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Abstract. In task-oriented dialog systems, understanding of users’ queries
(expressed in natural language) is a process of parsing users’ queries and con-
verting them into some structure that machine can handle. The understanding
usually consists of two parts, namely intent identification and slot filling. To
address this problem, we propose a neural framework, named SI-LSTM, that
combines two tasks and integrates CRF into LSTM network, where the slot
information is extracted by using CRF, and the intent will be identified by using
LSTM. In our approach, the slot information is used for determining the intent,
while the intent type is used to rectify the slot filling deviation. Based on the
dataset provided by NLPCC 2018, SI-LSTM achieved 90.71% on intent iden-
tification, slot filling and error correction in terms of accuracy.
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1 Introduction

In task-oriented dialog systems, understanding of users’ queries (expressed in natural
language) is a process of parsing users’ queries and converting them into some
structure that machine can handle. The understanding usually consists of two parts,
namely intent identification and slot filling. The textual strings, fed into a dialog system
as input, are mostly the transcripts translated from spoken language by ASR (Auto-
matic Speech Recognition) and thus subject to recognition errors.

Intent identification is to recognize the behavioral goals of the queries or sentences
presented by users, such as playing music or booking tickets. Slot filling targets on
extracting the semantic slot information related to the specific intents from conversa-
tion. Take the task of playing music as an example. When user intents to play music,
the information of singer and song are the slots that are required to be extracted and
filled. The former is considered as a classification problem, while the latter is a
sequential labeling problem. Generally, as to the spoken language understanding in
task-oriented dialog systems, intent identification and slot filling aim at converting
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human natural language expressions into structured information. NLPCC 2018 [22]
provides an annotated dataset which covers three domains, namely music, navigation
and phone call.

There are much research on these two issues. Traditional approaches toward intent
identification include rules matching and machine learning algorithms. These approa-
ches was proved effective in some specific domains. However, as the size of the
corpora grows dramatically, it is difficult to extract characteristics from general domain.
Under this state, some deep learning techniques were applied, including convolutional
neural networks (CNN) [19] and recurrent neural network (RNN) [20], especially long-
short time memory (LSTM) [21], and so on. Similar situations occurred in slot filling
task [14–16].

Our team tries to conduct a model to handle both tasks in spoken language
understanding in task-oriented dialogue systems efficiently. We propose a neural
framework, named SI-LSTM model, for tackling the intent identification and slot
filling. SI-LSTM integrates CRF into an LSTM network, where the CRF will segment
the words into different parts of entities and generate the sequential labels for slot
filling; and the LSTM will maintain the semantics of each sentence for intent identi-
fication. SI-LSTM combines intent identification and slot filling together, and the slot
information is used for determining the intent while each type of the intent is used to
rectify the slot filling deviation.

Based on the dataset provided by NLPCC 2018, SI-LSTM successfully improves
the accuracy of each task, and achieved 90.71% on intent identification, slot filling and
error correction in terms of accuracy.

2 Related Works

In this paper, there are two main tasks that are intent identification and slot filling. It is
required to firstly identify the intent and then fill the corresponding slot with respect to
the specific intent. Intent identification is usually considered as a classification problem,
which is to classify each query into a corresponding intent category, while slot filling is
regarded as a sequential labeling issue. In this section, we will introduce the current
studies on these two tasks.

2.1 Intent Identification

There are many previous researches on intent identification task, and most of them can
be divided into three categories.

Table 1. The samples of intent type and the slot information.

Intent Slot

music.play song, singer, theme, style, age, toplist, emotion, language,
instrument, scene

navigation.navigation destination, origin, custom_destination
phone_call.make_a_phone_call phone_num, contact_name
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[1] presented a rule-based method and designed different templates for tackling this
problem. For different intent categories, various thesauruses were constructed to
facilitate to identify the intent in the specific domain. More specifically, based on the
previous collected records, a list of intents will be listed that are computed by prob-
ability distribution. However, this method required too much professional knowledge
to construct all the rules, and it is rather time-consuming.

