly implemented. We apply Theorem5.1
to check for single-fix rectifiability at r0. The polynomials for the gates of the
correct circuit implementation are,

f1 : c0 + a0 · b0, f2 : c1 + a0 · b1, f3 : c2 + a1 · b0, f4 : c3 + a1 · b1,

f5 : r0 + c1 + c2, f6 : z0 + c0 + c3, f7 : z1 + r0 + c3
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Fig. 3. A buggy 2-bit modulo multiplier circuit

The problem is modeled over F4 and let α be a primitive element of F4. The
word-level polynomials are f8 : Z + z0 + z1α, f9 : A + a0 + a1α, and f10 :
B + b0 + b1α. The specification polynomial is fspec : Zs +AB. We create a miter
polynomial against this specification as fm : t(Z − Zs) − 1.

The ideals JL and JH are constructed as:

JL = 〈fspec, f1, . . . , f4, r0 + 1, f6, . . . , f10, fm〉
JH = 〈fspec, f1, . . . , f4, r0, f6, . . . , f10, fm〉

The ideal J0 is:

J0 = 〈b21 − b1, b
2
0 − b0, a

2
1 − a1, a

2
0 − a0〉,

and the corresponding ideals EL and EH are computed to be:

EL = 〈a0b1 + a1b0, a1b0b1 + a1b0, a0a1b0 + a1b0〉
EH = 〈b0b1 + b0 + b1 + 1, a1b1 + a1 + b1 + 1, a0b1 + a1b0 + 1,

a0b0 + a0 + b0 + 1, a0a1 + a0 + a1 + 1〉

Computing a Gröbner basis G of EL + EH results in G = {1}. Therefore, we
can rectify this circuit at r0.

On the other hand, if we apply the rectification theorem at net c2, the respec-
tive ideals EL and EH are as follows,

EL = 〈a20 + a0, a
2
1 + a1, b

2
0 + b0, b

2
1 + b1, a1b0 + b0, a0b1b0 + a0b1 + a0b0 + a0, a0a1 + a0〉

EH = 〈a20 + a0, b
2
0 + b0, b

2
1 + b1, b1b0 + b1 + b0 + 1, a1 + 1, a0b0 + a0 + b0 + 1〉

When we compute G = GB(EL + EH), we obtain G �= {1} indicating that
single-fix rectification is not possible at net c2, for the given bug.
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6 Craig Interpolants in Finite Fields

Once it is ascertained that a net xi admits single-fix rectification, the subsequent
task is to compute a rectification polynomial function xi = U(XPI) in terms of
the primary inputs of the circuit. In this section, we describe how such a recti-
fication polynomial function can be computed. For this purpose, we introduce
the concept of Craig interpolants using algebraic geometry in finite fields.

We describe the setup for Craig interpolation in the ring R = Fq[x1, . . . , xn].
Partition the variables {x1, . . . , xn} into disjoint subsets A,B,C. We are given
two ideals JA ⊂ Fq[A,C], JB ⊂ Fq[B,C] such that the C-variables are common
to the generators of both JA, JB . From here on, we will assume that all ideals
include the corresponding vanishing polynomials. For example, generators of JA

include Aq − A,Cq − C, where Aq − A = {xq
i − xi : xi ∈ A}, and so on.

Then these ideals become radicals and we can apply Lemmas 3.1 and 3.2. We
use VA,C(JA) to denote the variety of JA over the Fq-space spanned by A and
C variables, i.e. VA,C(JA) ⊂ F

A
q × F

C
q . Similarly, VB,C(JB) ⊂ F

B
q × F

C
q .

Now let J = JA + JB ⊆ Fq[A,B,C], and suppose that it is found by appli-
cation of the Weak Nullstellensatz (Theorem 3.1) that VA,B,C(J) = ∅. When
we compare the varieties of JA and JB, then we can consider the varieties in
F

A
q × F

B
q × F

C
q , as VA,B,C(JA) = VA,C(JA) × F

B
q ⊂ F

A
q × F

B
q × F

C
q . With this

setup, we define the interpolants as follows.

