
GRASP Method for Vehicle Routing
with Delivery Place Selection

Petar Afric(B), Adrian Satja Kurdija, Lucija Šikić, Marin Silic, Goran Delac,
Klemo Vladimir, and Sinisa Srbljic

Faculty of Electrical Engineering and Computing, University of Zagreb,
Unska 3, Zagreb, Croatia

{petar.afric,adrian.kurdija,lucija.sikic,marin.silic,
goran.delac,klemo.vladimir,sinisa.srbljic}@fer.hr

Abstract. In this paper we present a greedy randomized adaptive
search procedure (GRASP) for solving a vehicle routing problem (VRP)
for package delivery with delivery place selection. The problem can be
solved by stepwise optimization, i.e., first selecting delivery sites and then
defining routes based on that selection. Alternatively, it can be solved
by jointly optimizing delivery site selection and routing. We investigate
the effects of stepwise optimization in comparison to joint optimiza-
tion. The evaluation results show that our proposed stepwise approach,
while expectedly producing longer routes than joint approach (by 4% on
average), can provide a solution 1000× faster than the previous bench-
mark approach. The proposed procedure is therefore well suited for the
dynamic environment of package delivery which is widespread in modern
cities as a consequence of e-commerce.

Keywords: Greedy randomized adaptive search procedure ·
Vehicle routing problem · Package delivery

1 Introduction

Humanity is increasingly using e-commerce. In modern cities, especially smart
cities of the future, there is an increasing need for optimized package delivery.
The motivation is both to maximize profit and to reduce our impact on the
environment. In this paper we study package delivery with delivery site selection.

Schittekat et al. present an interesting problem and analysis in [1]. They
tackle a problem of school bus routing (SBR) with bus stop selection. In this
problem, students need to be assigned to a station from a list of potential sta-
tions and then routes need to be constructed so that all students are transported
to school while covering a distance as small as possible. By jointly optimizing
student station assignment and station route assignment, they produce signifi-
cantly shorter routes then if they divided the process into two steps: assigning

c© Springer Nature Switzerland AG 2019
D. Wang and L.-J. Zhang (Eds.): AIMS 2019, LNCS 11516, pp. 72–83, 2019.
https://doi.org/10.1007/978-3-030-23367-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23367-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-23367-9_6


GRASP Method for Vehicle Routing with Delivery Place Selection 73

students to stations, and defining routes for the stations with assigned students.
We noticed several things:

– This problem is equivalent to the problem of package delivery where the
package can be delivered to multiple delivery sites. Since providing multi-
ple delivery sites can produce shorter routes, such user behavior should be
incentivized.

– The running time of the joint optimization approach seems quite large for
the dynamic world of package delivery. We decided to investigate how time
performance improves when using a stepwise approach.

– The benchmark stepwise approach presented in the above paper seems very
simple, thus artificially increasing the benefit of the presented approach. We
decided to investigate how a smarter stepwise approach compares to the joint
approach.

The rest of the paper is organized as follows. Section 2 defines the problem
in precise terms. Section 3 presents the work related to this paper. In Sect. 4, a
detailed description of the proposed algorithm is given. Section 5 presents the
evaluation results. Section 6 gives final comments about our work and future
research possibilities.

2 Problem Definition

In this paper the problem of defining vehicle routes for delivery trucks with an
addition of delivery place selection is considered. The problem can be described
as follows:

– there is a single production factory,
– there are N delivery stations,
– there are M customers who will pick up their delivery at the delivery station.

Furthermore,

– each customer will visit only one delivery station, which needs to be in his or
her walking range,

– each customer will pick up only one delivery package,
– all delivery trucks have the same capacity which indicates the number of

packages they can carry (all packages are assumed to have the same size),
– any delivery station can be visited by only one delivery truck.