[2, 3] proposed machine learning approaches for intent identification, and Support
Vector Machine (SVM), Naive Bayesian, and Decision Trees (DT) [3]. Most of the
approaches focused on either feature construction or model selection. These methods
have been proved to be effective in the accuracy improvement on the identification. Yet
since corpora have become more and more random, it is difficult to find uniform
features to figure out all intents.

More recently, researchers attempted to utilize deep learning technology to classify
the intent, since the attributes of each sentence can be represented well. For instance,
CNN [4], RNN [20], LSTM [5] were widely applied. Also, user profiling tried to guide
the intent identification and perform the determination [6]. It was proved that these
neural network models worked better on intent identification and speeded up the
training process.

2.2 Slot Filling

Since our model also targets at the slot filling, we review the related works on slot
filling from the following three aspects as well.

Firstly, rule-based methods are proposed. Based on linguistic rules, slot filling was
usually accomplished by matching different rules. Despite a high accuracy, much time
and abundant knowledge in specific field are required. After that, many statistical
models were applied to solve the problem, which was proved efficient and effective.
Hidden Markov Model (HMM) [7] and CFG [8] and Conditional Random Field
(CRF) [9] are widely used for the sequential tagging problems. Then, researchers today
begin to apply RNN [10] into slot filling, and many advantages are explored, including
faster training process, a flexible architecture, effective performance, and so on. More
importantly, these neural network models can be integrated by the sequential tagging
model, such as HMM, CRF, which will further improve the performance.

Our work is inspired by the studies above, and we design a SI-LSTM model for
intent identification and slot filling, which will be described in the following section.

3 Joint Prediction on Intent Identification and Slot Filling

In task-oriented dialog systems, the comprehension of users’ queries is a process of
parsing users’ queries and converting them into some structures that machine can
handle. This comprehension usually consists of two parts, namely intent identification
and slot filling.

It is obvious that there is a strong correlation between intent identification and slot
filling, and both of them can be mapped into a certain scope, especially in the dataset
provided by NLPCC [22]. For example, some specific slot categories such as song,
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language, toplist, etc. will only appear in the sentences about music.play, rather than
navigation.navigation. The correlations between the intention and the slot are shown in
Table 1.

Besides, the dataset can be seen as a stream of user queries ordered by time
stamp. The stream is further split into a series of segments according to the gaps of time
stamps between queries and each segment is denoted as a ‘session’. Instead of being
separated contexts, the contexts within a session is correlated with previous ones. For
example, given the input text “张三 (Zhang San)” (a singer’s name), only when the
latest intention is phone_call.make_a_phone_call, the current intent will be recognized
as phone_call.make_a_phone_call, and the slot information will be “<contact_-
name> 张三 <contact_name>”. Otherwise, the intent will be classified into OTHERS
and the slot information is empty.

Based on the above observation, we design a neural framework to tackle two tasks
at the same time, named SI-LSTM. The structure of the SI-LSTM is shown in Fig. 1.
SI-LSTM is a four-layer neural framework, consisting of a CRF layer, a CNN layer,
a LSTM layer and n fully connected layer Firstly, each word in a sentence is regarded

Fig. 1. The structure of SI-LSTM. (The Chinese sentence in the example means that play the
song by Jay Chou.)
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as the input to the CRF layer to generate the sequential label. After the CRF layer, slot
filling results are obtained. Then the output of CRF layer together with the vectorized
representation is putted into the CNN layer to extract rich semantics feature. On top of
that, the LSTM layer enhances the use of text word order and time information. In the
end, the fully connected layer will output the prediction result of the intent identifi-
cation. Since the contexts within a session are taken into, we set up a memory cell to
store the latest user intent. In this way, SI-LSTM will take the memory cell as a
reference when it outputs the final result of the classification.

