
IoT-Based Monitoring and Control Systems
for Window Energy Management:

Design and Implementation

Yoon G. Kim1(&), Shenghui Chen1, Timothy Dykhuis1,
John Slagter2, and Matthew Nauta2

1 Calvin College, Grand Rapids, MI 49546, USA
ygk2@calvin.edu

2 Mackinac Technology Company, Kentwood, MI 49512, USA

Abstract. This paper presents the design and implementation of an IoT-based
system for window energy management. The system computes thermal trans-
mittances of window units and solar heat gain coefficients through window units
from measured sensor readings. It is critical to have energy efficient windows in
homes and offices so as to conserve energy. In order to test the performance of
the window units in realistic environments we created a system which can be
used outdoors at any time. It is convenient for a user to control the system and
access the measured data from a remote or even mobile site. The goal of this
work was to design and implement a system that measures sensor data, transmits
the data over a wireless communication link, distributes the data through the
Internet, and stores the data in a database for analysis at any time and anywhere.
The IoT is a computer network, in which anyone and anything can connect
together anytime and anywhere [1]. It is realizable through sensing and com-
munication technologies [2]. The IoT approach was adopted to achieve our goal
due to the availability of sensing technology, wireless communication tech-
nologies, and standard computer networking protocols. We designed and
implemented a system for calculating the thermal energy related parameters of
the window units. The measured data from sensors were transmitted to a cloud
server over cellular networks and the Internet. The data in the server can be
accessed, stored, and displayed remotely. As long as electricity and cellular
phone networks are available, the system can connect sensors to users. Exten-
sive testing was conducted to verify the operation of the system. The testing and
measurement results show that the system successfully performs the necessary
operations to achieve the goal.

Keywords: Internet of Things (IoT) application �
Window energy management � U-factor � Solar heat gain

1 Introduction

The Internet of Things (IoT) is an emerging technology that draws increasing interest in
industry and also in the research community [2, 3]. The term IoT was first coined in
1999 [4] and reported by the International Telecommunication Union (ITU) in 2005

© Springer Nature Switzerland AG 2019
V. Issarny et al. (Eds.): ICIOT 2019, LNCS 11519, pp. 85–98, 2019.
https://doi.org/10.1007/978-3-030-23357-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23357-0_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23357-0_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23357-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-23357-0_7

[1]. The IoT concept in the report embraces a vision of ubiquitous networks, in which
anyone and anything (RFID tag or computing device with sensors, etc.) can connect
together anytime (24/7) and anywhere (indoor, outdoor, or on the move). One of the
definitions of IoT considers IoT as a network of interconnected objects based on
standard communication protocols [5]. The terms “objects”, “things”, and “devices” are
used interchangeably in the IoT articles [6]. The object can have a sensor, multiple
sensors of the same type, or multiple sensors of different types. When the objects are
interconnected, a sensor network is formed. In terms of sensor networks, the IoT
network can be described as sensor networks connected over the Internet [6]. The IoT
has industrial applications in healthcare service, the food supply chain, transportation,
logistics, environmental monitoring [3], and modern manufacturing [7]. A study [8]
classifies IoT solutions based on the IoT application domain. The IoT concept can be
realizable through integrating enabling technologies: identification with RFID tags,
sensor networks, and current communication technologies [2].

Due to the availability of sensors, current communication technologies, and stan-
dard computer networking protocols, the IoT approach was adopted to achieve our goal
in this project. The main goal of the project was to design and implement a system
which can measure sensor data, transmit the data over a wireless communication link,
and distribute the data using standard computer networking protocols anytime and
anywhere. In this case, the system reports thermal energy related parameters on win-
dow units.