The goal is to minimize the total route length travelled by all trucks.
A mathematical description of the problem is shown in Table 1 and Eqs. 1,

2, 3, 4 and 5.
The aim is to minimize expression (1):

N∑

i=1

N∑

j=1

cij

T∑

k=1

xijk +
N∑

i=1

cpi

T∑

k=1

xpik (1)



74 P. Afric et al.

Table 1. Mathematical problem description

Parameter Description

N Number of delivery stations

M Number of customers

T Number of delivery trucks

Kk Capacity of delivery truck k specified by number of packages it can
carry

cij Cost of going from station i to station j

cpi Cost of going from station i to the production factory

pnl Number of packages picked up by customer l

sil 1 if the station i is within range of customer l, otherwise 0

xijk 1 if delivery truck k travels between stations i and j, otherwise 0

xpik 1 if delivery truck k travels between stations i and the production
factory, otherwise 0

yik 1 if the delivery truck k goes to station i, otherwise 0

zil 1 if the customer l goes to station i, otherwise 0

While respecting the following restrictions:

N∑

i=1

zilsil = 1 ∀l ∈ {1, ...,M} (2)

pnl = 1 ∀l ∈ {1, ...,M} (3)
Ki = Kj ∀i, j ∈ {1, ..., T} (4)
T∑

k=1

yik = 1 ∀i ∈ {1, ..., N} (5)

In this paper we present a fast greedy randomized adaptive search procedure
(GRASP) heuristic algorithm for solving the described problem. The algorithm
consists of two parts:

1. assigning customers to delivery stations,
2. defining routes for visiting delivery stations.

The first part is done using a greedy heuristic, while the second one is done using
a specialized local search. These two steps are repeated R times and the best
solution is kept.

In order to evaluate the proposed approach, we conducted extensive labo-
ratory experiments. During the experiments we compared various approachp-
resented in [1]. Our results show that although a stepwise approach does, on
average, produce longer routes the difference gap can be minimized from 23%
to 4% while improving execution time by three orders of magnitude. In the end
we give guidelines for future work on this topic.



GRASP Method for Vehicle Routing with Delivery Place Selection 75

3 Related Work

Vehicle routing is a very active field of research. An overview of research in
this field is given by Vigo and Toth in [2]. A large body of work in this field is
concerned with incorporating as many real world constraint as possible. This is
easily seen by the amount of variation of the vehicle routing problem (VRP).
There is VRP with time windows (VRPTW), inventory routing problem (IRP),
production routing problem (PRP), location routing problem (LRP), inventory
location routing problem (ILRP), capacitated vehicle routing problem (CVRP),
split delivery routing problem (SDVRP) and many others, all of them described
in [3].

However, to the best of our knowledge there does not seem to be a large body
of work which studies the effect of multiple delivery site availability. Most of the
work on this topic seems to be done by dealing with the school bus routing (SBR)
problem since station selection is a common part of this problem. [4] describe
two stepwise approaches for such problems. Location-Allocation-Routing (LAR)
first selects the delivery sites and then performs routing on the selected sites.
Allocation-Routing-Location (ARL) first performs routing and then performs
delivery site selection.

In our paper we have decided to use the LAR strategy and implement it using
a GRASP metaheuristic [5], noting that Park and Kim observed in [6] that only
a few metaheuristic approaches have been tried for this problem.

4 Proposed Algorithm

As introduced before, the algorithm can be divided into two parts:

1. assigning customers to delivery stations,
2. defining routes to delivery stations.

The following sections describe each of the steps.

4.1 Assigning Customers to Delivery Stations

The main idea behind the assignment algorithm is to reduce the number of deliv-
ery stations which need to be visited while preferring delivery stations which are
closer to the production factory. The algorithm (shown formally in Algorithm 1)
goes as follows:

– The fitness of each station is calculated. The fitness indicates how fit a station
is to be assigned to customers. It is generated in the following way:

• For each station it is initialized to zero.
• A constant C (controlling the relevance of the distance to the factory) is

randomly generated uniformly from [0, 10]. For each station, the fitness is
increased by C divided by the distance of the station to the production
factory.