3.1 Conditional Random Field Layer

In our Conditional Random Field (CRF) layer, we utilize the classic CRF [11] model
for sequential labeling, which attempts to model the conditional probability distribution
P(Y|C). Our model first uses CRF for named entity recognition and slot filling.

Based on the given sentence, the CRF layer will firstly segment the words into
different parts of entities, and then classify each entity according to the type, such as
person, organization, location, and so on. To avoid of the limitations of the data bias
towards the states with few successor states, our CRF layer is designed to have the
ability to relax strong independence assumptions made in other models.

Given the observation C, the model based on the assumption of first order Markov
chain predicts the hidden sequence Y represent the attributes of the entities.

Conditional distribution is computed by Eq. (1):

P Y jCð Þ ¼ 1
ZðcÞ e

P
i

P
j
kj fjðyi�1;yi;c;iÞ ð1Þ

where ZðcÞ is a normalizing constant, and kj is the bias weight learned from the training
data, and fj is the feature function.

In our CRF layer, the output will be considered as the input for the CNN layer, in
this way both the sequential label and the semantics information will be maintained.

3.2 CNN Layer

Inspired by the good feature extraction capabilities of CNN [12], we also use a CNN
layer to extract features from texts. Meanwhile in this layer we will combine the slot
filling categories with intent identification for the further processing.

Without the loss of generality, for each sentence s, it can be formulated as a word
sequence s ¼ fw1;w2; . . .;wLg, where L denotes the length of s. The objective of intent
identification is produce yi for each si, and yi is belonging one of the intent type. Then
in the CNN layer, an n-dimensional vector is obtained by the combination of the whole
words in the sentence shown in Eq. (2).

x1:n ¼ x1 � x2 � x3 � . . .� xn ð2Þ

The convolutional layer is mainly used to capture the local information between
words based on a slidingwindow. In ourCNN layer, the length is denoted byh and the size

16 J. Shan et al.



is denoted by x 2 R
hk, which means that from ith word to the iþ h� 1th word will be

covered. Then the convolution kernel obtains a characteristic representation by Eq. (3).

fi ¼ f xi � xi:iþ h�1 þ bð Þ ð3Þ

The convolution kernel sequentially convolves all the windows in the sentence to
get a feature map F 2 R

n�hþ 1 shown in Eq. (4).

F ¼ f1; f2; ..., fn�hþ 1½ � ð4Þ

A max pooling is used to get the max dimension from each feature map as the final
feature and retains only the most representative features in the feature vector.

The Softmax function is used to output the results which can be seen as the con-
ditional probability distribution shown in Eq. (5), and it help us determine the most
likely intent shown in Eq. (6).

Ph yjjhsi
� � ¼ softmaxðhsixþ bÞ ð5Þ

Ypred ¼ argmaxPh ð6Þ

In our CNN layer, by using the classic CNN model, the input vector will be
converted into a new fixed-length global vector which contains the most representative
feature. Meanwhile, the training process is accelerated.

3.3 Long Short-Term Memory Layer

In LSTM layer, ourmodel will encode the information from the vector converted byCNN
intoafixed-lengthvector representation. Inour task, thedialogue is ahierarchical sequence
of data: each sentence is a sequence of words, and each session is a list of sentences.

The long and short term memory layer consists of several repeated cells, and each
of them receives the output of the hidden layer ht�1 at the previous time and the current
input ht. Each cell is made up of an input gate it, an oblivion gate ft and an output gate
ot. For every neuron in LSTM, the whole working process is as follows:

it ¼ r wi
t � xt þwi

t � ht�1 þ bt
� � ð7Þ

ft ¼ r wf
t � xt þwf

t � ht�1 þ bt
� � ð8Þ

qt ¼ tanh wq
t � xt þwq

t � ht�1 þ bq
� � ð9Þ

ot ¼ r wo � xt þwo � ht�1 þ boð Þ ð10Þ

ct ¼ ft � ct�1 þ it � qt ð11Þ

ht ¼ ot � tanh ctð Þ ð12Þ
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Each vector of the feature combination layer is obtained by sequentially connecting
the elements corresponding to the ith dimension of each convolutional feature map
shown in the Eq. (13).