It is reported that there are significant energy losses through building windows [9].
Insulated windows are being developed to conserve energy. U-factor or U-value is a
measure of thermal transmittance. It represents “how much energy will be lost from a
building through its windows” [10]. The lower the U-factor, the better the window
insulates. A standard test method was developed to measure the U-factor using hot box
methods [11]. Through the hot box method, the U-factor can be calculated as [11]

Us ¼ Qs=½As � th � tcð Þ� ð1Þ

where Us is thermal transmittance of test specimen (e.g., window), As is the projected
area of a surrounding panel, Qs is the time rate of heat flow through the test specimen,
th is the temperature of the hot side of the hot box, and tc is the cold side temperature of
the hot box. The quantity Qs is determined by

Qs ¼ Qheater � Qwall � Qbox ð2Þ

where Qheater is the electrical power put into the heater, Qwall is the heat loss through the
walls surrounding the window, and Qbox is the heat loss through the hot box. The
overall thermal resistance of a test specimen is called Rs [11] and is commonly used in
the building industry and defined as

Rs ¼ 1=Us ð3Þ

86 Y. G. Kim et al.

Recently, a cost-effective retrofit window insulation system was developed using
highly transparent window films to reduce heat losses [12]. The window units were
evaluated by measuring the R-value (Rs) using the hot box methods. This paper
explains how we extend the previous work in order to test the window units in more
realistic environments emulating a building setting where the heat source is sunlight.
We developed a unique type of IoT-based system to be operated with and installed in
the Window Energy Management System (WEMSTM) [13] Test Box, which can be
used outdoors anytime. The system is designed to measure the solar heat gain coeffi-
cient (SHGC) [14], which represents the radiant heat transmitted to an enclosure
through a window. The R-values are also measured in situ using the center of glazing
method [15]. The system can measure the SHGC and R-values of window units
remotely by monitoring and controlling the associated modules of the system using
wireless communications and computer networking protocols. The system can run 24/7
as long as it can access electricity and cellular phone networks. It is an IoT-based
system as it includes sensors, embedded systems, actuators, wireless communications,
and Internet cloud servers, which are the core components of IoT technology.

The rest of the paper is organized into sections as follows: In Sect. 2, the design and
implementation of the proposed system are discussed. We illustrate the block diagram
of the proposed system and present photos of implemented control systems for window
energy management. Then, we explain the functionalities of each block and the rela-
tionship between the blocks in the diagram. Section 3 explains the embedded controller
software. We focus on presenting the functionality of the application programs we
developed. In Sect. 4, testing and measurement results are presented. Concluding
remarks are presented in Sect. 5.

2 Design and Implementation of the Proposed System

This project required measurement of physical quantities, such as temperatures and
pressures, from many sensors. The measurement data needed to be collected, then
stored, and processed to evaluate the system under test.

Figure 1 shows the block diagram of the system implemented. The cellular 4G LTE
router [16] connects the test box to a Message Queuing Telemetry Transport (MQTT)
[17] server and a cloud database, MongoDB Atlas [18] server, through the Internet. The
Command Center connects these servers remotely to access its data transmitted from
the test box. The main controller of the system is the embedded system, Raspberry Pi 3
B + [19], which controls the cellular router, the Wi-Fi router, the fan control unit, and
the data acquisition (DAQ) unit as shown in the figure. The detailed descriptions of the
software of the embedded system are presented in Sect. 3.

IoT-Based Monitoring and Control Systems for Window Energy Management 87

The Wi-Fi router is used to connect the cellular router to the air conditioning unit,
which has Wi-Fi connectivity. There are two fans inside the test box, adjusted by the
fan control unit. The unit reads the current temperature or process value (PV) in the
chamber where the windows units are installed and compares the setpoint value (SV).
The unit adjusts the speed of the fan to minimize the difference between PV and SV in
a closed-loop fashion. The SV can be configured via relay boards connected to the fan
control unit by a user at the Command Center, remotely through the Internet. The DAQ
unit has total of 64 single-ended input channels or 32 differential input channels [20].
Twenty four (24) thermocouples are used to measure the temperature in the chamber
and on the window surfaces. Two pressure sensors [21] are used to measure the air
mass flow rate at the inlet and outlet orifices. The flow rate is utilized to calculate heat
transfer rate in the test box chamber interior of the window units, which allows us to
compute the heat flow rate due to solar radiant heat transmitted into the chamber. The
solar heat rate is utilized to determine the solar heat gain coefficient (SHGC).