76 P. Afric et al.

• Then, for each customer, the fitness of each reachable station is increased
by a reciprocal of the number of reachable stations. In this way the fitness
of stations which can be reached by a lot of customers or which are the
only option for some customers are increased.

– The stations are then sorted in descending order by fitness. If the fitness
difference is less then fitness d min, precedence is given to stations closer to
the production factory. fitness d min is a hyper-parameter which we usually
set to 0.01.

– The stations are then iterated in the sorted order. For each station, customers
which can reach it are considered.

• If the station can be reached by a number of customers less or equal to the
capacity of the truck, then all the customers are assigned to that station.

• If more customers can reach the station, they are sorted by the number
of stations they can reach in ascending order. If two customers can reach
the same number of stations, precedence is given to the customer which
is farther from the production factory. Customers are then assigned to
the current station in the sorted order until the capacity on the truck is
filled.

After all of this is done, all customers are assigned to a station. Those stations
which have at least one customer assigned to them are active stations and only
they are considered in the rest of the algorithm.

Algorithm 1. Assigning customers to delivery stations
C ← getRandomV alue(0, 10)
for station ← stations do

fitness[station] = C/distance[factory][station]
end for
for customer ← customers do

fconst = 1/stationsInCustomerReach[customer].Count()
for station ← stationsInCustomerReach[customer] do

fitness[station]+ = const
end for

end for
Sort(stations).Ascending().Using(fitness, distance)
for station ← stations do

customersInReach = customerInReach[station]
if customersInReach <= truckCapacity then

for customer ← customersInReach do
stationFor[customer] = station

end for
else

Sort(customersInReach).Descending()
.Using(stationsInCustomerReach, distance)
for i ← Range(truckCacpacity) do

customer = customersInReach[i]
stationFor[customer] = station

end for
end if

end for



GRASP Method for Vehicle Routing with Delivery Place Selection 77

4.2 Defining Routes to Delivery Stations

The goal of this step is to define truck routes for active stations which are as
short as possible while respecting the truck capacity constraint. This problem
can be divided into two subproblems:

– determining which stations are grouped to the same route,
– determining the best possible order of visiting the stations in the route.

The developed algorithm can be divided into three separate steps:

1. preprocessing,
2. initial solution generation,
3. solution optimization.

Preprocessing involves iterating over all stations and defining routes for stations
which cannot be combined with any other station due to the capacity constraint.
These stations and routes are no longer taken into consideration in further opti-
mization.

Initial solution generation is done using a greedy heuristic which does the fol-
lowing:

1. it selects a station which is not yet assigned to any route and creates a route
for it,

2. then it iterates over the rest of the unassigned stations and calculates which
of the satisfiable stations is closest to the set of stations currently in the route.
A station is satisfiable if the distance between the station and the route is
smaller than between the station and the factory.

3. If the closest station is found, it is added to the current route; otherwise that
is the end of the current route creation.

4. The previous steps are repeated as long as there are active unassigned sta-
tions.

The described algorithm is shown in Algorithm 2. Each of the defined routes
is optimized using a greedy heuristic TSP (travelling salesman problem) solver
which will be described later.

Solution optimization is done using local search. The search is defined by the
following properties.

– An incomplete neighborhood consists of one element which is generated by
doing one of the following:

• switching a station from one route to another,
• selecting two stations from different routes and swapping the stations

between the two routes,
• joining two routes into one,
• breaking a route into two routes at a random point.



78 P. Afric et al.

Algorithm 2. Initial solution generation
rout = {}
while activeStations.IsEmpty() == false do

station = activeStations.RemoveAt(0)
route.Add(station)
routeExpanded = true
while routeExpanded do

routeExpanded = false
closestToRoute = NULL
for activeStation ← activeStations do

distanceToRoute = Infinity
for routeStation ← route do

if distance[factory][activeStation]>distance[activeStation][routeStation] then
distanceToRoute =
Min(distanceToRoute, distance[activeStation][routeStation])

end if
end for
if closestToRoute.distanceToRoute > distanceToRoute then

closestToRoute = activeStation
closestToRoute.distanceToRoute = distanceToRoute

end if
end for
if closestToRoute! = NULL then

rout.Add(closestToRoute)
routExpanded = true

end if
end while
tspSolver.Optimize(rout).Using(distance)
routes.Add(route)
route = {}

end while

There is a small probability (a parameter called repetitionChance) that
another modification occurs after each modification.

