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Abstract. Cloud applications have been rapidly evolving and gained
more and more attention in the past decade. Formal modeling and ver-
ification of cloud services are necessarily needed to guarantee their cor-
rectness and reliability of complex cloud applications. In this paper, we
present a formal framework for modeling and verification of cloud appli-
cations based on the SMT solver Z3. Simple cloud services are specified
as the basis for the modeling of composition and more complex cloud
services. Three different classes Service, Composition and Cloud indicat-
ing simple cloud services, composition patterns and composed cloud ser-
vices are defined, which facilitates the further development of attributes
and methods. We also propose an approach to check the refinement and
equivalence relations between cloud services, in which counter examples
can be automatically generated when the relation is not valid.

Keywords: Cloud applications · Services · Z3 · Modeling · Verification

1 Introduction

With the rapid development of big data and cloud computing technologies, cloud
applications spring up quickly in the past decade. The increasing complexity of
modern cloud applications has changed the perspective of software designers who
now have to consider large-scale applications consisting of a colossal number of
services and featuring complex interaction mechanisms. Nowadays, cloud appli-
cations are usually distributed, heterogeneous, decentralized and safety-critical,
having complex concurrent behavior and are operating in unpredictable environ-
ments, and it is notoriously difficult to guarantee their trustworthy. Therefore,
formal verification of cloud applications becomes the focus of attention in both
academic and industry.

Although current researches on cloud computing are mostly focused on tech-
nical problems such as resource allocation [8] and task scheduling [17], there are
some attempts to the formalization of fundamental notions in cloud comput-
ing. For example, an abstract formal model of cloud workflows was proposed
in [7] using the Z notation. In [6], the hierarchical colored Petri Net model was
adopted to specify the security mechanism in cloud computing. The Petri Net
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model is also used in [4] to build the fault tolerant model of cloud computing,
and as the basis for a dynamic fault tolerant strategy in cloud computing. The
agent paradigm was adopted in [14] to manage cloud resources and support cloud
service discovery, negotiation and composition. A Bigraph model was proposed
in [3] to formally specify cloud services and customers and their interaction
schemes. In [11], Event-B is integrated with discrete-event simulation to analyze
the performance and reliability of resilience of data stored in the cloud.

To support rigorous development of cloud applications and enhance their
trustworthy, only providing the formal specification is certainly not enough and
we need to further investigate the formal verification techniques that help for
understanding and reasoning about cloud applications and ensuring their trust-
worthy. Model checking and theorem proving are two most-widely used verifi-
cation techniques. In [1], the model checker UPPAAL is used to synthesize an
optimal infinite scheduler for a given specification of Mobile Cloud Comput-
ing systems. In [13] a holistic approach was proposed to verify the correctness
of Hadoop cloud architectures using model checking techniques. Although the
model checking approach is powerful and fully automatic, the state-space explo-
sion is an inherent problem for all the model checking approaches which is seri-
ous for large-scale systems like cloud applications. On the other hand, theorem
proving technique is used in [12] to verify properties of cloud services and their
compositions in PVS, which is based on the relational UTP (Unifying Theo-
ries of Programming) [9] semantics for cloud services that has been proposed in
[16]. However, automatic verification in interactive theorem provers like PVS is
a hard problem due to the undecidable algorithms and proof methods. Further-
more, sometimes users may fail to prove that a property holds or not, and can
not produce a counter example for it using theorem provers.

SMT-based techniques have been used extensively for program verification
[2]. In this paper, we propose a formal framework for verification of cloud appli-
cations using the SMT solver Z3 [5], which is also based on the relational UTP
semantics for cloud services [16]. UTP aims to formalize the similar features of
different languages in a similar style. It has been proved to be appropriate for
formal semantics of various programming languages and specification languages
like rCOS [10] and Reo [15]. Z3 is a state-of-the-art SMT solver, which can be
used to check the satisfiability of logical formulas over one or more theories. It
provides bindings for various programming languages. In this paper, we use Z3
python-bindings to specify the models and develop the verification framework
for cloud applications. Unlike other theorem provers, such as PVS, Coq, etc., Z3
can automatically generate counter examples or prove the validity of a specific
goal.