Ci ¼ Fi
1 � Fi

2 � Fi
3 � . . .� Fi

n�hþ 1 ð13Þ

We will get n� hþ 1 combination vectors so that each vector is recombined
according to the convolution order to ensure the temporality of the text. Then the
vectors are sequentially sent to the LSTM cell. The output of the last hidden layer is
obtained as the final sentence representation and finally, the prediction result would be
identified by the Softmax layer.

4 Spelling Correction

Among the process of slot filling, we need to handle the Chinese typos in the slot, thus
the work of spelling correction is needed. Spelling correction has two requirements: to
recognize the typos and to find the correct answers. For this consideration, we should
design our method to calculate the string similarity such as Edit Distance and determine
whether the lot is a typo by using the corresponding thesaurus and find the correct
answer for each typo.

4.1 Preprocessing

Since the training corpus and test corpus in this task both contain multiple languages
and some other characteristics may impose obstacles to the result, data preprocessing is
supposed to be necessary.

There are a few obstacles. First of all, given the fact that Arabic numbers and
Chinese numbers are considered as completely different character in this research, the
conversion between Arabic numbers and Chinese numbers is necessary. When it comes
to the expression of exact years such as ‘2002’, the conversion should follow the
Chinese traditional expression.

Then the multiple languages could be another problem not only in the process of
comparing the similarity between strings, but also in the process of getting each word’s
Chinese Pinyin. In order to reduce the negative influence from the foreign languages on
comparing Chinese Pinyin, all consecutive foreign characters in each slot are regarded
as one Pinyin.

4.2 Congruent Length in String Order

We design our approach to compute the string similarity, especially when the string is
missing one or two characters. Since the lengths of two strings are crucial for the
similarity computation, we use the following equation to compute the similarity when
the congruent length(Cl) is not less than a predefined value.

Sim ¼ 0:8þ 0:01 � Cl where Cl� k ð14Þ
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The parameter k is the congruent length, which is defined as follows.

k ¼
2 2 	 slotlength 	 4
slotlength� 0:4 � slotlength½ �
6 slotlength � 8

8<
: 5 	 slotlength 	 7 ð15Þ

4.3 Edit Distance

We also treat the edit distance [13] as another measurement to calculate similarity
between two strings. We regard the edit distance as the minimum number of times
needed to edit a single character (such as modify, insert, delete) when changing from
one string to another. The smaller the edit distance is, the higher the similarity will be.
This time complexity of this algorithm is Oðm � nÞ and space complexity is Oðm � nÞ.
m and n stand for the length of string a and b.

4.4 Spelling Correction

In this task, the content and the category of input slots are the two variables. At first, the
content will be matched to the thesaurus in accordance with the specific category. If the
content is appeared in the corresponding thesaurus, this content is not a spelling error.
On the contrary, the algorithm will calculate its possibility of becoming a spelling error.
Then the remaining slots will be compared with all the strings comparing to the
thesaurus and then we obtain the highest similarity.

In our model, we design three ways to calculate the similarity of two strings. The
first measurement is congruent length in string order. If there are qualified strings in
corresponding thesaurus we will achieve the first similarity. The second measurement
is edit distance(lev). This could be used to calculate the similarity in this way.

sim ¼ 1� lev
slotlength

ð17Þ

The third measurement is the edit distance(lev) between Chinese Pinyins. We define
a parameter m to measure the similarity of the conversion between the character to
Pinyin. Then the similarity can be computed by the following equation.

sim ¼ 1� m � lev
slotlength

ð18Þ

In our experiment, based on the performance on training dataset, we set m = 1.8.
With the incensement of the similarity, the corresponding slot is more likely a typo.