– Routes are re-optimized using a TSP solver in each iteration as soon as they
are manipulated.

– The objective function is the sum of lengths of all routes.
– The stopping condition is reaching a maximum number of iterations or a

maximum number of stagnant iterations. These are defined using hyperpa-
rameters maxIterationCount and maxStagnationCount.

The defined algorithm is shown in Algorithm 3.

Algorithm 3. Solution optimization
maxIterationCount = 1000000
maxStagnationCount = 100000
bestDistance = CalculateDistance(routes, distance)
while + + generationNumber < maxIterationCountAND stagnation <
maxStagnationCount do

neighbor = Manipulate(routes, distance)
neighbourDistance = CalculateDistance(neighbor, distance)
if neighbourDistance < bestDistance then

routes = neighbour
bestDistance = neighbourDistance
stagnation = 0

else
stagnation + +

end if
end while



GRASP Method for Vehicle Routing with Delivery Place Selection 79

The result produced by this step are the final routes. We are left to describe
the TSP solver used in our problem.

A TSP solver is used to optimize the generated routes. This TSP solver uses
the following greedy heuristic.

– If it is given three or less nodes, a list of the given nodes is returned as the
solution.

– Otherwise, three random nodes are taken and declared the current optimal
route. Then the following is iteratively done:

• select a random node,
• iterate over each edge of the current optimal route and calculate the

distance change if that edge is removed and two new ones are added
connecting the previously randomly selected node,

• remove the edge which produced the minimal change in distance.
This is repeated as long as there are nodes which are not in the route.

– Finally it returns the created route.

The described algorithm is shown in Algorithm 4.

Algorithm 4. TSP solver procedure
if nodes.Count() ≤ 3 then

RETnodes
end if
route = {nodes.RemoveAt(random),
nodes.RemoveAt(random), nodes.RemoveAt(random)}
while nodes.IsEmpty() == false do

node = nodes.RemoveAt(random)
bestEdgeChange = Infinity
bestEdge = NULL
for edge ∈ Edges(route) do

edgeChange = CalculateChange(route, edge, node)
if edgeChange < bestEdgeChange then

bestEdge = edge
bestEdgeChange = edgeChange

end if
end for
route.Add(node).ByBreaking(bestEdge)

end while

5 Results

For our experiments, we use the dataset presented in [1] and give our results
relative to the results presented in that paper. The dataset contains 112 problem
instances, with the number of customers ranging from 25 to 800, the number
of stations ranging from 5 to 80, and the maximum allowed walking distance
ranging from 5 to 40. For each value of the repetition parameter, we solve each
instance 100 times and take the average solution route length and calculation
time as the results for that instance.



80 P. Afric et al.

Figure 1 shows the average solution route length increase produced by our
algorithm when compared to the results of the joint presented in [1]. At a 100
repetitions our algorithm produces, on average, 4% longer routes. This is clearly
superior compared to the 23% longer routes produced by the stepwise method
reported in [1].

Figure 2 shows the solution route length increase in relation to the instance
maximum walking distance constraing. As the maximum walking distance varies
from 5 to 40, the increase in the route length for our solutions varies from −0.54%
to 4.5% at 100 repetitions. Our results again outperform results in [1] which
reports that, when varying the maximum walking distance from 5 to 40, the
route length increases from 1.4% to 63.4%.