The paper is organized as follows: Sect. 2 presents how simple cloud ser-
vices/applications are specified in Z3 based on observations on their input and
output ports. The models of a family of composition patterns, which are used to
construct more complex cloud services are presented in Sect. 3. In Sect. 4, we use
the refinement-relation-check function for complex cloud services as an example
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to show how to verify properties of cloud services and applications, and provide
some case studies. Finally, Sect. 5 summarizes the paper.

2 Formalization of Cloud Services in Z3

Usually the computing services in a cloud application are distributed over the
internet and far from its clients. Clients have no knowledge about the imple-
mentation details of the services and configuration of the application, and can
access the cloud application regardless of their locations or what device being
used. The only possible way that clients can know about a cloud application is
via observations on the services provided by the application at corresponding
input/output ports.

2.1 Observations as Timed Data Streams

A cloud service C is interpreted as a relation between an initial observation on
inputs to C and a subsequent observation of the behavior of C. we use inC

and outC to denote what happen as inputs and outputs of a cloud service C,
respectively.

For every port of a cloud service C, the corresponding observation on it is
given by a timed data stream (TDS), which is defined as follows:
Definition 1. Let D be a set of data elements and R+ be the set of non-negative
real numbers which is used to represent time moments. Let DS = Dω be the set
of data streams, that is, the set of all streams α = (α(0), α(1), α(2), . . .) over D,
and R

ω
+ be the set of all streams a = (a(0), a(1), a(2), . . .) over R+. The set of

time streams is defined by the following subset of Rω
+:

TS = {a ∈ R
ω
+ | ∀n ≥ 0.a(n) < a(n + 1) ∧ ∀t ∈ R+.∃k ∈ N.a(k) > t}

For two time streams a and b, a < b ≡ ∀n ≥ 0.a(n) < b(n). A timed data
stream is defined as a pair 〈α, a〉 consisting of a data stream α ∈ DS and a time
stream a ∈ TS. We use TDS to denote the set of timed data streams.

Let IC and OC be the set of input and output port names of C, the specifi-
cation focuses on the constraints on the timed data streams of the corresponding
ports:

inC : IC → TDS

outC : OC → TDS

We use relations on timed data streams to model cloud services. Every cloud
service C can be represented by a pair of predicates P and Q as follows:

C(in : inC; out : outC)
pre : P (inC)

post : Q(inC, outC)

where C is the name of the cloud service, P (inC) is the condition that should
be satisfied by inputs inC of the cloud service, and Q(inC, outC) is the condition
that should be satisfied by outputs outC of C.
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2.2 Modeling of Simple Cloud Services

We first present the formal definitions of simple cloud services, which are used
as the basis for the specification of compositions and development of more com-
plex cloud services. The simple cloud services are dealt with as object instances
of Class Service. An object instance is attached with four attributes: service
type, pre-condition, nodes (represent timed data streams), and its corresponding
method. We specify the time and data constraints of relations between inputs and
outputs in the service definitions (methods). Basically, the behavior constraints
of cloud services consist of two parts: data constraints and time constraints.

SyncSer has an input port whose corresponding timed data stream is speci-
fied as nodesParam[0] and a set of output ports (at least one, guaranteed by the
assertion of the method). The behavior pattern of this cloud service follows like
this: every item in both data stream and time stream at the output ports should
be exactly equal to the items in the input data stream and time stream. All the
conditions are specified as constraints. Finally, we take the conjunction of every
constraint in the constraint list if the pre-condition of the service is True.

