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Abstract. Traffic sign detection and recognition is a research hotspot in the
computer vision and intelligent transportation systems fields. It plays an
important role in driver-assistance systems and driverless operation. Detecting
signs, especially small ones, remains challenging under a variety of road traffic
conditions. In this manuscript, we propose an end-to-end deep learning model
for detecting and recognizing traffic signs in high-resolution images. The model
consists of basic feature extraction and multi-task learning. In the first part, a
network with fewer parameters is proposed, and an effective feature fusion
strategy is adopted to gain a more distinct representation. In the second part,
multi-task learning is conducted on different hierarchical layers by considering
the difference between the detection and classification tasks. The detection
results on two newly published traffic sign benchmarks (Tsinghua-Tencent
100K and CTSD) demonstrate the robustness and superiority of our model.
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1 Introduction

Traffic sign detection (TSD) and traffic sign recognition (TSR) are important compo-
nents of autonomous driving and assisted driving, which are designed to help drivers
avoid traffic accidents. Traffic sign detection aims to find areas that contain a traffic
sign. Traffic sign recognition aims to determine the specific categories of these areas.
The automatic detection and recognition of traffic signs can improve driving safety and
comfort. However, effective traffic sign detection is not easy to achieve when faced
with complex natural scenes. On the other hand, as the speed increases, distant traffic
signs, which are relatively small and very difficult to detect, need to be detected in
advance.

Many approaches have been proposed to address TSD and TSR; a good review [1]
shows the efforts that have been made in recent years. Convolutional neural network
(CNN)methods [2–5] have achieved perfect or near-perfect results on the German Traffic
Sign Detection Benchmark (GTSDB) [6] and German Traffic Sign Recognition
Benchmark (GTSRB) [7]. The reason for this is that CNNs generate more discriminative
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features than traditional methods, such as color segmentation [8–10] and shape detection
[11, 12]. However, the number of datasets for TSD and TSR is relatively small and not
representative of a real environment. For example, the GTSDB contains only 900 images,
while most of the images in the GTSRB contain traffic signs; thus, we need only to
perform image classification. Similar to other computer vision tasks, deep learning
algorithms [13–15] are also used to detect and recognize traffic signs.

At present, the proportion of traffic signs in most benchmarks is relatively large,
which indicates that when a vehicle is close to a traffic sign, the remaining driver
reaction time will be very short. In this work, we focus on relatively small traffic signs
in the distance. We propose a multi-task deep learning framework to simultaneously
detect and recognize traffic signs in an image. Compared with previous work [16], our
method performs better in terms of recall and accuracy. As illustrated in Fig. 3, our
model consists of feature extraction and multi-task learning. In the first part, the model
gains a more distinct representation via feature fusion from multiple layers. In the
second part, multi-task learning based on detection and classification, which includes
three branches: bbox branch, type branch and pixel branch, is carried out.

We perform experiments on the Tsinghua-Tencent 100K (TT100K) [16] and
Chinese Traffic Sign Dataset (CTSD) [17] to illustrate the effectiveness and efficiency
of our proposed method. The size of many traffic signs in TT100K is approximately
20 * 20 pixels, and the signs occupy less than 1/10000 of the area of their respective
images. Image samples from the TT100K benchmark are shown in Fig. 1. The sizes of
traffic signs in the CTSD are relatively larger; samples of the CTSD are shown in
Fig. 2.

Our main contributions are as follows. First, we propose a feature extraction net-
work with fewer parameters that outperforms the work in [16]. Second, we add a

Fig. 1. TT100K image samples. (a) (c) Original images: the green rectangle represents the area
that contains small traffic signs. (b) (d) Image patches that contain the small traffic signs
corresponding to the original images
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“bottleneck” layer, which is similar to ResNet [18], to fuse the feature maps from
different layers, which improves the recall of the TSD. Third, multi-task learning on
different hierarchical feature maps is conducted to further improve the result, especially
for small traffic signs. Finally, the proposed method is shown to achieve state-of-the-art
results on TT100K and comparable results on the CTSD.