All sensors are attached to the DAQ, which converts analog signals from sensors to
digital data with 24-bit resolution every 1 min since the temperature being measured
varies relatively slowly. The appearance of the implemented WEMSTM Test Box is
shown in Fig. 2. The overall size of the system is 8 (W) � 8 (L) � 8 (H) feet
excluding the roof and its air vent.

Fig. 1. Block diagram of proposed IoT-based system

88 Y. G. Kim et al.

Figure 3 shows the internal view of the test box (A/C, fans, and window units not
shown). The DC power supply provides DC 24 V to the cellular router and the DC-to-
DC converters, which provide DC 5 V and DC 9 V to low voltage circuits (such as the
embedded controller, relay boards, DAQ, sensors, and Wi-Fi router).

Fig. 2. Appearance of the test box in Fig. 1

Fig. 3. Implementation of control system for the test box

IoT-Based Monitoring and Control Systems for Window Energy Management 89

The detail connection diagram is shown in Fig. 4. The red arrows represent power
connections and the blue arrows represent signal connections.

The average data rate being sent from the embedded system to the cellular router
should be less than the transmission throughput of the router whose memory size is
finite. The measured average throughput of the router ranges between 1.3 Mbps and 7.6
Mbps, which was measured in Michigan, USA during the weekdays. The total average
data rate [bits per second] can be calculated as follows.

Avg:Data Rate ¼ # of ch x ch numbersþ delimitersþ valuesð Þf gsamples=min

¼ 32 x 6 bytesþ 5 bytesð Þf g=60 sec
¼ 2; 816 bits=60 sec ¼ 46:9 bps½ �

ð4Þ

As the measured throughput (1.3–7.6 Mbps) of the cellular router is practically much
larger than the average data rate above, the wireless transmission through the cellular
link is considered to have enough bandwidth for reliable communication. The cellular
link was chosen for its large coverage and relative low cost with moderate bandwidth.

The sampled data by the DAQ are temporarily stored in the memory of embedded
system and pushed to the MQTT server. We use CloudMQTT [22] for implementing
the MQTT server. The data in the server can be accessed by a user remotely at the
Command Center.

Fig. 4. Connection diagram of the control system for the test box (Color figure online)

90 Y. G. Kim et al.

When the system is operated remotely, automated maintenance features and user-
initiated remote maintenance features are often needed to cope with situations where
abnormalities occurs in the test box. The automated maintenance features include (1) a
watchdog timer (WDT) and (2) cellular link wake-up. The user-initiated remote
maintenance features include remote rebooting and remote power cycling of routers
and the DAQ. For example, when the embedded controller is halted, e.g., due to
glitches on the DC power, the WDT circuit reboots the controller. This operation uses
two signals connected to the embedded controller I/O pins as shown in Fig. 4. The
embedded controller sends a signal (Alive) every minute. When this is received, a timer
in the WDT circuit is restarted, and there is no action. If the signal (Alive) is not
received for over three minutes, a signal (Reset) is sent to the controller for reboot.

The cellular router’s connectivity to the Internet is monitored every thirty minutes
by an embedded controller program. When the program detects errors on the Internet
connection to the MQTT server, it automatically turns the Relay (Power) OFF, waits
for five seconds, then back ON. This operation is to run a power cycle on the cellular
router, the Wi-Fi router, and the DAQ. A user at the Command Center can also run the
power cycle manually by accessing the MQTT server if needed.

3 Embedded Control Software

The embedded controller runs the control software to ensure the operation of the test
box. This software includes an operating system (OS) based on Debian [23], a DAQ
driver, open-source code, and the application programs we developed. This section
presents the functionality of the application programs we developed, which are
Watchdog_Pat, Wakeup_Post, Command_Receive, Data_Post, Internet_Check, and
Test_Box.

