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Abstract. Advanced brain function requires different levels of integration and
coordination between multi-regional nervous systems, the underlying mecha-
nism is the simultaneous oscillation of various neural networks. EEG is an
increasingly method to detect brain function with high temporal resolution and
low cost. How to analyze the synchronization phenomenon is the focus of
cognitive neuroscience research based on EEG signals. Wavelet coherence is a
classical method to evaluate EEG synchronization, but it is uncertain how to use.
In this paper, this requires knowledge of the true relationship between signals,
hence we compare different measures of functional connectivity on simulated
data (unidirectional coupled Hénon maps, and the auditory Stroop EEG),
including wavelet cross-spectrum, wavelet correlation, wavelet coherence and
FFT coherence. To determine whether synchrony is detected, surrogate data
were generated and analyzed, and FFT coherence measures performed best on
simulated data. Above all, the parameter optimization method of the wavelet
cross-spectrum is proposed with many samples. It is found that the optimized
wavelet coherence performed most reliably than FFT coherence.
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1 Introduction

Buzsáki proposed that neurons cause synchronous oscillations through conventional
excitation and suppression in the network [1, 2], electroencephalograph (EEG), which
is a very suitable activity for studying the human brain on the time scale of cognitive
processes by covering a large number of the entire head sensors [3, 4]. Synchronization
of EEG is thought to be an expression of brain function region integration or binding,
time-varying brain activity makes the generated EEG be a non-stationary signal, an
extremely complex non-periodic bioelectrical signal because of mutations and noise,
how to deal with this signal is a huge challenge. Most signals have an energy distri-
bution of 0.5 and 60 Hz, and their amplitude is usually 2 to 100 lV [5]. Therefore, the
EEG signal overlaps many other biological signals and external noise in amplitude and
frequency. Since synchronization can be expressed in different ways, various measures
have been proposed to quantify the synchronization between signals. [4]. A good EEG
synchronization measurement method should be insensitive to noise, robust and can
detect linear and nonlinear relationships between signals.
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Nolte et al. provides an imaginary part of coherency method to study brain inter-
actions which is demonstrated for EEG measurements of voluntary finger movement.
But nonlinearity not considered, imaginary part is mostly small, thereby risking to miss
meaningful interactions [7]. Stam et al. propose a novel measure to quantify phase
synchronization, the phase lag index (PLI), and compare its performance to the well‐
known phase coherence (PC), and to the imaginary component of coherency (IC). But
Less sensitive to volume conduction, common sources, and montage [6], Vinck et al.
[8] proposed phase leads and lags is weighted by the magnitude of the imaginary part
of the coherency, but there is no evidence that the size of the phase difference is
important for the coupling strength, Relative insensitive to phase differences around 0
and 180 degrees. The advantage of wavelet transform is that it has good time aggre-
gation, high frequency resolution, phase information and its similarity with conven-
tional signals, so it is used to identify the degree of association between two non-
stationary time series and perform signal Spectrum estimation. However, there are
many ways to use the wavelet transform to determine EEG synchronization. These
methods have different advantages when dealing with different problems. But which is
the best measure to use? How to use?

In this paper, unidirectional coupled Hénon maps and the auditory Stroop EEG are
stimulated, which measure is best able to detect connections that do exist, hence we
compare 5 measures of functional connectivity on simulated data and the degree of
synchronization of the analog signal can be precisely adjusted. A variety of methods
using wavelet synchronization signals and FFT coherence methods are used for
comparison. For the problem of parameter setting in wavelet coherence process, the
Shannon entropy method is used to optimize the parameters and more accurately detect
the synchronization process of cognitive control EEG than FFT coherence. In a word, it
is concluded that the wavelet coherence measures performed best on the auditory
Stroop EEG.

2 Methods

2.1 Wavelet Correlation Analysis

2.1.1 Wavelet Cross Correlation
Wavelet cross-correlation is similar to classical signal cross-correlation, effectively
quantization two signal correlations based on scale. Set two cross-correlation signals
xðtÞ and yðtÞ at a given scale a and delay u, the wavelet cross-correlation of x and y is
defined as:

WCXY a; uð Þ ¼ E WXX a; sð ÞWYY a; sþ uð Þ½ � ð2:1� 1Þ

In formula (2.1-1) WXX a; sð Þ and WYY a; sþ uð Þ are the wavelet transform coeffi-
cients of xðtÞ and yðtÞ, respectively.