1 def SyncSer(self, bound, nodesParam):

2 if self.preCondition == True:

3 assert len(self.nodes) >= 2

4 target_num = len(self.nodes) - 1

5 constraints = []

6 for i in range(target_num):

7 for j in range(bound):

8 constraints += [ nodesParam[0][’data’][j] ==

nodesParam[i + 1][’data’][j] ]

9 constraints += [ nodesParam[0][’time’][j] ==

nodesParam[i + 1][’time’][j] ]

10 return Conjunction(constraints)

11 else:

12 return True

BufferSer has one input port and one output port. The time constraints
of this service type is more complex than SyncSer, while the data-related con-
straints are the same as SyncSer. The time when the current data item gets
transferred into the service through the input port is strictly earlier than the
time when the data item gets taken/read through the output port. Besides, the
time of the next request (input data item) should be strictly later than the
previous returned result (last output data item).

1 def BufferSer(self, bound, nodesParam):

2 if self.preCondition == True:

3 assert len(self.nodes) == 2

4 constraints = []

5 for i in range(bound):

6 constraints += [ nodesParam[0][’data’][i] ==

nodesParam[1][’data’][i] ]

7 constraints += [ nodesParam[0][’time’][i] <

nodesParam[1][’time’][i] ]
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8 for i in range(bound - 1):

9 constraints += [ nodesParam[0][’time’][i + 1] >

nodesParam[1][’time’][i] ]

10 return Conjunction(constraints)

11 else:

12 return True

Fig. 1. Remote printing service

Example 1. Consider a simple example where a remote printer offers its printing
service to two clients, which compete for the use of this shared resource. Each
client can send out multiple printing requests to the printer and the requests
from different clients are placed in a queue to be processed by the printer in a
first-come first-served manner. After a file is printed out it can be collected by the
client later. In order to keep the example simple to expose without considering
priority for scheduling different printing tasks, we assume that requests from
different clients never arrive simultaneously.

The cloud service M in Fig. 1 receives requests from different clients at ports
A and B, and delivers a sequence of requests through port C to a queue on
the printer side. Such a service is called MergeSer. It has two input ports and
one output port. When there is only one timed data stream from one specifc
input port, the MergeSer is reduced to the SyncSer with one input and one
output ports. When there exists two different timed data streams from the input
ports, the MergeSer is captured through the method Merge, which is defined
recursively. Every time one of the timed data items from these two input ports
is chosen to be fed into the service. The specification of this service is in the
following:

1 def MergeSer(self, bound, nodesParam):

2 if self.preCondition == True:

3 assert 2 <= len(self.nodes) <=3

4 if len(self.nodes) == 2:

5 constraints = []

6 for i in range(bound):

7 constraints += [ nodesParam[0][’data’][i] ==

nodesParam[1][’data’][i] ]

8 constraints += [ nodesParam[0][’time’][i] ==

nodesParam[1][’time’][i] ]

9 return Conjunction(constraints)
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10 elif len(self.nodes) == 3:

11 return self.Merge(bound, nodesParam)

12 else:

13 return True

where Merge is the method to deal with the case when the two input ports both
have requests to provide for the MergeSer. It captures the behavior of merging
two input timed data streams into one output stream and the detailed definition
is omitted here due to the length limitation.

RouterSer has one input port and two output ports. The behavior of this
service type is that the input timed data items are nondeterministically taken
through the two output ports, which can be specified using the Merge method
with the input timed data item handled as the output result in Merge and the
two output timed data items dealt with as the two input requests in Merge.

1 def RouterSer(self, bound, nodesParam):

2 if self.preCondition == True:

3 assert len(self.nodes) == 3

4 new_nodes =

5 [nodesParam[1], nodesParam[2], nodesParam[0]]

6 return self.Merge(bound, new_nodes)

7 else:

8 return True

3 Composition of Cloud Services

Different cloud services can be composed together to build more complex ser-
vices/applications. Simple cloud services are defined as object instances of class
Service, therefore their composition can be naturally modeled by composition on
Service instances, which leads to a new class Composition capturing the behav-
ior of the composed cloud service/application. In this section, we introduce a
family of composition operations for two cloud services servi(i = 1, 2):