/etc./rc.local file on the embedded systems is executed automatically during the
boot process. The file includes Watchdog_Pat, Wakeup_Post, and Command_Receive.
The last program is in an infinite loop and run in a separate process from a main
program.

crond (cron daemon) is the name of a daemon which runs in the background of the
OS and reads a file called crontab (cron table) [24]. It allows shell commands to run
periodically. There are three programs listed in the crontab: Watchdog_Pat, Data_Post,
and Internet_Check.

Table 1 shows the name of programs and associated period of calls.

Table 1. Application programs and period of call

Application program Period of call

Watchdog_Pat 1 min
Data_Post 1 min
Internet_Check 30 min

IoT-Based Monitoring and Control Systems for Window Energy Management 91

The Watchdog_Pat program is not only called by the crond every minute but also
called during the boot process to prevent the watchdog timer from being timed out
during the process. The program manipulates the signal on the GPIO pin of the
embedded controller to refresh the WDT circuit.

The names of the MQTT topics in this project are ‘debug1’, ‘command1’, and
‘sunbox1’.

The Wakeup_Post uses a program called mosquitto [25], which is installed on the
embedded controller, to publish a message on the ‘debug1’ topic to the MQTT server.
It establishes a connection to the server. The Wakeup_Post publishes a message to
show that the embedded controller booted successfully and to provide the controller’s
current IP address.

The Data_Post program creates a connection between the embedded controller and
the MQTT server and then publishes messages on the ‘sunbox1’ topic. These messages
are the readings of sensors attached to the DAQs. To obtain the readings, the Data_Post
utilizes the DAQ device driver [26].

The Internet_Check program checks the Internet connection by attempting to
connect to the MQTT server. The program uses the return value as a flag to indicate the
success of the connection process. If it is not successful, the program initiates the power
cycling of two routers to restart the Internet connection. If it is successful, it does
nothing. This software is called every 30 min by the crond.

The Command_Receive program allows the embedded controller to receive a
remote message from the MQTT server in which a user enters the message under the
‘command1’ topic on the CloudMQTT server screen as shown in Fig. 6. The program
listens to a message published on a specific topic (‘command1’) and responds to four
messages: ‘u’ for increasing the temperature setpoint value of the fan controller, ‘d’ for
decreasing the value, ‘p’ for power cycling, and ‘r’ for restarting the embedded con-
troller only. The program publishes a message on the ‘debug1’ topic when the con-
nection to CloudMQTT is established successfully and when the embedded controller
receives a valid command through the ‘command1’ topic. The Command_Receive
program uses an open-source implementation of MQTT, paho.mqtt [27], to commu-
nicate with the MQTT server.

The Test_Box program allows the embedded controller to perform the heat flow
rate calculations. This rate is integral to finding the SHGC. The program uploads the
processed data to the MongoDB Atlas.

Increasing or decreasing the fan commands ‘u’ or ‘d’ are accomplished through the
GPIO pins of the embedded controller. The voltages on the pins drive the relay board to
close or open the pushbutton on the fan control unit shown in Fig. 3. The power cycle
command ‘p’ is accomplished through the GPIO pins of the embedded controller, too.
It runs a power cycle on the cellular router, the Wi-Fi router, and DAQ to restart. The
restart command ‘r’ is accomplished through the restart command in the operating
system.

We developed a program named mqtt_pub_sub to run on the Command Center PC.
The program subscribes the ‘sunbox1’ topic so that the server can receive measurement
data (messages) from the embedded controller in the test box. The program also
publishes the message (‘u’, ‘d’, ‘p’, or ‘r’) on the ‘command1’ topic to display the
message on the CloudMQTT screen as shown in Fig. 6.

92 Y. G. Kim et al.

A database is installed on the Command Center PC to have all the measurement
readings from the test box stored locally on the PC. The database used for this purpose
is MongoDB [27]. When new data is published on the ‘sunbox1’ topic, the
mqtt_pub_sub program reads the data, parses it into corresponding fields, and stores it
in the database.

The software list and devices that run the software are shown in Table 2.