The remainder of this paper is organized as follows. In Sect. 2, we review previous
work. In Sect. 3, we describe the network structure of the model. Detailed experiments
are introduced in Sect. 4, and we conclude this paper in Sect. 5.

2 Related Work

2.1 Traffic Sign Detection

Traffic Sign Detection Traffic sign detection aims to segment the regions of an image
that may contain traffic signs. Three main approaches to TSD exist: the color-based,
shape-based and sliding-window methods. The color-based method is used to identify
specific regions in various color spaces. Since the original RGB color space is sensitive
to changing light, other color spaces, such as the HSI color space [8, 19] and Lab color
space [9], are adopted to improve performance. For example, the authors of [20, 21]
adopt color enhancement in the three channels of the RGB color space to filter regions
that do not contain traffic signs. The author of [17] uses color probability maps and
maximally stable extremal regions to generate candidates. The shape-based method
detects specific circular, triangular and octagonal regions. The Hough transform [12],
fast radial symmetry [11], log-polar transformation [22] and distance to the border [23]
are commonly used to detect the shape information of traffic signs. For example, [24]
proposes a saliency model for identifying sign-specific color, shape and spatial location
information to facilitate detection. The sliding-window method goes through all pos-
sible positions of the traffic signs. The shortcoming of these methods is that they are
usually time-consuming. For example, a coarse-to-fine algorithm for TSD is presented
in [25]. The algorithm roughly identifies all candidates by using a small sliding window
and relocates these candidates to a larger window for further verification. Although this
method achieves state-of-the-art detection results on the GTSDB, it is extremely time-
consuming when the images have high resolution.

Fig. 2. CTSD image samples. The benchmark includes images at two different resolutions.
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2.2 Traffic Sign Recognition

Traffic sign recognition aims to classify candidate regions into subclasses. The tradi-
tional methods based on handcrafted features, the HOG [8, 26, 27] and the LBP [28] are
used to train classifiers such as the SVM [23, 28, 29], k-NN [19], ELM [30] and sparse
representation [31, 32]. Compared with handcrafted features, the features learned by
neural networks from a large amount of data are more discriminative. Most methods that
achieve state-of-the-art results on the GTSRB utilize neural networks for classification.
For example, a committee of CNNs is used to perform classification in [3]. Several
CNNs trained on differently preprocessed data are combined into a multi-column CNN
to perform classification in [4]. The authors of [5] use a CNNwith a hinge loss stochastic
gradient descent function to perform classification and achieve a nearly perfect result
that is better than human performance. Most of the methods above consider only
classification and do not involve end-to-end detection and recognition.

2.3 Object Detection Based on Deep CNNs

Deep convolutional neural networks have attracted substantial attention because of
their outstanding performance in object detection and classification. We classify deep
CNNs into region-proposal-based methods and others. Region-proposal-based methods
predict the number of candidates that contain targets and then perform classification
and regression on these candidates. For example, in Fast-RCNN [33], selective search
is used to generate approximately 1000 candidates. Based on Fast-RCNN, Faster-
RCNN [15] integrates the region proposal network (RPN) into the entire network to
accelerate detection. R-FCN [14] is a region-based method that improves the detection
and recognition accuracy by generating position-sensitive maps and has achieved state-
of-the-art results on PASCAL VOC 2012. Other methods that are not based on a region
proposal, such as YOLO [34] and SSD [13], aim at real-time detection performance.
These methods are much faster than region-based methods and have relatively lower
detection and recognition accuracy.

Deep CNNs have also been used in intelligent transportation systems. For example,
the authors of [35] propose a deep neural network based on Overfeat [36] to detect cars
and lanes on a highway. Based on [35], the authors of [16] propose multi-task learning
to simultaneously detect and recognize small traffic signs in images. A fully convo-
lutional network (FCN) is used in [37] to generate a heat map of the traffic signs. The
candidates are generated on these heat maps and are then classified by a shallow CNN.