Sequential Composition. Suppose one output port O of serv1 and one input
port I of serv2 can be joined together and the timed data stream that happens
on O thus can be taken as the input on I for serv2. After joining these two ports,
the extra constraints restricted on O (and I) are about the equality between the
output timed data stream of serv1 and the input timed data stream of serv2.
Since there can exist more than one output ports in serv1, the attribute index
is designed to indicate the correct output port being joined. The output timed
data stream in serv1 is thus represented by nodesParam1[index] and the input
timed data stream in serv2 is represented by nodesParam2[0]. Then the result
specification of the cloud service by sequentially composing serv1 and serv2 is:

1 def SeqComp(self, bound, nodesParam1, nodesParam2):

2 if self.serv1.preCondition == self.serv2.preCondition ==

True:
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3 constraints = []

4 for i in range(bound):

5 constraints += [ nodesParam1[self.index][’data’][i]

== nodesParam2[0][’data’][i] ]

6 constraints += [ nodesParam1[self.index][’time’][i]

== nodesParam2[0][’time’][i] ]

7 return And(

8 self.serv1.valueFunctions[self.serv1.service](bound,

nodesParam1),

9 self.serv2.valueFunctions[self.serv2.service](bound,

nodesParam2),

10 Conjunction(constraints))

11 else:

12 return True

Note that when two cloud services serv1 and serv2 are sequentially com-
posed, we can certainly join more than one pair of ports together and the def-
inition of the resulting service is similar, but it is not necessary to join all the
output ports of serv1 to all the input ports of serv2. Some ports in the services
can be left as the input/output ports for the resulting service. The definition for
the general situation is similar and can be easily obtained.

External, Internal and Conditional Choices. Cloud services can be aggre-
gated in a number of different ways, besides the sequential composition. In the
following we consider a few such combinators. A typical composition pattern
being widely used is external choice. For the two cloud services serv1 and serv2,
when they are put together and interacting with the environment, clients from
the environment are allowed to choose either to input on the input ports of
serv1, or on input ports of serv2, which will trigger the corresponding cloud
service serv1 or serv2, respectively, and produce the associated output on the
corresponding output ports. Formally, the result specification of the cloud service
as an external choice of serv1 and serv2 is defined as:

1 def ExChoice(self, bound, nodesParam1, nodesParam2):

2 if self.serv1.preCondition == self.serv2.preCondition ==

True:

3 return And( self.serv1.valueFunctions[self.serv1.service

](bound, nodesParam1),

4 self.serv2.valueFunctions[self.serv2.service](bound,

nodesParam2))

5 elif self.serv1.preCondition == True and self.serv2.

preCondition == False:

6 return self.serv1.valueFunctions[self.serv1.service](

bound, nodesParam1)

7 elif self.serv1.preCondition == False and self.serv2.

preCondition == True:

8 return self.serv2.valueFunctions[self.serv2.service](

bound, nodesParam2)

9 else:

10 return True
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Sometimes it is possible that both cloud services might have input ports in
common so that there is no clear prescription as to which route is followed when
one of these common ports is chosen. In the implementation, either service can
be chosen to be executed. This case is captured by the internal choice pattern,
which is formally defined as follows:

1 def InChoice(self, bound, nodesParam1, nodesParam2):

2 if self.serv1.preCondition == self.serv2.preCondition ==

True:

3 return Or( self.serv1.valueFunctions[self.ser1.service](

bound, nodesParam1),

4 self.serv2.valueFunctions[self.serv2.service](bound,

nodesParam2))

5 else:

6 return True

Besides the external and internal choices, a further form of choice, the condi-
tional choice which is based on the value of a boolean expression, is also needed
for combination of cloud services. This case is formally defined by the following
definition which means that if the boolean expression is satisfied then the cloud
service serv1 is executed, and otherwise, serv2 is executed:

1 def ConChoice(self, bound, nodesParam1, nodesParam2):

2 if self.bool_con == True:

3 return self.serv1.valueFunctions[self.serv1.service](

bound, nodesParam1)

4 else:

5 return self.serv2.valueFunctions[self.serv2.service](

bound, nodesParam2)

Parallel Composition. The simplest form of parallel combinator captures the
case that both cloud services serv1 and serv2 are invoked and executed in
parallel when triggered by a pair of inputs on the corresponding input ports of
both serv1 and serv2. Therefore, to make it possible to execute the parallel
combination of serv1 and serv2, both pre-conditions of the two services should
be satisfied and the execution will lead to the result that the post-conditions of
both serv1 and serv2 should be satisfied.