In addition, Figs. 3 and 4 present the relation between station/customer count
and route length increase. As the amount of stations varies from 5 to 80, the
increase in the route length for our solutions varies from 0% to 8.31% at 100
repetitions. As the amount of customers varies from 25 to 800, the increase in
the route length for our solutions varies from 0% to 6.98% at 100 repetitions.

The time performance results depict the logarithm of time decrease in order
to improve readability. Figure 5 shows the time decrease of our algorithm when
compared to [1]. Our algorithm (on average) takes e7.02 ≈ 1100× less time at
100 repetitions, which is clearly a superior result. The time decrease is due to the
problem simplification which occurs as a consequence of the stepwise approach.

Fig. 1. Average solution route length increase

Fig. 2. Solution quality in relation to walking distance



GRASP Method for Vehicle Routing with Delivery Place Selection 81

Fig. 3. Solution quality in relation to station count

Fig. 4. Solution quality in relation to customer count

Fig. 5. Average time decrease

Figures 6, 7 and 8, show how the running time depends on the maximum
walking distance, the number of stations, and the number of customers. As
the maximum walking distance varies from 5 to 40, the time decrease for our
algorithm varies from e7.07 ≈ 1171.13× to e6.82 ≈ 913.75× at 100 repetitions. As
the number of stations varies from 5 to 80, the time decrease for our algorithm
varies from e2.01 ≈ 7.47× to e8.53 ≈ 5036× at 100 repetitions. As the number of
customers varies from 25 to 800, the time decrease for our algorithm varies from
e5.11 ≈ 165× to e7.8 ≈ 2436× at 100 repetitions.



82 P. Afric et al.

Fig. 6. Solution time decrease in relation to station count

Fig. 7. Solution time decrease in relation to customer count

Fig. 8. Solution time decrease in relation to maximum walking distance

6 Conclusion

In this paper, a fast GRASP-based heuristic algorithm for vehicle routing with
delivery place selection is presented. The evaluation results have shown that
the proposed algorithm is, on average, three orders of magnitude faster than
benchmark, thus showing that stepwise optimization can be much faster than
joint optimization for this problem. We have also shown that using a smart
stepwise approach can significantly reduce the performance gap with respect
to the joint approach. Namely, with the proposed algorithm the gap has been
reduced from 23% to 4%. In future work, our aim will be to increase the solution
quality while maintaining or only slightly sacrificing the speed of the algorithm.



GRASP Method for Vehicle Routing with Delivery Place Selection 83

Acknowledgment. This research has been partly supported by the European
Regional Development Fund under the grant KK.01.1.1.01.0009 (DATACROSS).

The authors acknowledge the support of the Croatian Science Foundation
through the Reliable Composite Applications Based on Web Services (IP-01-2018-
6423) research project.

The Titan X Pascal used for this research was donated by the NVIDIA Corporation.

References

1. Schittekat, P., Kinable, J., Sörensen, K., Sevaux, M., Spieksma, F., Springael, J.:
A metaheuristic for the school bus routing problem with bus stop selection. Eur. J.
Oper. Res. 229(2), 518–528 (2013)

2. Toth, P., Vigo, D.: An overview of vehicle routing problems, pp. 1–26 (2001)
3. Archetti, C., Speranza, M.G.: A survey on matheuristics for routing problems.

EURO J. Comput. Optim. 2(4), 223–246 (2014)
4. Laporte, G., Nobert, Y., Taillefer, S.: Solving a family of multi-depot vehicle routing

and location-routing problems. Transp. Sci. 22(3), 161–172 (1988)
5. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J.

Glob. Optim. 6(2), 109–133 (1995). https://doi.org/10.1007/BF01096763
6. Park, J., Kim, B.I.: The school bus routing problem: a review. Eur. J. Oper. Res.

202(2), 311–319 (2010)

https://doi.org/10.1007/BF01096763

	GRASP Method for Vehicle Routing with Delivery Place Selection
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Proposed Algorithm
	4.1 Assigning Customers to Delivery Stations
	4.2 Defining Routes to Delivery Stations

	5 Results
	6 Conclusion
	References