Small object detection is an open challenge, with few methods showing good
performance. In [38], the authors design a detector to detect tiny faces in an image. The
contextual information and resolution information are fully used to enhance the
accuracy of small face detection. A network based on SSD [13] is used to detect small
traffic signs in [39]. Based on an image pyramid strategy and SOS-CNN, this method
has achieved state-of-the-art results on TT100K. Perceptual generative adversarial
networks (GANs) [40] are used to learn more discriminative feature representations of
small traffic signs. GANs effectively detected small traffic signs on TT100K.

We propose an end-to-end learning structure to solve the problem of small traffic
sign detection and recognition. The performance of the proposed method is evaluated
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on the TT100K dataset. The CTSD is used to evaluate the generality of our model. Our
work is based on the method in [16] but with several significant modifications. The
implementation details and experimental results are described later.

3 Our Work

Our proposed network has an architecture similar to that of FCNs, as shown in Fig. 3,
with fewer parameters and being insensitive to image size. The first half of the network
is a feature extraction subnetwork similar to the VGG net [41]; a new feature fusion
strategy that is similar to ResNet is also adopted. The second half of the network is a
multi-task learning subnetwork that includes three branches: the bbox branch, pixel
branch and type branch. For the bbox branch, each result represents the distance
between the original 4 * 4 pixel region and the four sides of the predicted bounding
box of the target. The pixel branch represents the probability that a certain 4 * 4 pixel
region in the input image contains a target object. The type branch represents the
probability of a specific class. The visualization results of the type branch and pixel
branch are shown in Fig. 4. Both general traffic signs and small traffic signs can be
detected on the heat maps.

3.1 Feature Extraction Network

For the first part of the network, we proposed a feature extraction network with fewer
parameters, which has better performance than that in [16]. To some extent, the good
performance of deep learning depends on a large number of data sets. Some commonly
used benchmarks for deep learning are shown in Table 1, and the sizes of some deep
learning models are shown in Table 2. Clearly, the amount of data and the size of each
model are unbalanced. In general, models with larger parameters require more training
data. Considering the design of the VGG network, we propose a feature extraction
network with fewer parameters. The parameters of the new model reflect a reduction of
75% compared with the previous model. The sizes of the convolution kernel are mainly
3 * 3 and 1 * 1. The fifth convolution layer adopts a relatively large convolution

Fig. 3. The architecture of our network, which consists of four convolution blocks, a
“bottleneck” block and three branches after the fifth block.
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kernel size of 6 * 6 to learn more contextual information and own larger receptive
fields. These two tricks are proven to be effective for detecting small objects in [38].
The number of convolution steps of the feature extraction network is 16, and the final
feature maps are twice as large as before.

Fig. 4. The original images and heat maps of different branches. (a) (d) (g) The original testing
image. (b) (e) (h) Heat maps of the pixel branch, which represents the probability that the
corresponding position contains the target. (c) (f) (i) Heat maps of the type branch, which
represents the probability that the corresponding position belongs to a specific class

Table 1. Open deep learning benchmarks

Benchmark Number (k) Labels

ILSVRC 2012 1200 1000
Open Images Dataset 9000 6000
Microsoft COCO 330 80
PASCOL VOC 22 20
TT100K 9.7 200
CTSD 1.1 48
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3.2 Feature Fusion Strategy

The sizes of traffic signs in TT100K vary widely, with most being of small size. The size
distribution is shown in Fig. 5. We show the visualization results of the last two con-
volutional feature maps for two different sizes of traffic signs in Fig. 6. In general, we
need more detailed information to detect small targets, which is not always true for large
targets. Though the model can detect more small traffic signs if we use the information
of convolution layer conv4, the accuracy of the classification will decrease. Considering
the difference between small traffic sign detection and large traffic sign detection, we
propose a feature fusion strategy that is similar to ResNet [18]. A “bottleneck” layer,
which is used to fuse the feature maps of the last two convolution layers, is added to the
feature extraction network. The final feature maps retain more details. In addition, our
feature fusion strategy detects more traffic signs while ensuring classification accuracy.