1 def ParallelComp(self, bound, nodesParam1, nodesParam2):

2 if self.serv1.preCondition == self.serv2.preCondition ==

True:

3 return And(

4 self.serv1.valueFunctions[self.serv1.service]

5 (bound, nodesParam1),

6 self.serv2.valueFunctions[self.serv2.service]

7 (bound, nodesParam2))

8 else:

9 return True
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In the parallel composition defined above, when two cloud services are put
into parallel, they may evolve completely autonomously, i.e., we have no restric-
tion on the inputs for the two services and they can arrive at any time. Sometimes
we may hope to have some inputs for serv1 and serv2 arrive only simultane-
ously. For simplicity, we assume that the data can only arrive at the input ports
I1 and I2 simultaneously, where I1 and I2 belong to the input ports of serv1

and serv2 respectively. And the data arriving at all the other input ports except
I1 and I2 are independent. In this case, extra constraints on the input timed
data streams of the two services should be captured. Then we have the following
specification:

1 def SyncParallel(self, bound, nodesParam1, nodesParam2):

2 if self.serv1.preCondition == self.serv2.preCondition ==

True:

3 constraints = []

4 for i in range(bound):

5 constraints += [ nodesParam1[0][’data’][i] ==

nodesParam2[0][’data’][i] ]

6 constraints += [ nodesParam1[0][’time’][i] ==

nodesParam2[0][’time’][i] ]

7 return And(

8 self.serv1.valueFunctions[self.serv1.service](bound,

nodesParam1),

9 self.serv2.valueFunctions[self.serv2.service](bound,

nodesParam2),

10 Conjunction(constraints))

11 else:

12 return True

In many cases, a family of cloud services may exist and behave in parallel in a
pairwise fashion. To model this, the n-ary version of these two parallel combina-
tors are very helpful. The corresponding specification can be easily generalized
to the case for composing multiple services.

A similar situation we consider is the case of merging two input ports of
cloud services serv1 and serv2 into one port. Let nodesParami for i = 1, 2 be
the timed data streams on the input port Ii in servi, respectively. By merging
I1 and I2 into one port I, when the resulting service receives a request on I, it
will behave in a broadcasting way. In other words, the request will be replicated
on I and sent to both serv1 and serv2 to trigger their execution simultaneously.
This operation can be realized by renaming without defining a specific method.

4 Verification of Cloud Applications in Z3

Based on the specification of simple cloud services and the family of composition
patterns, we can develop more complex cloud services for different needs, which
are defined as a new class Cloud. In this class, we provide two methods config and
compose to develop complex cloud services out of the simple cloud services and
the composition patterns. Meanwhile, we encode the refinement and equivalence
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relations between cloud services as propositions under analysis. Based on the
Z3 SMT solver, we defined the main method Refine to check the validity of the
refinement and equivalence relations or to generate counter examples for the
dissatisfaction of relations.