If the real part RWXX a; sð Þ and the imaginary part IWYY a; sþ uð Þ of the wavelet
transform coefficients are separated, the correlation between the two signals at a given
scale a is quantified by the real part, then the wavelet cross-correlation is defined as:
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WRXY a; uð Þ ¼ RWcXY a; uð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RWCXX a; 0ð ÞRWCYY a; 0ð Þp ð2:1� 2Þ

2.1.2 Real Part Quantization Wavelet Cross Correlation
Sello and Bellazzini suggest that only the real part Wxy a; uð Þ ¼ Wxx a; uð ÞWyy a; uð Þ of
the wavelet transform is considered, and the wavelet local correlation coefficient is
defined by the wavelet cross spectrum:

WLCC a; uð Þ ¼ RWxy a; uð Þ
jWxx a; uð Þj Wyy a; uð Þ�

�
�
� ð2:1� 3Þ

2.1.3 Real and Imaginary Wavelet Cross-Correlation
If you consider the information provided by the real and imaginary parts of the wavelet
transform, there is a certain relationship. Then the wavelet cross-correlation is defined
as:

WRXY a; sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RWCxy a; sð Þ�
�

�
�2 þ IWCxc a; sð Þ�

�
�
�2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WCxx a; 0ð Þj j WCyy a; 0ð Þ�

�
�
�

q ð2:1� 4Þ

where RWCxy and IWCxy are the real and imaginary parts of the cross-wavelet corre-
lation function defined by Eq. (2.1-1), respectively.

2.1.4 Wavelet Coherence
Based on the above process, after calculating the cross-wavelet spectrum for the signals
x and y and smoothing them, Wavelet Coherence (WC) is defined as.

WCxy a; bð Þ ¼ S WCSxy a; bð Þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S CWTx a; bð Þj j2
� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S CWTy a; bð Þ�
�

�
�2

� �r ð2:1� 5Þ

According to Schwartz’s inequality:

Xn

I¼1

aibi

 !2

�
Xn

T¼1

a2i

 !
Xn

T¼1

b2i

 !

ð2:1� 6Þ

where a1; . . .; an; b1; . . .; bn are real numbers, and Schwartz’s inequality guarantees that
the value of WC is between 0 (the frequency component is completely unrelated) and 1
(the frequency component is completely correlated).

A Best Detecting Synchrony Method in Audio STROOP EEG 199



2.2 Fast Fourier-Based Coherence

In order to calculate the correlation of the two signals in the frequency domain, we
define by crossover:

Cxyðf Þ ¼ E½Xðf ÞY�ðf Þ� ð2:2� 1Þ

where E½:� is the expectation operator, Xðf Þ is the (discrete) Fourier transform of xðnÞ,
the asterisk indicates complex conjugation, and f is frequency. In practice, afinite
number of samples will give a noisy estimate of (cross-and auto-) spectra. To reduce
the noise, signals are segmented into equal length pieces, and the spectra of each
segment is averaged.

The coherence function cðf Þ is the square of the cross spectrum, normalized by the
(auto-) spectra of the two signals:

Cðf Þ ¼ jCxyðf Þj2
Cxxðf ÞCyyðf Þ ð2:2� 2Þ

This measure is particularly useful when the correlation between signals is limited
to a particular frequency band.

3 Experimental Results and Analysis

3.1 Generate Simulation Signals

We first use the chaotic system to obtain two simulation signals that can control the
coherence. Here we use Hénon maps. We can simulate the generation of a pair of
unidirectionally coupled X and Y signals,

x kþ 1ð Þ ¼ 1:4þ bx k � 1ð Þ � x2ðkÞ ð3:1� 1Þ

y kþ 1ð Þ ¼ 1:4þ dy k � 1ð Þ � ½lx kð Þþ ð1� lÞyðkÞ�yðkÞ ð3:1� 2Þ

We analyzed the system in three different situations. One system is the same
ðb ¼ d ¼ 0:3Þ, the other two are different systems ðb ¼ 0:3; d ¼ 0:1Þ and
ðb ¼ 0:1; d ¼ 0:3Þ. The data is generated using the latter two cases. In general, we use
l to control the correlation and independence of the two signal data from l ¼ 0
(completely independent) to l ¼ 1 fully correlated with the simulation.