3.3 Hierarchical Multi-task Learning

In deep learning, differences exist in the characteristic information needed by the target
detection and classification tasks. In general, the larger the number of convolutional
networks, the smaller the size of the convolutional feature maps. The classification task
requires high-level features that are more representative. However, this is not true for the
small target detection task. If the size of the feature maps is too small, it will not be
conducive to the detection of small traffic signs. Considering the difference, we perform
multi-task learning on different hierarchical feature maps. The detection task is based on
relatively larger feature maps, while the classification task is based on higher feature
maps. Specifically, the convolution step of the pixel branch and the type branch is 32,
while the convolution step is 16 for the box branch. We add additional convolutional
layers to the pixel branch and type branch. Based on this strategy, we further improve the
detection recall rate of small traffic signs. The overall recall rate and accuracy rate on the
TT100K benchmark are 94% and 91%, respectively, which are 3% and 3% higher than
before.

Table 2. Commonly used deep learning model size

Model Faster-RCNN R-FCN YOLO SSD Model [1]

Size (MB) 528 203 257 114 446

Fig. 5. The size distribution of traffic signs in TT100K.
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3.4 Training

Our experimental environment is a Linux PC with a single NVIDIA Tesla K40 GPU
and 12 GB of memory. Our deep learning framework is Caffe. Images in the TT100K
benchmark cannot be trained directly because of the image sizes and imbalance among
traffic sign classes. To address the first problem, we randomly resize the original
images within a certain range. A rectangle of 640 * 480 is utilized to segment the
resized image according to the ground truth, which represents the position of the
bounding box. For the second problem, we place the standard template of each traffic
sign on a background of 640 * 480. These standard templates are rotated and scaled,
and some Gamma color noise is added to obtain adequate training instances. We use a
data augmentation technique that combines the generated images and original images
in the benchmark. The final network input is image patches with a fixed size of
640 * 480. We start training networks from scratch. The loss function of the pixel
branch and type branch is Softmax loss, while the bbox branch uses L1 loss on the
bounding box regression.

3.5 Testing

We adopt the same multi-scale testing and cropping strategy as used in the testing
phase. The input testing images of the TT100K benchmark are 1280 * 1280, and the
detection results are projected onto the original image according to the scale. In the
projected images, we apply a bounding box merge method to remove redundant
images.

Fig. 6. The visualization results of the last two convolutional feature maps. (a) (d) The original
testing image. (b) (e) The visualization results of conv4. (c) (f) The visualization results of conv5.
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4 Experiments

We describe the experimental details in this section. First, we provide a brief intro-
duction to the two benchmarks. Then, the comparative experiments are introduced in
detail.

4.1 Datasets and Evaluation Metrics

Tsinghua-Tencent 100K [16] is a large traffic sign benchmark that consists of 10,000
images collected from 10 regions of 5 cities in China (including both downtown
regions and suburbs for each city). A total of 30,000 traffic sign instances are included
in this benchmark, with detailed annotations for each sign, such as its bounding box,
pixel mask and class. Each image is 2048 * 2048 pixels in size, which is larger than the
high-resolution images considered in [7]. Common traffic conditions, such as illumi-
nation changes and weather changes, are included in this benchmark, but a data
imbalance exists among classes.