1 class Cloud:

2 def __init__(self):

3 self.services = []

4 self.compositions = []

5
6 def config(self, service, pre_condition, *nodes):

7 self.services += [Service(service, pre_condition, nodes)]

8 return self

9
10 def compose(self, composition, serv1, serv2, index, bool_con =

True):

11 self.compositions +=

12 [Composition(composition, serv1, serv2, index, bool_con)]

13 return self

The predicate capturing the refinement relation between two cloud services
is an implication statement. Assume we have two complex cloud services cServ1
and cServ2, cServ1 is a refinement of cServ2 (or cServ1 refines cServ2) if and
only if the specification of cServ2 is further restricted by cServ1, i.e., cServ1 →
cServ2. Furthermore, two cloud services are in equivalence relation, i.e. cServ1

↔ cServ2, if and only if they refine each other. Such proposition is valid if it
is always true whatever the assignment of variables is. It is satisfiable if there
exists an evidence (an assignment to the variables) under which this proposition
evaluates true. If the proposition cServ1 → cServ2 is valid, i.e. always true
under any assignment of values, then its negation will not have any witness
(any satisfying assignment). In other words, the negation of the implication is
unsatisfiable. On the other hand, if a solution is found for the negation of the
proposition, then this solution is actually the counter example for the satisfaction
of the relation.

Algorithm1 provides the pseudocode for the definition of the Refine
method, in which a solver is created and the constraints of the negation of the
target implication are added into the solver. If the solver returns unsat (corre-
sponding to True in Algorithm 1), then it acts as a proof for the validity of the
refinement relation between the two cloud services under analysis. If the solver
returns sat (corresponding to False in Algorithm 1), the model (witness) of the
negation is the counter example we need for proving the dissatisfaction of the
relation.

In the beginning, the command Solver() is used to create a general purpose
Z3 Solver. The dictionary nodes stores the uninterpreted variables, which can be
further used to generate node parameters for invocation of simple cloud services.
The first double for loop generates the time constraints (for well-definedness)
and constraints for each specific service in cServ1 and the next double for loop
generates the time constraints and constraints for each specific composition in



SMT-Based Modeling and Verification of Cloud Applications 11

cServ1. The procedures up to now are used to handle cServ1. The subsequent
procedures are for the refined cloud service cServ2. The generation of time con-
straints and constraints for each simple cloud service and composition is similar.
Besides, the uninterpreted symbols that need to be under universal quantifier
are stored in UniVar.

Example 2. Consider the cloud applications shown in Fig. 2, where users can
check the information about flights and can order flight tickets. Different com-
panies offer flights to the same location and the ticket availability and price for
each flight varies and may change at any time. If a user wants to make a trip
between two places and make a query for the flight information, he/she hopes
to collect the information for all the available flights at the latest time.

Fig. 2. Flight query services

The cloud service QF1 in Fig. 2 has a buffer on the server side for each flight
company. It accepts queries from users and store queries in every buffer. Based
on the simple cloud services, the model of QF1 can be developed in Z3 in the
following way:

1 QF1 = Cloud()

2 QF1.config(’Buffer’, ’True’, ’A’, ’B’)

3 QF1.config(’Buffer’, ’True’, ’A’, ’C’)

4 QF1.config(’Buffer’, ’True’, ’A’, ’D’)

In cloud service QF2, the location of the buffer is on the user’s side. QF2 can
accept the queries from the user, place the queries in the buffer and simultane-
ously send a copy of the queries to each flight company. The model of QF2 is
constructed like this:

1 QF2 = Cloud()

2 QF2.config(’Buffer’, ’True’, ’A’, ’E’)

3 QF2.config(’Sync’, ’True’, ’E’, ’B’)

4 QF2.config(’Sync’, ’True’, ’E’, ’C’)

5 QF2.config(’Sync’, ’True’, ’E’, ’D’)

Next we invoke the Refine function in two directions to check the refinement
and equivalence relation between QF1 and QF2. The result of QF2.Refine(QF1,
10) is True and None, which means that QF2 is indeed a refinement of QF1 and
therefore no counter example is provided.
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Algorithm 1. cServ1.Refine (cServ2, bound)
Require: cServ1 and cServ2 are both instances of cloud services.
Ensure: the function returns True or False with a counter example
1: solver ← Solver( ) ; nodes ← {}
2: for ser ← services in cServ1 do
3: for n ← ports in ser do
4: if n �∈ nodes then
5: nodes[n] ←

