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Abstract. Spoken Language Understanding (SLU) and Dialogue Man-
agement (DM) are two core components of a spoken dialogue system.
Traditional methods model SLU and DM separately. Recently, joint
learning has made much progress in dialogue system research via tak-
ing full advantage of all supervised signals. In this paper, we propose an
extension of joint model to a conditional setting. Our model does not only
share knowledge between intent and slot, but also efficiently make use of
intent as a condition to predict system action. We conduct experiments
on popular benchmark DSTC4, which includes rich dialogues derived
from real world. The results show that our model gives excellent perfor-
mance and outperforms other popular methods significantly, including
independent learning methods and joint models. This paper gives a new
way for spoken dialogue system research.

Keywords: Joint learning · Spoken language understanding ·
Dialogue management

1 Introduction

One long-term goal in artificial intelligence field is to build an intelligent human-
machine dialogue system, which is capable of understanding human’s language
and giving smooth and correct responses. Especially with the success of new
speech- based human-computer interfaces, there is a great need for effective
dialogue agents, such as digital personal assistants, which can handle everyday
tasks such as booking flights. SLU and DM are two essential parts in building a
spoken dialogue system [1].

A typical dialogue system is designed to execute the following components:
(i) automatic speech recognition converts a spoken query into transcription; (ii)
spoken language understanding (SLU) component analyzes the transcription to
extract semantic representations; (iii) dialogue manager (DM) interprets the
semantic information and decides the best system action, according to which
the system response is further generated either as a natural language output or
a result page.
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SLU aims to obtain semantic representations in user utterances. In SLU,
there are two main tasks: slot filling and intent detection. Slot filling aims to
assign a semantic concept to each word in an utterance. Intent detection aims
to identify the intent that users express. DM is responsible for controlling the
dialogue flow, tracking the dialogue states and deciding what actions the system
should take to handle the interaction between users and system. For DM, we
focus on system action prediction (SAP) in this work.

Traditional approaches train SLU model and SAP model separately, which
may have restrictions on knowledge sharing. In order to take full advantage of all
supervised signals and utilize the information from both tasks, some joint models
have been explored [2,3]. However, the traditional way of joint learning is just
combining the loss functions of slot filling and intent detection, which brings the
limitation that the information is hard to be used and transmitted effectively.
We consider that intent labels, slot tags and actions are correlated, and intent
information is helpful for slot filling and SAP. We use intent information as
condition to integrate with semantic representations for slot filling and SAP.

In this paper, we propose a conditional joint model that can be used to
perform SLU and SAP. In our model, we obtain the semantic representations by a
shared Bi-LSTM layer. Meanwhile, intent information is provided to predict slot
tags, and is used as a condition to predict system action. Moreover, knowledge
between the three supervised signals can be shared implicitly by joint learning.
We evaluate our model on the popular benchmark DSTC4 dataset. The results
show that our model has a great performance and outperforms other popular
methods significantly.

The rest of our paper is structured as follows: Sect. 2 discusses related work,
Sect. 3 gives a detailed description of our model, Sect. 4 presents experiments
results and analysis, and Sect. 5 summarizes this work and the future direction.

2 Related Work

In this section, we introduce some previous work on SLU and SAP.
Firstly, SLU consists of two tasks: slot filling and intent detection. Tradition-

ally, slot filling can be viewed as a sequence labeling task and intent detection
can be viewed as an utterance classification task. These two tasks are usually
processed by different models separately.

Machine learning methods such as hidden Markov models (HMM) [4] or
conditional random fields (CRF) [5] have been widely employed for slot filling.
These methods need complicated feature engineering. However, models with neu-
ral network architectures show advantages in feature generation and have a good
performance on slot filling task. RNNs are applied in [6–8]. [9] utilized LSTM
to generate context-aware distributions for capturing temporal dependencies.
[10] enhanced the LSTM-based slot filling to model label dependencies.