4 Testing and Results

When the embedded controller gets booted, two messages are published on the ‘de-
bug1’ topic as shown in the blue box of Fig. 5.

When a user at the Command Center types in ‘command1’ in the Topic box and ‘u’
in the Message box followed by clicking on the Send button, the message is published
on the ‘command1’ topic and delivered to the embedded controller. After the Com-
mand_Receive program running on the embedded controller receives any of the four

Table 2. Devices and software

Device Software

Embedded controller Debian OS, DAQ Device Driver, paho.mqtt, mosquitto,
Command_Receive, Data_Post, Wakeup_Post,
Watchdog_Pat, Internet_Check, Test_Box

Command center PC mqtt_pub_sub, MongoDB
Cloud server CloudMQTT, MongoDB Atlas

Fig. 5. Messages during boot process (Color figure online)

IoT-Based Monitoring and Control Systems for Window Energy Management 93

messages listed above, the program acts according to the messages. It also publishes a
message under the ‘debug1’ topic on the server acknowledging the reception of the
command. This is shown in the blue box of Fig. 6.

The Data_Post on the embedded controller publishes measured temperature values
as messages on the ‘sunbox1’ topic, sending to the MQTT server every minute as
shown in Fig. 7.

Fig. 6. Topics and messages by Command_Receive (Color figure online)

Fig. 7. Measurement data published as messages by Data_Post

94 Y. G. Kim et al.

The messages in Fig. 7 are in the form of a string. The string has fields that are
separated by commas. The first field text “ts” stands for “time stamp”. The next field is
the time stamp of the message followed including day, time, and year. The field after
the time stamp is “Ch0”, indicating that the following field is the temperature in Celsius
of the thermocouple connected to channel 0 of the DAQ. The same rule applies to the
readings from channels 0–13 and channels 16–27. Note that the channels 14 and 15 are
reserved for future use. The differential input of Channel 28 is used to measure pres-
sures from two single-ended pressure sensors. The value following the field “Ch28H”
is the pressure reading of the sensor attached to the + terminal of the channel 28 of the
DAQ. Similarly, “Ch28L” refers to the pressure sensor connected to the terminal of the
channel 28.

Once the Test_Box program uploads the processed data to MongoDB Atlas, charts
can easily be made and customized within a MongoDB dashboard. Variables from the
database are dragged to applicable fields depending on chart type for the X-axis and Y-
axis values. Charts automatically update with new data, though filters may be used to
select specific date ranges. Labels, colors, and other chart elements may also be cus-
tomized within the chart-creation window. Figures 8, 9, and 10 illustrate the charts of
time-indexed interior chamber temperature, air mass flow rate, and heat flow rate of the
test box, respectively.

Fig. 8. Interior chamber temperature of the test box

IoT-Based Monitoring and Control Systems for Window Energy Management 95

5 Conclusions

This paper describes the design and implementation of an IoT-based system that
measures multiple sensor data, processes the data, transmits the data over a cellular
network, collects the data in a cloud server, stores the data, and displays the data
remotely. It can operate anytime (24/7) and anywhere (indoor or outdoor) over the
Internet and cellular network. The described system can calculate the critical values on
window units, such as heat flow rate, thermal transmittance, and solar heat gain
coefficient using the stored data for assessing thermal performance of the units under
test.

A user can access the measured and processed data remotely from a fixed or
moving site.

As the results showed, the system successfully performed the operations listed
above. The goal of this project was achieved by an IoT approach with enabling
technologies. The processed data were transferred to the cloud servers. The data in the
database server were accessed and displayed remotely at the Command Center. Due to
the automated maintenance features we developed, the system provides reliable
operation.

Fig. 9. Air mass flow rate of the test box

Fig. 10. Heat flow rate of the test box

96 Y. G. Kim et al.

Through the design and implementation of this project, an IoT-based system for
window energy management was realized in an industrial application.