In order to confirm the relevant method we proposed. We propose that the signal
using the chaotic system is superimposed with the real auditory Stroop EEG signal
from literature [12]. The 2024 points are generated, and in order to avoid the instant
start effect, we give up the first 1000 points. We selected an EEG signal and added it to
the two signals generated by the chaotic system. Select 200–280 for display, as shown
in Fig. 1, the result of b ¼ 0:3 and d ¼ 0:1 when l ¼ 0:9.
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3.2 Comparison of related methods results

We used the simulated honen simulation signal to control the correlation to 0.9 to get
several synchronization methods. The results of wavelet cross-correlation considering
only the real part are shown in Fig. 2A, local wavelet correlation results are shown in
Fig. 2B. The wavelet correlations considered in the real part imaginary part are shown
in Fig. 2C, 4Wavelet coherence results D in the figure. Through comprehensive
comparison we can see that the results of using wavelet coherence are better, indicating
that the coherent method has a good effect on synchronous EEG signals.

Figure 2, the use of wavelet coherence works best. But it’s hard to compare the
methods that are intuitively better. Therefore, we have obtained the standard deviation
of the results obtained by the two methods.

The red line in Fig. 3 shows the result of the difference between Fourier coherence
and 0.9. The blue line shows the standard deviation of the results after wavelet
coherence. We can see that the results of wavelet coherence are better than Fourier, but
the results are not very obvious. We propose a method for optimizing wavelet
parameters based on Shannon entropy.

Fig. 1. Simulated signal synchronization

Fig. 2. Multi-method comparison results graph
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3.3 Optimization of Wavelet Parameters

In order to determine the Morlet wavelet shape, the Shannon entropy method is pro-
posed to optimize the wavelet basis parameter b. When the EEG signal is similar to the
Morlet shape, a high-amplitude band energy will appear on the time-scale phase plane,
and thus the energy distribution can be used. “Sparseness” is used to evaluate the
degree of similarity with the mother wavelet, and finally the Morlet wavelet that best
matches the EEG signal is obtained.

H pð Þ ¼ �
Xn

i¼1

pi logPi ð3:3� 1Þ

From the perspective of probability theory, “sparseness” can be described as the
uniformity of probability distribution. Combining entropy to reflect the uncertainty of
information distribution in information theory, Shannon entropy is used to estimate the
sparsity of wavelet transform coefficient matrix. The Shannon entropy HðpÞ is
expressed as follows:

Where: For an indeterminate probability distribution, the sum of all uncertainties
satisfying the uncertainty is 1, i.e.

Pn
i¼1 Pi ¼ 1.

The wavelet transform coefficients at a certain scale are recorded as the coefficient
matrix composed of wavelet transforms corresponding to M scales, and the calculation
expressions are as follows:

Pi ¼ wg aj; b
� ��

�
�
� /
XM

j¼1

wg aj; b
� � ð3:3� 2Þ

The calculated results are shown in Fig. 4.
Therefore, by calculating the Shannon wavelet entropy corresponding to different

shape Morlet wavelets, the Morlet wavelet parameters are optimized according to the
principle that the mother wavelet with the smallest entropy is the most similar to the
feature components. As shown in the figure, when the shape parameter b is 1:2.

We use Shannon entropy to optimize wavelet parameters. Select and compare 100
sets of real EEG signals. In Fig. 5, the red line indicates the optimized result, the blue
line indicates the result before optimization, and the result show that parameter opti-
mization is found to be better than the original result. We can easily see the difference
between the results before and after optimization.

Fig. 3. Standard deviation result (Color figure online)
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It can be seen that the synchronization effect of wavelet coherence is more precise
than the Fourier coherence from Fig. 6 after the Shannon entropy optimization, the
error is close to zero (blue line).

4 Conclusion

In this paper, we address part of this question: which measure is best able to detect
connections that do exist, in the non-stationary and noisy auditory Stroop EEG data
hence we compare 6 measures of functional connectivity on simulated data (unidi-
rectional coupled Hénon maps and EEG). No measure performed best in all tested
situations. The FFT andwavelet coherence measures performed best on simulate data,
and wavelet coherence performed most reliably on non-stationary data after Shannon
entropy parameter optimization. From the perspective of brain network, the synchro-
nization of brain cognition in different cognitive states is obtained more accurately. In
the future, the dynamic evolution process of brain cognition can also be analyzed in
detail through the method proposed in this paper. It can be seen that the neural network

Shannon entropy

Fig. 4. Shannon entropy optimizes wavelet parameters

Fig. 5. One hundred groups of signal experimental comparison (Color figure online)

Fig. 6. After optimization with Shannon entropy (Color figure online)
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construction and analysis method based on wavelet coherence can be an effective tool
to study the neural processing mechanism and we use the Shannon entropy to select the
appropriate wavelet parameter to construct brain function connectivity.
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