Several classifiers such as SVM [11], Adaboost [12] and maximum entropy
[13] have been employed for intent detection. With the development of deep
learning, deep belief networks (DBNs) have been applied [14]. [15] proposed an
RNN architecture to improve intent detection.
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In recent years, joint learning of slot filling and intent detection are explored
for utilizing some shared knowledge. [16] utilized CNN based triangular CRF to
extract features for joint learning slot filling and intent detection. [17,18] adapted
RNNS for joint learning of SF and ID. [19] presented a contextual method to
exploit possible correlations among intent detection and slot filling. [20] utilized
explicit alignment information in the attention-based encoder-decoder neural
network models.

For SAP, [21] explored a partially observable Markov decision process
(POMDP) to control the system actions. Furthermore, RNN based dialog state
tracking models for monitoring the dialogue progress was proved [22]. [2] pro-
vided conjoint representations among the utterances, slot- value pairs and knowl-
edge graph representations to overcome current obstacles of deploying dialogue
systems. [23] implemented an online learning framework to jointly train actions
and the reward model with a Gaussian process model. [24] employed a value
iteration method of reinforcement learning framework. [25] described a novel
framework using genetic algorithm to optimize system actions. [3] proposed an
end-to-end deep recurrent neural network with limited contextual dialogue his-
tory to train SLU and SAP jointly.

3 Model

The structure of our conditional joint model is shown in Fig. 1. It consists of SLU
model and SAP model. Firstly, SLU model takes user utterances as inputs and
obtains the context-aware distribution of each word by a shared Bi-LSTM layer.
Then it performs slot filling and intent detection through task-specific output
layers. Using the hidden outputs from SLU model, a sentence-level distribution
for each utterance is produced in SAP model, and the distribution is combined
with intent information for predicting system actions.

3.1 SLU Model

As is shown in Fig. 2, SLU model consists of embedding layer, shared Bi-LSTM
layer and task-specific output layers for slot filling and intent detection.

Embedding Layer. Given a sequence of words w1, w2, ..., wT as inputs, we map
them into a vector space to produce embeddings x = {x1, x2, ..., xT }, where xt

means the word embedding of the t-th word.

Shared Bi-LSTM Layer. We employ Bi-LSTM network to obtain the context-
aware distribution of each word. Since we have xt as the t-th word embedding,



Conditional Joint Model for Spoken Dialogue System 29

Fig. 1. Conditional joint model

Fig. 2. SLU model
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we calculate the forward and backward hidden states
−→
ht and

←−
ht respectively by

the following equations,

it = σ(Witxt + Whiht−1 + bi)
ft = σ(Wftxt + Whfht−1 + bf )
ot = σ(Wotxt + Whoht−1 + bo)
ĉt = tanh(Wctxt + Whcht−1 + bc)
ct = ft � ct−1 + it � ĉt

h = o � tanh(ct)

(1)

where σ is the sigmoid function, � is element-wise multiplication, and i, f, o
and c represent input gate, output gate, forget gate and cell state respectively.
W and b are trainable parameters. ct−1 means previous cell state; ht−1 means
previous hidden state. Finally, we can obtain the final state ht by concatenating
the forward and backward hidden states. In this way, the context information is
integrated from two directions as:

ht = [
−→
ht ,

←−
ht ] (2)

Intent Detection Layer. We stack another LSTM layer LSTMint on top of
the shared Bi-LSTM layer for intent detection,

hint
t = LSTMint(hint

t−1, ht) (3)

where ht is the hidden state at time step t. We take the last hidden state hint
T for

intent detection. Sometimes, there are more than one intents in a user utterance.
In such a situation, we use a sigmoid function to calculate the probability over
all intent labels,

pint = sigmoid(W int
T hint

T ) (4)

where W int
T is a weight matrix.

Similar with the intent detection layer, we obtain a threshold. The system
action label is predicted if its probability is no less than the threshold,

yint
n =

{
1, pintn ≥ threshold

0, otherwise
(5)

n ∈ [1, N ] is the index of intent labels.

Conditional Slot Filling Layer. Since we have already obtained the last
hidden state hint

T from the layer LSTMint, we use it as an intent vector vint. The
probability pst is calculated as an attention weight to evaluate the contribution
of the intent vector vint to each hidden state ht from the shared Bi-LSTM layer.

pst = softmax(ht � vint) (6)
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Then, we add the hidden state and weighted intent vector together for pre-
dicting slot labels.

hs
t = ht + vint ∗ pst (7)

Finally, we choose the maximum of the probability as the predicted slot label,

ys
t = argmax(softmax(W s

t hs
t + bs)) (8)

where W s
t is a weight matrix.