Following [16], we ignore classes with fewer than 100 instances and implement our
method on the remaining 45 classes. The evaluation metrics include accuracy and
recall. Since many small traffic signs exist in the benchmark, the performance is also
evaluated using the same detection metrics as used for the Microsoft COCO bench-
mark. The performance is evaluated on objects of different size, including small objects
(area < area 96 * 96). The CTSD benchmark contains 1100 images (700 for training
and 400 for testing) of different sizes (typical sizes are 1024 * 768 and 1280 * 720).
The benchmark has 48 classes, and the proportion of traffic signs is relatively large. In
this paper, we focus on the more challenging TT100K benchmark and utilize CTSD as
a supplement to evaluate the generalizability of our model.

4.2 Experimental Details

Our experiments are divided into two parts to evaluate the performance of the proposed
method. In the first part, we test the performances of several classic models on the
TT100K dataset to identify the weaknesses of directly applying these models to TSD
and TSR. The classic models used in our work include Fast-RCNN [33], Faster-RCNN
[15], YOLO [34], and R-FCN [14]. The experimental results of Fast-RCNN and Faster-
RCNN on TT100K are published in [16] and [40]. We focus only on YOLO and R-
FCN in this section. In the second part, our experiments are based on the three design
points mentioned above. The first is the feature extraction network, the second is the
feature fusion strategy and the third is the hierarchical multi-task learning strategy. We
initially convert the TT100K dataset into VOC format and fine-tune the YOLO model
and R-FCN model. The results are shown in Table 3, which reveals that these two
traditional models have poor performance in terms of small traffic sign detection.
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YOLO [34] is a fast object-detection framework that does not require region pro-
posal generation. We choose the model that is pre-trained on the Pascal VOC dataset
and fine-tune it using the TT100K benchmark. The network is trained over 45,000
iterations. The images are resized to 416 * 416 and sent to the network. The network
has a stride of 32 pixels; thus, small traffic signs cannot be effectively expressed in the
final feature map, resulting in poor detection results for small objects. R-FCN [14]
performs well on the Pascal VOC dataset. We choose ResNet-101 as the basic feature
extraction network and initialize our network with a model that is pre-trained on
ImageNet. Since ResNet-101 is deeper, we train the network over 200,000 iterations.

R-FCN performs poorly on TT100K. One reason is that TT100K is not as large as
ImageNet; another reason is that small traffic signs cannot be detected easily. However,
it outperforms YOLO on TT100K.

The above experimental results show that the general object-detection models do
not perform well in terms of small sign detection. Taking into account the difficulties of
TT100K, the general object-detection models are not applicable for this benchmark. In
the second part, we propose several improvements to address these problems.

For the feature extraction network, our intuitive idea is to replace the feature
extraction network with the VGG-16 net [27] and ResNet-50 [15] while retaining the
three branches. We use the model pre-trained on ImageNet to fine-tune the two net-
works on TT100K. The VGG-16 network is trained over 80,000 iterations, and the
ResNet-50 network is trained over 100,000 iterations. We propose a shallow network
similar to VGG net with smaller (3 * 3) and fewer convolution filters in most layers to
achieve a 75% decrease in the number of model parameters. This network is regarded
as a baseline in our experiment. The detection results are shown in Table 4. From the
table, we can see that our model significantly improves the accuracy compared to
before.

To verify the effectiveness of the feature fusion strategy, we branch multi-task
learning on feature maps of different sizes. The results are shown in Table 5. In the
“Our-conv3” model, the multi-task learning network is connected to convolution
conv3. The feature fusion strategy is added to the “Our-conv34” model. From the
results, we can see that the feature fusion strategy can increase recall and accuracy at
the same time. Based on the “Our-conv34” model, we further add the hierarchical
multi-task learning strategy to our multi-task learning network. The results are shown
in Table 6. The model “Ours” is the proposed model. Based on the strategy, we further
increase the recall rate, especially the recall rate of small traffic signs.