On the contrary, this means that this slot is not similar to any strings in the corpus and
is not likely to be a typo. We set a variable p = 0.55 to help us determine whether the
slot is a typo. We take the biggest measurement among these three to represent the
overall possibility. When the biggest measurement is bigger than p, then this slot is a
spelling error and the corresponding string is the correct answer.
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5 Experiment

In this section, we will report the performance of our proposed approach SI-LSTM
based on the dataset provided by NLPCC 2018 [22].

5.1 Experiment Setup

NLPCC 2018 [22] provides a dialogue dataset focusing on three scenarios, namely
music, navigation and telephone. The training dataset is consisted of 4,707 real
annotated dialogue sessions, including 21,350 sentences and 11 intents. According to
our statistics, there are 4.5 sentences in per session in average. As to the test dataset,
1,177 dialogue sessions containing 5,349 sentences are involved, and there are 4.5
sentences in per session on average as well. The training and test dataset information is
shown in Table 2.

To better demonstrate the dataset, we also list some statistics in Table 3. There are
11 types of intent in total, and the type of music.play contains the most sessions except
for OTHERS. Note that, for some types of the intents, a corresponding thesaurus is also
provided, which can help us to extract the slot information and spelling correction.

Table 2. The description of training and test dataset.

Sessions Sentences Intents Avg # of sentences in per session

Training set 4707 21350 11 4.5
Test set 1177 5349 11 4.5

Table 3. The statistics of the dataset.

Intent Training set Test set

music.play 6,403 1,641
music.pause 298 75
music.prev 5 4
music.next 132 34
navigation.navigation 3,961 1,039
navigation.open 245 56
navigation.start_navigation 33 4
navigation.cancel_navigation 836 206
phone_call.make_a_phone_call 2,789 674
phone_call.cancel 22 18
OTHERS 6,628 1,641
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In our training process, the dataset was randomly divided into 9:1, with training set
(90%), validation set (10%), to train our model and tune some parameters.

In this task, F1macro is used as the evaluation metrics.

Pmacro ¼ 1
N

XN

i¼1

# of queries correctly predicted as intent ci
# of queries predicted as intent ci

Rmacro ¼ 1
N

XN

i¼1

# of queries correctly predicted as intent ci
# of queries labelled as intent ci

F1macro ¼ 2
1

Pmacro
þ 1

Rmacro

5.2 Experimental Results

We deal with all the three tasks, intent identification, slot filling and spelling correction,
and we will report the results in this subsection. Moreover, other approaches, such as
SVM, LSTM, etc., are also implemented for the comparison with SI-LSTM on the
provided dataset.

Intent Identification. SI-LSTM was implemented based on the open source library
Keras in Python which was backended by Tensorflow. In SI-LSTM, we trained our
word embedding by using word2vec based on the whole dataset, and set the dimen-
sionality as 50. 50 epochs were run in total, and the parameters were updated after each
batch. We finally set the parameter with the value when the model achieved highest
accuracy.

To better demonstrate the performance of our model, we also redesign some classic
models for intent identification, including SVM [17], FastText [18], and LSTM. SVM
is a classic supervised machine learning algorithm and LSTM is a representative deep
learning algorithm. FastText is a classifier developed by Facebook that provides a
simple and efficient way to represent textual information. These three models are
widely used in NLP research and can provide basic support. Besides, since the slot
information works as an important factor, we also integrate it into the three traditional
models, and get S-SVM, S-FastText, S-LSTM.

The performance of each model on test set was shown in Table 4.
From Table 4, we can find that our proposed model SI-LSTM achieved the best run

in both metrics, which proved the effectiveness of our model. Although SVM is non-
deep learning model, the accuracy was 90.43% and the F1macro was 81.97%, that were
comparable with other deep learning models. To the contrary, FastText performed poor
in both accuracy and F1macro. We can also find that compared with basic models, the
F1macro. The accuracy and F1macro were both improved when putting the slot infor-
mation into the model. In Table 4.