Definition 6.1 (Interpolants in finite fields). Given two ideals JA ⊂ Fq[A,C]
and JB ⊂ Fq[B,C] where A,B,C denote the three disjoint sets of variables such
that VA,B,C(JA) ∩ VA,B,C(JB) = ∅. Then there exists an ideal JI satisfying the
following properties:

1. VA,B,C(JI) ⊇ VA,B,C(JA)
2. VA,B,C(JI) ∩ VA,B,C(JB) = ∅
3. Generators of JI contain only the C-variables; or JI ⊆ Fq[C].

We call VA,B,C(JI) the interpolant in finite fields of the pair (VA,B,C(JA),
VA,B,C(JB)), and the corresponding ideal JI the ideal-interpolant.

As the generators of JI contain only the C-variables, the interpolant
VA,B,C(JI) is of the form VA,B,C(JI) = F

A
q × F

B
q × VC(JI). Therefore, the sub-

scripts A,B for the interpolant VA,B,C(JI) may be dropped for the ease of read-
ability.

Example 6.1 Consider the ring R = F2[a, b, c, d, e], partition the variables as
A = {a}, B = {e}, C = {b, c, d}. Let ideals

JA = 〈ab, bd, bc + c, cd, bd + b + d + 1〉 + J0,A,C

JB = 〈b, d, ec + e + c + 1, ec〉 + J0,B,C
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where J0,A,C and J0,B,C are the corresponding ideals of vanishing polynomials.
Then,

VA,B,C(JA) = F
B
q × VA,C(JA) =

(abcde) : {01000,00010, 01100, 10010, 01001, 00011, 01101, 10011}
VA,B,C(JB) = F

A
q × VB,C(JB) =

(abcde) : {00001,00100, 10001, 10100}
Ideals JA, JB have no common zeros as VA,B,C(JA) ∩ VA,B,C(JB) = ∅. The pair
(JA, JB) admits a total of 8 interpolants:

1. V (JS) = (bcd) : {001, 100, 110}
JS = 〈cd, b + d + 1〉

2. VC(J1) = (bcd) : {001, 100, 110, 101}
J1 = 〈cd, bd + b + d + 1, bc + cd + c〉

3. VC(J2) = (bcd) : {001, 100, 110, 011}
J2 = 〈b + d + 1〉

4. VC(J3) = (bcd) : {001, 100, 110, 111}
J3 = 〈b + cd + d + 1〉

5. VC(J4) = (bcd) : {001, 100, 110, 011, 111}
J4 = 〈bd + b + d + 1, bc + b + cd + c + d + 1〉

6. VC(J5) = (bcd) : {001, 100, 110, 101, 111}
J5 = 〈bc + c, bd + b + d + 1〉

7. VC(J6) = (bcd) : {001, 100, 110, 101, 011}
J6 = 〈bd + b + d + 1, bc + cd + c〉

8. VC(JL) = (bcd) :
{001, 011, 100, 101, 110, 111}
JL = 〈bd + b + d + 1〉.

Fig. 4. The Interpolant lattice
for Example 6.1

It is easy to check that all V (JI) satisfy the 3 conditions of Definition 6.1. Note
also that V (JS) is the smallest interpolant, contained in every other interpolant.
Likewise, V (JL) contains all other interpolants and it is the largest. The other
containment relationships are shown in the corresponding interpolant lattice in
Fig. 4; VC(J1) ⊂ VC(J5), VC(J1) ⊂ VC(J6), etc.

Theorem 6.1 (Existence of Craig Interpolants). An ideal-interpolant JI , and
correspondingly the interpolant VA,B,C(JI), as given in Definition 6.1, always
exists.

Proof. Consider the elimination ideal JI = JA ∩ Fq[C]. We show JI satisfies the
three conditions for the interpolant.