Table 3. Detection results of different universal object detection models (%)

Model YOLO R-FCN

mAP 33 43
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Table 5. Comparison of the simultaneous detection and classification results of the feature
fusion strategy on TT100K. (R): Recall, (A): Accuracy

Object size (0, 32] (32, 96] (96, 400] (0, 400]

Ours-baseline (R) 0.86 0.96 0.90 0.92
Ours-baseline (A) 0.86 0.94 0.94 0.91
Ours-conv3 (R) 0.89 0.96 0.93 0.93
Ours-conv3 (A) 0.85 0.94 0.93 0.90
Ours-conv34 (R) 0.88 0.97 0.92 0.93
Ours-conv34 (A) 0.86 0.95 0.94 0.91

Table 4. Comparison of the simultaneous detection and classification results of different feature
extraction networks on TT100K. (R): Recall, (A): Accuracy

Object size (0, 32] (32, 96] (96, 400] (0, 400]

Zhu et al. [1] (R) 0.87 0.94 0.88 0.91
Zhu et al. [1] (A) 0.82 0.91 0.91 0.88
VGG-16 [41] (R) 0.88 0.92 0.87 0.90
VGG-16 [41] (A) 0.73 0.88 0.87 0.82
ResNet-50 [18] (R) 0.59 0.65 0.57 0.62
ResNet-50 [18] (A) 0.55 0.61 0.59 0.58
Ours-baseline (R) 0.86 0.96 0.90 0.92
Ours-baseline (A) 0.86 0.94 0.94 0.91

Table 6. Comparison of the simultaneous detection and classification results of the hierarchical
multi-task learning strategy on TT100K. (R): Recall, (A): Accuracy

Object size (0, 32] (32, 96] (96, 400] (0, 400]

Ours-baseline (R) 0.86 0.96 0.90 0.92
Ours-baseline (A) 0.86 0.94 0.94 0.91
Ours-conv34 (R) 0.88 0.97 0.92 0.93
Ours-conv34 (A) 0.86 0.95 0.94 0.91
Ours (R) 0.90 0.97 0.93 0.94
Ours (A) 0.86 0.94 0.95 0.91

Table 7. Comparison of the detection performance of the latest published literature on TT100K.
(R): Recall, (A): Accuracy

Object size (0, 32] (32, 96] (96, 400] (0, 400]

Fast R-CNN [16] (R) 0.24 0.74 0.96 -
Fast R-CNN [16] (A) 0.45 0.51 0.55 -
Faster R-CNN [40] (R) 0.50 0.84 0.91 -

(continued)
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4.3 Performance Comparison

The newest detection results on TT100K are reported in Table 7. In the testing phase,
the default testing scales are 1�, 2� and 4� the source image. The fast version is
tested on only two scales, i.e., 1� and 2�, and the fast version is 4 times faster than the
normal model. The results show that our proposed method achieves a recall rate of 94%
and an accuracy of 91%, which are better than the results reported in [1–3]. Therefore,
our proposed method achieves state-of-the-art results on TT100K. The precision-recall
curves for different traffic sign sizes are shown in Fig. 7. Clearly, the performance of
our approach on the three subsets has largely improved compared to before. The
accuracy and the recall rate for each category for a Jaccard similarity coefficient of 0.5
are shown in Table 4, Table 5 and Table 3. We achieve nearly perfect results in several
categories, such as “il100”, “pl100” and “pl120”. Some of the detection results for the
TT100K testing set are shown in Fig. 9. Small traffic signs under different road con-
ditions can be effectively detected by our proposed method, and our model can suc-
cessfully detect the traffic signs that Zhu et al. [1] missed or detected incorrectly.