Acknowledgment. The authors thank Dr. Rich DeJong, Dr. Randy Brouwer, and Mr. Leonard
Pearlman for valuable input and discussion. The IoT-based system was designed and imple-
mented at Calvin College with funds provided by the 2018 Engineering Sustainability Research
Fund. The construction of the WEMSTM Test Box and installation of the IoT-based system were
conducted at Mackinac Technology Company and funded under PE 0603734A, Project T15
Military Engineering Technology Demonstration (Congressional Add), Task 07 under Contract
W9132T-19-C-0001, managed by the US Army Engineer Research and Development Center,
with permission granted by the Director, Construction Engineering Research Laboratory to
publish this information.

References

1. International Telecommunication Union: ITU Internet Report 2005: The Internet of Things,
https://www.itu.int/net/wsis/tunis/newsroom/stats/The-Internet-of-Things-2005.pdf. Acces-
sed 07 Jan 2019

2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15),
2787–2805 (2010)

3. Xu, L.D., et al.: Internet of Things in industries: a survey. IEEE Trans. Industr. Inf. 10(4),
2233–2243 (2014)

4. Ashton, K.: That ‘Internet of things’ Thing. http://www.rfidjournal.com/articles/view?4986.
Accessed 07 Jan 2019

5. European Commission: Internet of Things in 2020. https://docbox.etsi.org/erm/Open/CERP-
IoT20090518/Internet-of-Things_in_2020_EC-EPoSS_Workshop_Report_2008_v3.pdf.
Accessed 07 Jan 2019

6. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for
the Internet of Things: a survey. IEEE Commun. Surv. Tutorials 16(1), 414–454 (2014)

7. Bi, Z., Xu, L.D.: Internet of Things for enterprise systems of modern manufacturing. IEEE
Trans. Industr. Inf. 10(2), 1537–1546 (2014)

8. Perera, C., Liu, C.H., Jayawardena, S.: The emerging Internet of Things marketplace from an
industrial perspective: a survey. IEEE Trans. Emerg. Top. Comput. 3(4), 585–598 (2015)

9. U.S. Department of Energy: Update or Replace Windows. https://www.energy.gov/
energysaver/design/windows-doors-and-skylights/update-or-replace-windows. Accessed 07
Jan 2019

10. NFRC: UnderstandingWindowU-Factor. https://www.nfrccommunity.org/blogpost/925129/
226115/Understanding-Window-U-Factor. Accessed 07 Jan 2019

11. ASTM: Standard Test Method for Measuring the Steady-State Thermal Transmittance of
Fenestration Systems Using Hot Box Methods. https://compass.astm.org/EDIT/html_annot.
cgi?C1199+14. Accessed 07 Jan 2019

12. ARPA-E: Single Pane Window Retrofit System. https://arpa-e.energy.gov/?q=slick-sheet-
project/single-pane-window-retrofit-system. Accessed 07 Jan 2019

13. Mackinac Technology Company: Mackinac WEMS. https://www.mackinac-technology.
com/our-product.html. Accessed 07 Jan 2019

14. U.S. Department of Energy: Energy Performance Ratings forWindows, Doors, and Skylights,
https://www.energy.gov/energysaver/design/windows-doors-and-skylights/energy-
performance-ratings-windows-doors-and. Accessed 07 Jan 2019