Condition 1: VA,B,C(JI) ⊇ VA,B,C(JA). This condition is trivially satisfied due
to construction of elimination ideals. As JI ⊆ JA, VA,B,C(JI) ⊇ VA,B,C(JA).
Condition 2: VA,B,C(JI) ∩ VA,B,C(JB) = ∅. This condition can be equivalently
stated as VB,C(JI) ∩ VB,C(JB) = ∅ as neither JI nor JB contain any variables
from the set A. We prove this condition by contradiction. Let’s assume that



Rectification of Arithmetic Circuits with Craig Interpolants in Finite Fields 95

there exists a common point (b, c) in VB,C(JI) and VB,C(JB). We know that the
projection of the variety PrA(VA,C(JA)) is equal to the variety of the elimination
ideal VC(JI), where JI = JA ∩ Fq[C], due to Lemma 3.2. Therefore, the point
(c) in the variety of JI can be extended to a point (a, c) in the variety of JA.
This implies that the ideals JA and JB vanish at (a,b, c). This is a contradiction
to our initial assumption that the intersection of the varieties of JA and JB is
empty. Thus JI , JB have no common zeros.
Condition 3: The generators of JI contain only the C-variables. This condi-
tion is trivially satisfied as JI is the elimination ideal obtained by eliminating
A-variables in JA. ��

The above theorem not only proves the existence of an interpolant, but also
gives a procedure to construct its ideal: JI = JA ∩Fq[C]. In other words, compute
a reduced Gröbner basis G of JA w.r.t. the elimination order A > B > C and
take GI = G ∩ Fq[C]. Then GI gives the generators for the ideal-interpolant JI .

Example 6.2. The elimination ideal JI computed for JA from Example 6.1 is
JI = JS = 〈cd, b + d + 1〉 with variety VC(JI) = (bcd) : {001, 100, 110}. This
variety over the variable set A and C is VA,C(JI) = (abcd) :
{0001, 0100, 0110, 1001, 1100, 1110}, and it contains VA,C(JA). Moreover,
VA,B,C(JI) also has an empty intersection with VA,B,C(JB).

Theorem 6.2 (Smallest interpolant). The interpolant VA,B,C(JS) correspond-
ing to the ideal JS = JA ∩ Fq[C] is the smallest interpolant.

Proof. Let JI ⊆ Fq[C] be any another ideal-interpolant �= JS . We show that
VC(JS) ⊆ VC(JI). For VC(JI) to be an interpolant it must satisfy

VA,B,C(JA) ⊆ VA,B,C(JI)

which, due to Theorem 3.2, is equivalent to

I(VA,B,C(JA)) ⊇ I(VA,B,C(JI)) =⇒ JA ⊇ JI

As the generators of JI only contain polynomials in C-variables, this relation
also holds for the following

JA ∩ Fq[C] ⊇ JI =⇒ JS ⊇ JI =⇒ VC(JS) ⊆ VC(JI). ��

6.1 Computing a Rectification Function from Craig Interpolants

Back to our formulation of single-fix rectification, from Theorem5.1 we have
1 ∈ EL + EH or V (EL) ∩ V (EH) = ∅. Therefore, we can consider the pair
(EL, EH) for Craig interpolation. In other words, based on the notation from
Definition 6.1, JA = EL and JB = EH . Moreover, EL and EH are elimi-
nation ideals containing only XPI variables. As a result, the partitioned set
of variables for Craig interpolation A, B, and C all correspond to primary
inputs. Furthermore, we want to compute an ideal JI in XPI such that
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VXPI
(EL) ⊆ VXPI

(JI) and VXPI
(JI) ∩ VXPI

(EH) = ∅. The smallest ideal-
interpolant JI = EL ∩ F2k [XPI ] = EL itself. Therefore, we use EL to compute
the correction function U(XPI).

Obtaining U(XPI) from EL: In finite fields, given an ideal J , it always possible
to find a polynomial U such that V (U) = V (J). The reason is that every ideal
in a finite field has a finite variety, and a polynomial with those points as its
roots can always be constructed using the Lagrangian interpolation formula. We
construct the rectification polynomial U from the ideal-interpolant EL as shown
below, such that V (EL) = V (U).

Let the generators of EL be denoted by g1, . . . , gt. We can compute U as,

U = (1 + g1)(1 + g2) · · · (1 + gt) + 1 (4)

It is easy to assert that V (U) = V (EL). Consider a point a in V (EL). As all
of g1, . . . , gt vanish (= 0) at a,

U(a) = (1 + g1(a))(1 + g2(a)) · · · (1 + gt(a)) + 1
= (1 + 0)(1 + 0) · · · (1 + 0) + 1 = 0

Conversely, for a point a′ �∈ V (EL), at least one of g1, . . . , gt will evaluate to
1. Without loss of generality, if g1 evaluates to 1 at a′, then U = (1 + 1)(1 +
0) · · · (1 + 0) + 1 �= 0.