{time : [n t 0, · · · , n t (bound − 1)], data : [n d 0, · · · , n d (bound − 1)]}
6: add time constraints n t 0 ≥ 0 ∧ n t i < n t i + 1 to the solver
7: end if
8: end for
9: add service constraints to the solver according to definitions in Section 2.2

10: end for
11: for comp ← compositions in cServ1 do
12: for n ← ports in two services in comp do
13: if n �∈ nodes for two services then
14: nodes[n] ←

{time : [n t 0, · · · , n t (bound − 1)], data : [n d 0, · · · , n d (bound − 1)]}
15: add time constraints n t 0 ≥ 0 ∧ n t i < n t i + 1 to the solver
16: end if
17: end for
18: add composition constraints to the solver according to definitions in Section 3
19: end for
20: UniV ar ← {}; ReSerConstr ← {}; RecompConstr ← {}; ReConstr ← {}
21: for ser ← services in cServ2 do
22: for n ← ports in ser do
23: if n �∈ nodes then
24: generate uninterpreted variables
25: add the variables to UniVar (variables under the universal quantifier)
26: add time constraints n t 0 ≥ 0 ∧ n t i < n t i + 1 to ReSerConstr
27: end if
28: add service constraints to ReSerConstr according to definitions in Section 2.2
29: end for
30: end for
31: for comp ← compositions in cServ2 do
32: for n ← ports in two services in comp do
33: if n �∈ nodes then
34: generate uninterpreted variables
35: add the variables to UniVar (variables under the universal quantifier)
36: add time constraints n t 0 ≥ 0 ∧ n t i < n t i + 1 to ReCompConstr
37: end if
38: end for
39: add composition constraints to ReCompConstr according to definitions in

Section 3
40: end for
41: ReConstr = ¬ (ReSerConstr ∧ ReCompConstr)
42: let UniV ar be {n1, · · · , nm}, add the following constraints to solver
43: (∀n1) · · · (∀nm).ReConstr

44: RefineResult ← solver.check()
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On the other hand, the result of QF1.Refine(QF2, 10) is False, which indi-
cates the equivalence relation doesn’t hold between QF1 and QF2. The counter
example actually presents a solution which satisfies the constraints of QF1 but
doesn’t satisfy the constraints of QF2. indicates the data item on the cor-
responding port indicated by the capitalized letter while indicates the time
moment. Time-related constraints for well-definedness are clearly satisfied. The
data streams in this specific counter example satisfy the data-related constraints
in both QF1 and QF2. However, the time stream on the three output ports of
QF2 should be exactly equal, which are not satisfied. Time constraints in QF1
are relaxed a bit. Only delay of the data item transfer in three BufferSer needs
to be satisfied and this counter example provides a feasible and correct solution.