What’s more, the combination of CNN and LSTM accelerates the training process
greatly. Also, if we eliminate some minimum categories which contain only a few
number of sentences, we are able to see a more surprising output from SI-LSTM.
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In our experiment, we also list the accuracy and recall of each type of intent as
shown in Table 5.

Spelling Correction. Since the typos only appear in the slots, the spelling correction is
based on the result of slot filling. Besides, we will focus on the errors that are related to
music and navigation, and other fields, e.g. phone calls, are not considered. The
experimental results are shown in Tables 6 and 7.

Table 4. The comparison between different models.

Model Accuracy F1macro
SVM 90.43% 81.97%
FastText 87.90% 82.27%
LSTM 90.60% 86.26%
S-SVM 91.30% 78.41%
S-FastText 94.10% 85.47%
S-LSTM 93.64% 87.49%
SI-LSTM 94.52% 87.73%

Table 5. The results of each type of intent.

Intent Accuracy Recall

music.play 94.30% 98.78%
music.pause 80% 64%
music.prev 100% 75%
music.next 91.18% 91.18%
navigation.navigation 95.11% 99.13%
navigation.open 100% 91.07%
navigation.start_navigation 100% 100%
navigation.cancel_navigation 89.89% 86.41%
phone_call.make_a_phone_call 87.65% 97.92%
phone_call.cancel 100% 16.67%

Table 6. The confusion matrix of spelling correction on both training set and test set.

Table head Predict
Non-typos Typos

Training data Non-typos 5,913 51
Typos 46 252

Test data Non-typos 1,485 13
Typos 6 82
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Intent Identification and Slot Filling Results. We evaluated the performance on both
intent identification and slot filling (with spelling correction) on the SVM, FastText,
basic LSTM and SI-LSTM, and the results are shown in Table 8.

It is obviously that the accuracy of model for the joint prediction on slot filling and
intent recognition achieved the best performance.

5.3 Discussion

Based on the above experimental results, we summarized some characteristics of our
approach and made some error analysis.

SI-LSTM achieved a high accuracy in intent identification, but performed not as
good in the metric of F1macro. In Table 5, we can see the recall of our model is very low
under ‘phone_call.cancel’ intent which in turn imposes negative effect on F1macro,
although the size of that type is quite small, i.e. 18. In fact, many contents under this
type ‘phone_call.cancel’ only express the instruction of cancel or stop, but few men-
tion the specific objection of the instruction. So the classification of this specific intent
needs to account for the previous content and it is difficult for the model to distinguish
between ‘music.pause’, ‘navigation.cancel_navigation’ and ‘phone_call.cancel’.
Regarding that there are only 22 data in training set and 18 data in test set under the
intent ‘phone_call.cancel’, the volume of data does greatly affect the final result of the
model.

Besides, in the task of spelling correction, multiple languages occur in a session.
Due to limited resources, the result of typo detection is susceptible by the volume and
quality of thesauruses. Therefore, for the slots beyond the thesaurus, it is difficult for
our model to distinguish the intent accurately.

Table 7. The result of spelling correction.

Types # of typos # of correction Accuracy

Song 71 63 88.73%
Singer 11 7 63.63%
Total 82 70 85.37%

Table 8. The comparison between different models on intent identification with slot filling.

Model Accuracy

SVM 84.49%
FastText 84.90%
LSTM 84.56%
S-SVM 72.67%
S-FastText 89.25%
S-LSTM 89.08%
SI-LSTM 90.71%
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6 Conclusions

In this paper, we propose a neural framework, named SI-LSTM, for intent identification
and slot filling. SI-LSTM combines two tasks and integrates CRF into a LSTM net-
work, where the slot information is extracted by using CRF, while the intent will be
identified by using LSTM. In our approach, the slot information is used for determining
the intent, and the intent type is used for slot filling. Based on the dataset provided by
NLPCC 2018, SI-LSTM achieved 90.71% on intent identification, slot filling and error
correction in terms of accuracy.
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