Using Eq. (4), a recursive procedure is derived to compute U , and it is
depicted in Algorithm 2. At every recursive step, we also reduce the interme-
diate results by (mod J0) (line 7) so as to avoid terms of high degree. In this
fashion, from the ideal-interpolant EL, we compute the single-fix rectification
polynomial function U(XPI), and synthesize a sub-circuit at net xi such that
xi = U(XPI) rectifies the circuit.

Algorithm 2. Compute U from J such that V (U) = V (J)
1: U = compute U(J, J0) + 1
2: procedure compute U(J, J0) /*J = 〈g1, . . . , gt〉*/
3: if size(J) = 1 then
4: return (1 + J [1])

5: subsetJ = {J [1], J [2], . . . , J [size(J) − 1]}
6: poly S1 = compute U(subsetJ, J0)

7: Perform S1 · J [size(J)]
J0−→+ S2

8: return S1 + S2

Example 6.3. Example 5.1 showed that the buggy circuit of Fig. 3 can be recti-
fied at net r0. This rectification check required the computation of the (Gröbner
basis of) ideal EL. Using Algorithm2, we compute U(XPI) from EL to be
a0b1 + a1b0, and the rectification polynomial as r0 + a0b1 + a1b0. This can be
synthesized into a sub-circuit as r0 = (a0 ∧ b1) ⊕ (a1 ∧ b0), by replacing the
modulo 2 product and sum in the polynomial with the Boolean AND and XOR
operators, respectively.
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7 Efficient Gröbner Basis Computations for EL and EH

The proposed rectification approach requires the computation of (generators of)
elimination ideals EL and EH . This is achieved by computing a Gröbner basis
each for GB(JL + J0) ∩ F2k [XPI ] and GB(JH + J0) ∩ F2k [XPI ], respectively.
The rectification polynomial function xi = U(XPI) is subsequently derived from
the generators of EL. As the generators of JL and JH comprise polynomials
derived from the entire circuit, these GB-computations become infeasible for
larger circuits due to its high complexity. In [37], it was shown that the time and
space complexity of computing GB(J + J0) over Fq[x1, . . . , xn] is bounded by
qO(n). In the context of our work, as q = 2k where k is the operand-width, and n
the number of variables (nets) in the miter, we have to overcome this complexity
to make our approach practical for large circuits.

Prior work [8] has shown that the GB-computation can be significantly
improved when the polynomials are derived from circuits. By analyzing the
topology of the given circuit, a specialized term order can be derived that can
significantly reduce the number of Spoly computations in the GB-algorithm. We
present a similar approach to improve the GB-computation for ideals EL, EH .

Lemma 7.1 (Product Criterion [40]). For two polynomials fi, fj in any poly-
nomial ring R, if the equality lm(fi) · lm(fj) = LCM(lm(fi), lm(fj)) holds, i.e.

if lm(fi) and lm(fj) are relatively prime, then Spoly(fi, fj)
G−→+ 0.

Buchberger’s algorithm therefore does not pair those polynomials fi, fj

(Algorithm 1, line 4) whose leading monomials are relatively prime, as they
do not produce any new information in the basis. Moreover, based on the
above criterion, when the leading monomials of all polynomials in the basis
F = {f1, . . . , fs} are relatively prime, then all Spoly(fi, fj)

G−→+ 0. As no new
polynomials are generated in Buchberger’s algorithm, F already constitutes a
Gröbner basis (F = GB(J)). For a combinational circuit C, a specialized term
order > can always be derived by analyzing the circuit topology which ensures
such a property [4,7]:

Proposition 7.1 (From [7]). Let C be an arbitrary combinational circuit. Let
{x1, . . . , xn} denote the set of all variables (signals) in C. Starting from the
primary outputs, perform a reverse topological traversal of the circuit and order
the variables such that xi > xj if xi appears earlier in the reverse topological
order. Impose a lex term order > to represent each gate as a polynomial fi, s.t.
fi = xi + tail(fi). Then the set of all polynomials {f1, . . . , fs} forms a Gröbner
basis G, as lt(fi) = xi and lt(fj) = xj for i �= j are relatively prime. This term
order > is called the Reverse Topological Term Order (RTTO).