3.2 Conditional Joint Model

To predict system actions, we joint SLU and SAP model together to make full
use of information from each other. In multi-turn dialogues, history utterances
play an important role in system actions. We recombine the utterances in a
window size u = {u1, u2, ..., uk}, where uk is the k-th utterance in the window.
Then we put them into SLU model for slot filling and intent detection. For each
utterance, we can obtain the hidden outputs hk

t (t = 1, ...T, k = 1, ...K) and
the intent vector vint

k from SLU model, then we take hk
t as inputs to a LSTM

layer LSTMjoint and use the last hidden state Hk
T to produce a sentence-level

distribution.

Hk
t = LSTMjoint(Hk

t−1, h
k
t ) (9)

We concatenate the sentence-level distribution Hk with the intent vector vint
k

to utilize intent information.

lk = [Hk
T , vint

k ] (10)

Then the concatenated vector Ik is used as the input to the top Bi-LSTM
layer for computing system action hact

k ,⎧⎪⎪⎨
⎪⎪⎩

−−→
hact
k = LSTMfw

act (
−−→
hact
k−1, I

k)←−−
hact
k = LSTMfw

act (
←−−
hact
k−1, I

k)

hact
k = [

−−→
hact
k ,

←−−
hact
k ]

(11)

where LSTMfw
act and LSTM bw

act stand for forward and backward LSTM network
for SAP respectively.

The last hidden state hact
K is used for predicting system actions. System can

make more than one actions for an user utterance. Therefore, we use a sigmoid
function to calculate the probability overall system action labels,

pact = sigmoid(W act
K hact

K ) (12)

where W act
K is a weight matrix.



32 C. Li et al.

Similar with the intent detection layer, we obtain a threshold. The system
action label is predicted if its probability is no less than the threshold,

yact
m =

{
1, pactm ≥ threshod

0, otherwise
(13)

where m ∈ [1,M ] is the index of system action labels.
The loss function for SAP is defined as:

Lact = −
M∑

m=1

aact
m logyact

m (14)

where aact
m means the ground truth label of system action.

In this joint model, the losses for slot filling and intent detection are defined
as,

Lint = −
N∑

n=1

gintn logyint
n

Lslot = −
T∑

t=1

sst logys
t

(15)

where N is the number of intent labels. For joint learning of SLU model and
SAP model, we add the three losses together. The total loss is as follows.

Ltotal =
∑
D

(L + Lint + Lslot) (16)

where D means the number of sequences in the total dataset. Via joint learn-
ing with the united loss function, the shared hidden states can combine two
tasks jointly. Furthermore, the correlations of the two tasks can be learned and
promote each other.

4 Experiment

In this section, we conduct experiment on benchmark DSTC4 and give the exper-
iment result and analysis.

4.1 Corpus

DSTC4 corpus contains several multi-turn dialogues collected from Skype calls
between tour guides and tourists. It involves touristic information for Singapore
in five aspects: accommodation, attraction, food, shopping, and transportation.
In this paper, we use the DSTC4 corpus setting following [3]. The training set
contains 5648 utterances, the validation set contains 1939 utterances, and test set
contains 3178 utterances. The number of slot labels, intent labels and system
action labels are 87, 68, 66 respectively. The statistic of DSTC4 is shown in
Table 1.
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Table 1. DSTC4 corpus setup in this work

Contents Train Dev Test

Utterances 5648 1939 3178

Slot labels 87 79 75

Intent types 68 54 58

4.2 Training Details

For comparison purpose, we used the same training configurations as work [3].
The model is trained on all of the training data with its learning rate initialized
to be 0.01. In order to enhance the model, we set the maximum norm for gradient
clipping to 5 and dropout rate to 0.5

Table 2. Results for slot filling and intent detection

Model Slot Filling(SF) Intent Detection(ID) SLU(SF+ID)

F1 P R FrmAcc F1 P R FrmAcc FrmAcc

CRF+SVMs 40.50 61.41 30.21 77.31 49.75 52.56 47.24 37.19 33.13

BiLSTMs 46.15 54.63 39.96 76.84 47.48 52.19 43.55 39.96 36.38

JointModel 45.04 53.35 38.97 76.49 49.67 52.22 47.35 42.20 37.38

Con-Joint model 49.32 53.62 45.65 78.41 49.81 50.04 49.59 42.20 38.01

4.3 Metrics

Following the work [3], the performance of slot filling, intent detection and system
action prediction are measured by token- level micro-average F1-score and frame-
level accuracy(calculated only when the whole frame is correct).