1 True, None

2 False

3 A_d_0 = 0, A_d_1 = 0, A_d_2 = 0, A_d_3 = 0, A_d_4 = 0,

4 A_d_5 = 0, A_d_6 = 0, A_d_7 = 0, A_d_8 = 0, A_d_9 = 0;

5 A_t_0 = 0, A_t_1 = 3, A_t_2 = 6, A_t_3 = 9, A_t_4 = 12,

6 A_t_5 = 15, A_t_6 = 18, A_t_7 = 21, A_t_8 = 24, A_t_9 = 27;

7 B_d_0 = 0, B_d_1 = 0, B_d_2 = 0, B_d_3 = 0, B_d_4 = 0,

8 B_d_5 = 0, B_d_6 = 0, B_d_7 = 0, B_d_8 = 0, B_d_9 = 0;

9 B_t_0 = 1, B_t_1 = 4, B_t_2 = 7, B_t_3 = 10, B_t_4 = 13,

10 B_t_5 = 16, B_t_6 = 19, B_t_7 = 22, B_t_8 = 25, B_t_9 = 28;

11 C_d_0 = 0, C_d_1 = 0, C_d_2 = 0, C_d_3 = 0, C_d_4 = 0,

12 C_d_5 = 0, C_d_6 = 0, C_d_7 = 0, C_d_8 = 0, C_d_9 = 0;

13 C_t_0 = 2, C_t_1 = 5, C_t_2 = 8, C_t_3 = 11, C_t_4 = 14,

14 C_t_5 = 17, C_t_6 = 20, C_t_7 = 23, C_t_8 = 26, C_t_9 = 29;

15 D_d_0 = 0, D_d_1 = 0, D_d_2 = 0, D_d_3 = 0, D_d_4 = 0,

16 D_d_5 = 0, D_d_6 = 0, D_d_7 = 0, D_d_8 = 0, D_d_9 = 0;

17 D_t_0 = 2, D_t_1 = 5, D_t_2 = 8, D_t_3 = 11, D_t_4 = 14,

18 D_t_5 = 17, D_t_6 = 20, D_t_7 = 23, D_t_8 = 26, D_t_9 = 29,

Example 3. Consider a travel service scenario which involves reserving hotel and
booking transportation (flight or train). The service package processes clients’
requests in the following way: The service is initiated through a request from
some client, then the request is first handled by the hotel service through a
SyncSer. Next the request is further transferred to the transportation service,
where the RouterSer operates and sends it to the flight service and train service.
Meanwhile, flight and train booking are both monitored by a government ser-
vice, which is aggregated through a MergeSer. The transportation reservation
succeeds only if the government service accepts the reservation. Besides, the
hotel service and the transportation service are composed through a sequential
composition. This service package can be modeled in Z3 as follows.

1 Serv1 = Service(’Sync’, ’True’, (’A’, ’B’))

2 Serv2 = Service(’Router’, ’True’, (’C’, ’D’, ’E’))

3 TravelPack1 = Cloud()

4 TravelPack1.compose(’SeqComp’, Serv1, Serv2, 1)

5 TravelPack1.config(’Merger’, ’True’, ’D’, ’E’, ’F’)
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Another service package can be simpler, which involves a hotel service and a
government service in charge of transportation reservation. Moreover, these two
services are also composed through a sequential composition. The model of this
simplified service package is presented in the following.

1 Serv1 = Service(’Sync’, ’True’, (’A’, ’B’))

2 Serv3 = Service(’Sync’, ’True’, (’C’, ’F’))

3 TravelPack2 = Cloud()

4 TravelPack2.compose(’SeqComp’, Serv1, Serv3, 1)

Intuitively, these two service packages provide the clients with the same
result: hotel and transportation reservation. Therefore, next we check if the
equivalence relation exists between them. After invoking the Refine function in
two directions, we get the returned results shown as follows:

1 True, None

2 True, None

The result shows that the TravelPack1 is indeed a refinement of TravelPack2
while the refinement relation holds also in the other direction. Finally, the equiv-
alence relation between them gets proved.

5 Conclusion and Future Work

This paper extends our previous work on the design model for cloud services
and proposes a framework on formal specification of cloud services and compo-
sitions in SMT solver Z3. The composition of cloud services is given by a family
of composition operators which are specified in a class capturing the behavior
of the composition. The framework naturally preserves the original choreogra-
phy of cloud applications, and thus makes the description of cloud services and
applications reasonably readable. This work also provides a complement of the
verification by theorem proving approach in our previous work. In fact, some-
times users of theorem provers like Coq or PVS need to construct proofs or even
build counter examples manually first to show that a property is not satisfiable.
For such cases, using Z3 makes it possible to automatically search for possible
bounded counter examples.

However, the proposed framework focuses on addressing the data- and time-
related properties of the top level cloud services while failing to address the
availability and failure rate of online services. The case studies are also set in
a high level conceptual setting. In future work, we plan to incorporate the QoS
aspects on cloud services into this model and will investigate the formalization
and quantitative reasoning about low level programs of cloud applications in
SMT solvers. On the other hand, we hope to develop the formal model for
dynamic reconfiguration and adaptation of cloud services as well, which is quite
useful in real world scenarios.
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