RTTO ensures that the set of all polynomials {f1, . . . , fs} of the given circuit
C have relatively prime leading terms. However, the model of the algebraic miter
(Fig. 1, with the Spec and the miter polynomial, in addition to the given circuit)
is such that under RTTO >, not all polynomials have relatively prime leading
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terms. However, we show that imposition of RTTO on the miter still significantly
reduces the amount of computation required for Gröbner bases. We demonstrate
the technique on the GB computation for the ideal JL +J0 (analogously also for
JH + J0), corresponding to the miter, as per Theorem 5.1.

Given the word-level miter of Fig. 1, impose a lexicographic (lex) monomial
order on the ring R, with the following variable order:

t > Z > ZS > A > nets of C in RTTO order > Primary input variables (5)

Here t is the free variable used in the miter polynomial, and Z,Zs are the
word-level outputs of Impl and Spec, respectively, and A is the word-level input.
Corresponding to the circuit in Fig. 3 (Example 5.1), we use a lex term order
with variable order:

t > Z > ZS > A > B > z1 > z0 > r0 > c0 > c1 > c2 > c3 > b1 > b0 > a1 > a0

(6)

The polynomials {f1, . . . , f10, fspec, fm} in Example 5.1 are already written
according to the term order of Eq. (6). Note also that the leading terms of the
generators of the ideal JL are the same as the leading terms of polynomials in
{f1, . . . , f10, fspec, fm}. From among these, the only pair of polynomials that do
not have relatively prime leading terms are f8 and fm. This condition also holds
when considering the ideal JL + J0 (instead of only JL) as J0 is composed of
only bit-level primary input variables.

In general, modeling an algebraic miter with RTTO > will ensure that we
have exactly one pair of polynomials with leading monomials that are not rela-
tively prime. This pair includes: (i) the miter polynomial fm : tZ − tZs −1, with
lm(fm) = tZ; and (ii) the polynomial (hereafter denoted by fo) that relates the
word-level and bit-level variables of the circuit, fo : Z+z0+z1α+· · ·+zk−1α

k−1,
with lm(fo) = Z. Therefore, in the first iteration of Algorithm 1 for computing
GB(JL+J0), the only critical pair to compute is Spoly(fm, fo), as all other pairs
reduce to 0, due to Lemma 7.1. Moreover, computing Spoly(fm, fo) results in
Spoly(fm, fo) = t(ZS + z0 + · · · + zk−1α

k−1) + 1. Once again, RTTO > ensures
the following:

Lemma 7.2. Spoly(fm, fo)
JL+J0−−−−→+ h = t · r + 1, where r is a polynomial in

bit-level primary input variables.

Proof. Consider the polynomial reduction of Spoly(fm, fo)
JL+J0−−−−→+ h:

t(ZS + z0 + · · · + zk−1α
k−1) + 1

fspec−−−→+

where fspec = ZS + F(A). The remainder for this reduction will be

t(F(A) + z0 + · · · + zk−1α
k−1) + 1,
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where F(A) is the polynomial specification in word-level input variable(s). This
remainder is then reduced by the polynomial relating the word-level and bit-
level primary input variables, i.e. by A + a0 + · · · + ak−1α

k−1. The subsequent
remainder is

t(F(A) + z0 + · · · + zk−1α
k−1) + 1

A+a0+···+ak−1αk−1

−−−−−−−−−−−−−→+

t(z0 + · · · + zk−1α
k−1 + G(a0, · · · , ak−1)) + 1,

(7)

where the word-level specification polynomial F(A) gets reduced to a polynomial
expression G(a0, . . . , ak−1) in primary input bits. Due to RTTO >, subsequent
divisions of the above remainder in Eq. (7) by {f1, . . . , fs} will successively can-
cel the terms in variables zi, i = 0, . . . , k − 1, and express them in terms of the
primary input bits. Since primary input bits are last in RTTO >, they never
appear as leading terms in any of the polynomials in JL; so the terms in pri-
mary input bits cannot be canceled. As a result, after complete reduction of
Spoly(fm, fo) by JL + J0, the remainder will be a polynomial expression of the
form Spoly(fm, fo)