4.4 Experiment Results and Analysis

We compare our model with the results from [3]. Table 2 shows results for slot
filling and intent detection. There are previous works for SLU on DSTC4:

– CRF+SVMs: CRF for slot filling and LinearSVM for intent detection are
training separately.

– BiLSTMs: A shared Bi-LSTM layer is provided for joint learning of slot filling
and intent detection.

– JointModel: A SAP model stacks on top of a history of SLU models simply.
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From Table 2, we can see that our model gains much increase in slot filling
task. In term of F1 score, our model outperforms previous best result (BiLSTMs)
by 3.17%. In term of frame-level accuracy, our model achieves 1.1% improvement
compared with previous best result (CRF+SVMs). In intent detection task,
our model also shows good performance. It outperforms previous best result
(CRF+SVMs) by 0.06% in term of token-level F1 score, and achieves the same
score in term of frame-level accuracy. For both slot filling and intent detection,
our model outperforms previous best result (JointModel) by 0.63% in term of
the frame-level accuracy.

From all the results above, we can conclude that with conditioned intent
information, our joint model performs well in SLU. This can be explained that
intent labels can provide more effective information for predicting slot tags.
Table 3 gives the results for SAP. The models in the table are introduced as
follows.

– SVMs: LinearSVM with features of one-hot vectors of aggregated slots and
intents.

– BiLSTMs: A Bi-LSTM layer which takes the predicted slot label and intent
label from NLU model as input for system action prediction.

– OraSAP (SVMs): LinearSVM with human annotated slot tags and user
intents.

– OraSAP (biLSTM): A Bi-LSTM layer whose inputs are the same as Oracle-
SAP.

Our conditional joint model outperforms all other models in token-level
F1 score, especially in the recall value. Compared with the best result (SVMs),
our model obtains 2.54% improvement in F1 score and 10.05% improvement in
the recall value especially. Through combining intent information for SAP, the
model can identify the most accurate action labels, which brings the recall value
with obvious increase.

Table 3. Results for system action prediction

Models F1 P R FAcc

SVMs 31.15 29.92 32.48 7.71

BiLSTMs 19.89 14.87 30.01 11.96

JointModel 19.04 18.53 19.57 22.84

OraSAP(SVMs) 30.61 30.20 31.04 7.65

OraSAP(biLSTM) 23.09 22.24 24.01 19.67

Con-Joint Model 33.69 27.88 42.53 18.25

We found that most user utterances in the dataset have more than one action
labels (the maximum is 20). It is difficult to predict all the actions correctly.
To purse high F1 score, we make a trade-off between token-level F1 score and
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frame-level. We found that most user utterances in the dataset have more than
one action labels (the maximum is 20). It is difficult to predict all the actions
correctly. To purse high F1 score, we make a trade-off between token-level F1
score and frame-level accuracy. Therefore, it is reasonable that our model ranks
a little lower in term of frame-level accuracy.

Above all, our conditional joint model has a great performance on both SLU
and SAP. It can be interpreted that slot tags, intent labels and actions share
knowledge with each other, and they promote each other via joint learning.

5 Conclusion

In this paper, we proposed a conditional joint model that can be used to perform
spoken language understanding and dialogue management. Our model is capable
of achieving knowledge sharing between slot tags, intents and system actions by
utilizing intent information. Experiments on dataset DSTC4 demonstrate that
our model has an excellent performance and outperforms other popular methods
significantly. In future work, we intend to explore how to integrate information
from the three different tasks explicitly for an enhanced joint model. Besides, we
plan to extend our work to spoken language generation task for a more complete
spoken dialogue system.
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