IoT-Based Monitoring and Control Systems for Window Energy Management 97

https://www.itu.int/net/wsis/tunis/newsroom/stats/The-Internet-of-Things-2005.pdf
http://www.rfidjournal.com/articles/view?4986
https://docbox.etsi.org/erm/Open/CERP-IoT20090518/Internet-of-Things_in_2020_EC-EPoSS_Workshop_Report_2008_v3.pdf
https://docbox.etsi.org/erm/Open/CERP-IoT20090518/Internet-of-Things_in_2020_EC-EPoSS_Workshop_Report_2008_v3.pdf
https://www.energy.gov/energysaver/design/windows-doors-and-skylights/update-or-replace-windows
https://www.energy.gov/energysaver/design/windows-doors-and-skylights/update-or-replace-windows
https://www.nfrccommunity.org/blogpost/925129/226115/Understanding-Window-U-Factor
https://www.nfrccommunity.org/blogpost/925129/226115/Understanding-Window-U-Factor
https://compass.astm.org/EDIT/html_annot.cgi%3fC1199%2b14
https://compass.astm.org/EDIT/html_annot.cgi%3fC1199%2b14
https://arpa-e.energy.gov/%3fq%3dslick-sheet-project/single-pane-window-retrofit-system
https://arpa-e.energy.gov/%3fq%3dslick-sheet-project/single-pane-window-retrofit-system
https://www.mackinac-technology.com/our-product.html
https://www.mackinac-technology.com/our-product.html
https://www.energy.gov/energysaver/design/windows-doors-and-skylights/energy-performance-ratings-windows-doors-and
https://www.energy.gov/energysaver/design/windows-doors-and-skylights/energy-performance-ratings-windows-doors-and

15. NFRC.NFRC 100-2017 [E0A2]: https://www.nfrccommunity.org/store/ViewProduct.aspx?
id=1403208. Accessed 07 Jan 2019

16. DIGI. TransPort WR31: https://www.digi.com/products/models/wr31-m52a-de1-tb. Acces-
sed 07 Jan 2019

17. MQTT.org: MQTT. http://mqtt.org/. Accessed 07 Jan 2019
18. MongoDB: MongoDB. https://www.mongodb.com/. Accessed 07 Jan 2019
19. Raspberrypi.org: Raspberry Pi. https://www.raspberrypi.org/. Accessed 07 Jan 2019
20. Measurement Computing: USB-2416 Series. https://www.mccdaq.com/usb-data-acquisition/

USB-2416-Series.aspx. Accessed 07 Jan 2019
21. Honeywell: Board Mount Pressure Sensors. https://sensing.honeywell.com/index.php?ci_

id=151134. Accessed 07 Jan 2019
22. Cloudmqtt: CloudMQTT. https://www.cloudmqtt.com/. Accessed 07 Jan 2019
23. Debian: Debian OS. https://www.debian.org/. Accessed 07 Jan 2019
24. Opensource: How to use cron in Linux, https://opensource.com/article/17/11/how-use-cron-

linux. Accessed 07 Jan 2019
25. Mosquitto.org: Eclipse Mosquitto. https://mosquitto.org/. Accessed 07 Jan 2019
26. Measurement Computing: Third-Party Linux Support. https://www.mccdaq.com/daq-

software/Linux-Support.aspx. Accessed 07 Jan 2019
27. Eclipse.org: Eclipse Paho. https://www.eclipse.org/paho/. Accessed 07 Jan 2019

98 Y. G. Kim et al.

https://www.nfrccommunity.org/store/ViewProduct.aspx?id=1403208
https://www.nfrccommunity.org/store/ViewProduct.aspx?id=1403208
https://www.digi.com/products/models/wr31-m52a-de1-tb
http://mqtt.org/
https://www.mongodb.com/
https://www.raspberrypi.org/
https://www.mccdaq.com/usb-data-acquisition/USB-2416-Series.aspx
https://www.mccdaq.com/usb-data-acquisition/USB-2416-Series.aspx
https://sensing.honeywell.com/index.php%3fci_id%3d151134
https://sensing.honeywell.com/index.php%3fci_id%3d151134
https://www.cloudmqtt.com/
https://www.debian.org/
https://opensource.com/article/17/11/how-use-cron-linux
https://opensource.com/article/17/11/how-use-cron-linux
https://mosquitto.org/
https://www.mccdaq.com/daq-software/Linux-Support.aspx
https://www.mccdaq.com/daq-software/Linux-Support.aspx
https://www.eclipse.org/paho/

	IoT-Based Monitoring and Control Systems for Window Energy Management: Design and Implementation
	Abstract
	1 Introduction
	2 Design and Implementation of the Proposed System
	3 Embedded Control Software
	4 Testing and Results
	5 Conclusions
	Acknowledgment
	References