JL+J0−−−−→+ h = t·r+1, where r is a polynomial only in bit-level
primary input variables. ��

Coming back to the computation GB(JL+J0), the polynomial h is now added
to the current basis, i.e. G = {JL+J0}∪{h} in Buchberger’s algorithm (Line 7 in
Algorithm 1). This polynomial h now needs to be paired with other polynomials
in the basis. There are only two sets of possibilities for subsequent critical pair-
ings: (i) the pair Spoly(fm, h); and (ii) to pair h with corresponding vanishing
polynomials from the ideal J0. For all other polynomials fi ∈ {f1, . . . , fs}, lm(h)
and lm(fi) have relatively prime leading terms, so Spoly(h, fi)i=1,...,s

JL+J0−−−−→+ 0;
so the pairs (h, fi) need not be considered in GB(JL + J0). We now show that

Spoly(fm, h)
G={JL+J0}∪{h}−−−−−−−−−−−→+ 0, so the pair (fm, h) also need not be considered.

From Lemma 7.2 and its proof, we have that h = t · r + 1 and Z +

ZS
G={JL+J0}−−−−−−−−→+= r, with r composed of primary input bits. Let r = e+r′, where

e = lt(r) is the leading term and r′ = r − e is tail(r), both expressed in primary
input bits. With this notation, h = te+tr′+1 and lt(h) = te. The LCM L of lead-
ing monomials of fm and h is L = LCM(lm(fm), lm(h)) = LCM(tZ, te) = tZe.
Consider the computation Spoly(fm, h):

Spoly(fm, h) =
L

lt(fm)
· fm − L

lt(h)
· h

= efm + Zh = e(tZ + tZS + 1) + Z(te + tr′ + 1)
= tr′Z + teZS + Z + e (8)
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Next consider the reduction of Spoly(fm, h) by {JL + J0} ∪ {h}, where h itself
is used in the division. The reduction Spoly(fm, h) h−→+ is computed as,

tr′Z + teZS + Z + e
h−→+ tr′Z + (tr′ + 1)ZS + Z + e

= tr′(Z + ZS) + Z + ZS + e

= (tr′ + 1)(Z + ZS) + e (9)

Reducing the intermediate remainder of Eq. (9) by the polynomials in JL + J0

results in (tr′ +1)(r)+e. This reduction process is similar to the one in the proof
of Lemma 7.2. Now consider the polynomial (tr′ + 1)(r) + e

(tr′ + 1)(r) + e = (tr′ + 1)(e + r′) + e

= ter′ + tr′2 + e + r′ + e

= ter′ + tr′2 + r′ (10)

The polynomial in Eq. (10) can be further reduced by h which results in 0 imply-

ing that Spoly(fm, h)
{JL+J0}∪{h}−−−−−−−−−→+ 0.

ter′ + tr′2 + r′ h−→+ (tr′ + 1)r′ + tr′2 + r′

= tr′2 + r′ + tr′2 + r′ = 0

In summary, we have shown that to compute EL as GB(JL +J0)∩F2k [XPI ],
we only need to compute Spoly(fm, fo)

JL+J0−−−−→+ h, and pair h with polynomials
of J0, as all other Spoly(h, fi) reduce to 0. This gives us the following procedure
to compute the Gröbner basis of EL (respectively EH):

1. Compute Spoly(fo, fm) JL+J0−−−−→+ h, where (fm, fo) is the only pair of polyno-
mials in JL + J0 that do not have relatively prime leading monomials.

2. Use Buchberger’s algorithm to compute GB of the set of vanishing polyno-
mials and h, i.e. compute G = GB(J0 = {x2

i − xi : xi ∈ XPI}, h).
3. From G, collect the polynomials not containing t; i.e EL = G ∩ F2k [XPI ].

These polynomials generate the ideal EL.

The same technique is also used to compute EH by replacing JL with JH in
the above procedure. In our approach, we use the above procedures to compute
EL, EH for Theorem 5.1 and then compute U(XPI) from EL using Algorithm 2.