Table 7. (continued)

Object size (0, 32] (32, 96] (96, 400] (0, 400]

Faster R-CNN [40] (A) 0.24 0.66 0.81 -
Zhu et al. [16] (R) 0.87 0.94 0.88 0.91
Zhu et al. [16] (A) 0.82 0.91 0.91 0.88
Zhu et al.-fast [16] (R) 0.74 0.91 0.86 0.74
Zhu et al.-fast [16] (A) 0.79 0.90 0.91 0.87
Perceptual GAN [40] (R) 0.89 0.96 0.89 0.93
Perceptual GAN [40] (A) 0.84 0.91 0.91 0.88
SOS-CNN [39] (R) - - - 0.93
SOS-CNN [39] (A) - - - 0.90
Ours-fast (R) 0.82 0.97 0.94 0.91
Ours-fast (A) 0.85 0.94 0.93 0.90
Ours (R) 0.90 0.97 0.93 0.94
Ours (A) 0.86 0.94 0.95 0.91

Table 8. Comparison of the detection performance on CTSD. (R): Recall, (A): Accuracy (%)

Model Recall Accuracy

Yang et al. [17] - 98.77
Zhu et al. [16] 91.38 95.21
Ours 95.40 97.46
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4.4 Generalization Experiments

We evaluate our method using the CTSD benchmark to verify the generalization. The
images in the dataset have different sizes (typical sizes are 1024 * 768 and
1280 * 720); therefore, we resize the images to a fixed resolution (1024 * 1024) in the
training and testing phases. We retrain the model in [1] and the proposed model on the
CTSD. The model pre-trained on TT100K is used to initialize the network. We train
both models over 50,000 iterations, and the results are shown in Table 8. From the
results, we can see that our model also performs better than before on the CTSD. There
are only 700 images available for training and 48 categories of traffic signs that need to
be classified; thus, it is not suitable to train a CNN-based network on these data.
Nevertheless, we still obtain results comparable with those of [11]. Our model achieves
a recall rate of 95% and an accuracy of 97%. The precision-recall curves of the
detection performance are shown in Fig. 8, and the detection results are shown in
Fig. 9. In addition, we also collected some images in the field, the detection results for
which are shown in Fig. 9. The results show the robustness of our model.

Fig. 7. Comparison of the overall detection performances on Tsinghua-Tencent 100K for small,
medium and large traffic signs

Fig. 8. The precision-recall curves of the detection performance on the CTSD
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4.5 Time Performance Analysis

The limitation of our model is its time performance. Because of the use of multi-scale
and sliding window strategies during the testing phase, our model cannot meet the
realtime requirements. For an original image with a resolution of 2048 * 2048, the
processing speed can reach 0.25 fps. In this case, we can almost detect traffic signs at a
distance of 100 m, which is important under the urban road environment. For the images
of the CTSD, the resolution is smaller, and the processing speed can reach 1 fps.

Fig. 9. The detection results on TT100K and the CTSD. The first row shows the detection
results of Zhu et al. [1] on TT100K. The second row shows the detection results of our model on
TT100K. The third row shows the detection results for our collected images. The fourth row
shows the detection results of our model on the CTSD. The green, red and blue rectangles denote
true positives, false positives and false negatives, respectively. (Color figure online)
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5 Conclusions

In this paper, we aim to address the problem of small traffic sign detection and
recognition in high-resolution images. To achieve this goal, we choose a multi-task
learning model and make an improvement. First, we propose a feature extraction
network with fewer parameters that is better than before. Second, we propose the
feature fusion strategy to solve the problem of traffic sign detection for different sizes.
Third, we propose a hierarchical multi-task learning strategy to improve the recall and
accuracy. Our proposed model performs well in terms of small sign detection. To
evaluate the performance of our model, we choose a challenging benchmark, TT100K,
which contains high-resolution images with many small traffic signs. It is difficult for
CNNs to process large images with a resolution of 2048 * 2048. To address this
problem, the entire image is cropped into patches of fixed size. Our method generates
relatively large feature maps that contain more contextual information and a larger
receptive field. A multi-scale training and testing strategy is also applied. To verify the
generalization of the model, we evaluate it on another benchmark.

The shortcoming of our proposed method is that it cannot be used for real-time
applications. In the future, we will make the method more efficient.
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