8 Experimental Results

We have performed rectification experiments on finite field arithmetic circuits
that are used in cryptography, where the implementation is different from the
specification due to exactly one gate. This is to ensure that single-fix rectifica-
tion is feasible for such bugs, so that a rectification function can be computed.
We have implemented the procedures described in the previous sections—i.e.
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the concepts of Theorem 5.1, Sect. 7 and Algorithm 2—using the SINGULAR
symbolic algebra computation system [ver. 4-1-0] [41]. Given a Spec, a buggy
Impl circuit C, and the set X of rectification targets, our approach checks for
each net xi ∈ X if single-fix rectification is feasible, and if so, computes a rec-
tification function xi = U(XPI). The experiments were conducted on a desktop
computer with a 3.5 GHz Intel CoreTM i7-4770K Quad-core CPU, 16 GB RAM,
running 64-bit Linux OS.

Experiments are performed with three different types of finite field circuit
benchmarks. Two of these are the Mastrovito and the Montgomery multiplier cir-
cuit architectures used for modular multiplication. Mastrovito multipliers com-
pute Z = A×B (mod P (x)) where P (x) is a given primitive polynomial for the
datapath size k. Montgomery multipliers are instead preferred for exponentia-
tion operations (often required in cryptosystems). The last set of benchmarks
are circuits implementing point addition over elliptic curves used for encryption,
decryption and authentication in elliptic curve cryptography (ECC).

Table 1. Mastrovito multiplier rectification against Montgomery multiplier specifica-
tion. Time in seconds; Time-out = 5400 s; k: Operand width

k # of Gates SAT Theorem 5.1 Algorithm 2 Mem

Mas Mont

4 48 96 0.09 0.03 0.001 8.16 MB

8 292 319 158.34 0.41 0.006 20.36 MB

9 237 396 4,507 0.47 0.001 18.95 MB

10 285 480 TO 0.84 0.001 28.2 MB

16 1,836 1,152 TO 73.63 0.024 0.32 GB

32 5,482 4,352 TO 3621 0.043 2.4 GB

First we present the results for the case where the reference Spec is given
as a Montgomery multiplier, and the buggy implementation is given as a
Mastrovito multiplier, which is to be rectified. Theorem5.1, along with efficient
GB-computation of the ideals EL, EH , is applied at a net xi ∈ X, such that the
circuit is rectifiable at xi. Table 1 compares the execution time for the SAT-based
approach of [16] against ours (Theorem 5.1) for checking whether a buggy Mas-
trovito multiplier can be rectified at a certain location in the circuit against a
Montgomery multiplier specification. The SAT procedure is implemented using
the abc tool [42]. We execute the command inter on the ON set and OFF set as
described in [16]. The SAT-based procedure is unable to perform the necessary
unsatisfiability check for circuits beyond 9-bit operand word-lengths, whereas
our approach easily scales to 32-bit circuits. Using our approach, the polynomial
U(XPI) needed for rectification is computed from EL and the time is reported
in Table 1 in the Algorithm 2 column. The last column in the table shows the
memory usage of our approach.
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We also perform the rectification when the Spec is given as a polynomial
expression instead of a circuit. Table 2 shows the results for checking whether
the incorrect Mastrovito implementation can be single-fix rectified against the
word-level specification polynomial fspec : ZS + A · B.

Table 2. Mastrovito multiplier rectification against polynomial specification ZS = AB.
Time in seconds; Time-out = 5400 s; k: Operand width

k # of Gates Theorem 5.1 Algorithm 2 Mem

4 48 0.01 0.001 7.24 MB

8 292 0.08 0.006 14.95 MB

16 1,836 4.83 0.038 0.2 GB

32 5,482 100.52 0.015 1.42 GB

64 21,813 4,989 0.117 12.25 GB

Point addition is an important operation required for the task of encryption,
decryption and authentication in ECC. Modern approaches represent the points
in projective coordinate systems, e.g., the López-Dahab (LD) projective coor-
dinate [43], due to which the operations can be implemented as polynomials in
the field.

Table 3. Point Addition circuit rectification against polynomial specification D =
B2 · (C + aZ2

1 ). Time in seconds; Time-out = 5400 s; k: Operand width

k # of Gates Theorem 5.1 Algorithm 2 Mem

8 243 0.05 0.022 9.73 MB

16 1,277 3.48 0.019 88.78 MB

32 3,918 86.75 0.028 0.47 GB

64 1,5305 4,923 0.053 7.13 GB

Example 8.1. Consider point addition in López-Dahab (LD) projective coordinate.
Given an elliptic curve: Y 2 +XY Z = X3Z+aX2Z2 +bZ4 over F2k , where X,Y, Z are
k-bit vectors that are elements in F2k and similarly, a, b are constants from the field.
We represent point addition over the elliptic curve as (X3, Y3, Z3) = (X1, Y1, Z1) +
(X2, Y2, 1). Then X3, Y3, Z3 can be computed as follows:

A = Y2 · Z2
1 + Y1 B = X2 · Z1 + X1

C = Z1 · B D = B2 · (C + aZ2
1 )

Z3 = C2 E = A · C
X3 = A2 + D + E F = X3 + X2 · Z3

G = X3 + Y2 · Z3 Y3 = E · F + Z3 · G
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Each of the polynomials in the above design are implemented as (gate-level)
logic blocks and are interconnected to obtain final outputs X3, Y3 and Z3. Table 3
shows the results for the block that computes D = B2 · (C +aZ2

1 ). Our approach
can rectify up to 64-bit circuits.

Limitations of Our Approach: We also performed experiments where we
apply Theorem 5.1 at a gate output which cannot rectify the circuit. We used
the Montgomery multiplier as the specification and a Mastrovito multiplier as
the implementation. For 4- and 8-bit word-lengths, the execution time of our
approach was comparable to that of the SAT-based approach, and was ∼0.1 s.
For the 16-bit multipliers, the SAT-based approach completed in 0.11 s. On the
other hand, application of Theorem5.1 resulted in a memory explosion and con-
sumed ∼30 GB of memory within 5–6 min. This is due to the fact that when
1 �∈ EL + EH , then GB(EL + EH) is not equal to {1} and the Gröbner basis
algorithm produces a very large output. To improve our approach we are working
on term ordering heuristics so that our approach can perform efficiently in both
cases. We also wish to employ other data-structures better suited to circuits, as
SINGULAR’s data structure is not very memory efficient. SINGULAR also has
an upper limit on the number of variables (32,768) that can be accommodated
in the system, limiting application to larger circuits.

9 Conclusion

This paper considers single-fix rectification of arithmetic circuits. The approach
is applied after formal verification detects the presence of a bug in the design. We
assume that post-verification debugging has been performed a set (X) of nets
is provided as rectification targets. The paper presents necessary and sufficient
conditions that ascertains whether a buggy circuit can be single-fix rectified at
a net xi ∈ X. When single-fix rectification is feasible, we compute a rectification
polynomial function xi = U(XPI), which can be synthesized into a circuit. For
this purpose, the paper introduces the notion of Craig interpolants in algebraic
geometry in finite fields, proves their existence, and gives an effective procedure
for their computation. Furthermore, we show how the rectification polynomial
can be computed from algebraic interpolants. Experiments are performed over
various finite field arithmetic circuits that show the efficiency of our approach
as against SAT-based approaches. Limitations of our approach are also ana-
lyzed. We are currently investigating the extension of our approach to multi-fix
rectification.
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43. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8 16

https://doi.org/10.1007/3-540-09519-5_52
https://doi.org/10.1007/3-540-09519-5_52
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/3-540-48892-8_16

	Rectification of Arithmetic Circuits with Craig Interpolants in Finite Fields
	1 Introduction
	1.1 Problem Description, Objectives, and Contributions

	2 Review of Previous Work
	3 Preliminaries: Notation and Background Results
	4 Algebraic Miter for Equivalence Checking
	5 Formulating the Rectification Check
	5.1 Single Fix Rectification

	6 Craig Interpolants in Finite Fields
	6.1 Computing a Rectification Function from Craig Interpolants

	7 Efficient Gröbner Basis Computations for EL and EH
	8 Experimental Results
	9 Conclusion
	References




