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Abstract. Internet of Things (IoT) devices, expected to increase expo-
nentially over the next several years, are easy targets for attackers. To
make these devices more secure, the IETF’s draft of Manufacturer Usage
Description (MUD) provides a means for the manufacturer of an IoT
device to specify its intended purpose and communication patterns in
terms of access control lists (ACLs), thereby defining the device’s nor-
mal behaviour. However, MUD may not be sufficient to comprehensively
capture the normal behaviour specification, as it cannot incorporate vari-
able operational settings that depend on the environment. Further, MUD
only supports limited features. Our approach overcomes these limitations
by allowing the administrator to define the normal behaviour by choos-
ing combinations from a wider set of features that includes physical layer
parameters, values of packet headers, and flow statistics. We developed
and implemented a learning-based system that captures and demodu-
lates wireless packets from IoT devices over a period of time, extracts
the features specified in the normal behaviour specification, and uses a
learning algorithm to create a normal model of each device. Our imple-
mentation also enforces these normal models by detecting violations and
taking appropriate actions, in terms of ACLs on an Internet Gateway,
against the misbehaving devices. Hence, our framework makes the specifi-
cation tighter and clearer than what is possible with MUD alone, thereby
making IoT systems more secure.
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1 Introduction

Internet of Things (IoT), defined as an interconnection of things, people, data,
and processes meant to achieve some specified business goals, is an important
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emerging technology that is being leveraged heavily by companies. The Business
Insider predicts that companies will accelerate their investment in IoT solutions,
with the aggregate investment forecasted to be $15 trillion between 2017 and
2025 [29]. Wireless sensor networks (WSN) are a key foundation of IoT solutions,
helping things to communicate data to people and processes, and vice versa.

WSNs comprise multiple sensors spread across an area, that measure certain
physical parameters of the environment and communicate these measurements
wirelessly to a gateway, which in turn forwards it to a control server. WSNs
may also “close the loop”, i.e. the control server may process these measure-
ments and command some actuators to perform actions to control some physical
parameters. Advances in microcontroller, wireless communication, networking,
and sensor technologies have made WSNs economical, power-efficient, and easy
to setup and maintain. These developments are driving the adoption of WSNs for
IoT solutions, for example, in smart power grids, smart water networks, intelli-
gent transportation, health care, industrial process monitoring and control, and
smart homes. Aided by technologies like WSNs, the IoT world is growing from
2 billion smart “things” in 2006 to a projected 200 billion by 2020, i.e. around
26 smart “things” for every human being on Earth [17].

As WSNs are becoming more common and the IoT is starting to control
important infrastructure, ensuring security in IoT is becoming critical. IoT has
deep penetration in manufacturing, healthcare, and business. By 2025, the global
worth of IoT technologies is projected to be $6.2 trillion, with the maximum value
from health care ($2.5 trillion) and manufacturing ($2.3 trillion) [17]. Aruba
Networks also predicted that 87% of the health care organizations would have
adopted IoT technologies by 2019 [16]. These numbers illustrate IoT’s impor-
tance, and also imply that security breaches would have serious consequences
for people’s lives, industry, and the economy.

Security breaches may happen at the level of the device, in the communica-
tion protocols, and/or in the cloud. Current approaches to security are mostly
reactive, i.e. software, protocol and chip designers take remedial measures after
attackers or researchers discover loopholes. Attackers then again find vulnera-
bilities in the “fixed” designs, and the cycle continues, like a cat and mouse
game that gets increasingly difficult as the complexity of the systems increase.
For example, in 2015, two cyber-security experts exploited vulnerabilities in the
IoT communication layer and used a man-in-the-middle attack to take control
of a Jeep on the freeway, leading to the recall of 1.4 million vehicles. Further,
in 2015, a UK based telecom and Internet provider, “Talk Talk”, was subject to
several security breaches, wherein customers’s credit card details were exposed,
as they were stored unencrypted in the cloud. This prompted cloud providers to
improve their service’s security.

IoT devices can be easy targets for attackers due to vulnerabilities in the
firmware, weak passwords, open telnet ports, and other loopholes. The situation
is aggravated by scale and diversity - while administrators may find it easy to
keep a few devices secure, it is more challenging to do so for hundreds and
thousands of different types of devices, which may be from different vendors.
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Cisco Systems predicts that by 2020 there will be some 50 billion networked
devices [2]. As the number of devices grow, more security breaches will follow
as security solutions and improvements are not keeping pace [28]. IoT botnets
(e.g. Mirai, BrickerBot and Hajime) are commonly used in attacks carried out
using IoT devices. These botnets have three major characteristics: their setup is
fast and easy, their distribution is rapid, and the deployed malware is difficult
to detect [2]. The common solution to thwart botnets has been to use stringent
policy rules. Unfortunately, policies have not been expressive enough to handle
these security breaches [32]. As the policies depend on user’s activity and device
features, they tend to become complex and difficult to manage. The policies also
vary with the manufacturer, as each manufacturer provides different features to
the users.

Securing the network has always been a subservient motive in the industry. In
2018, we saw a significant number of companies updating their privacy policies
and terms of services. Due to data breaches in major companies, security and
privacy has become one of the primary concerns of both the service providers
and the consumers. Owners and providers often do not take basic measures to
secure their networks [26]. Most of the major attacks took place because users
and providers did not upgrade the kernels or did not change the default password
on their network devices [2]. With a simple search on “Shodan”, a list of default
passwords of every device can be found [12].

Prevention is better than cure, so proactive security measures are needed
rather than reactive ones. In this work, we implement a framework that lever-
ages learning techniques and proactively secures IoT devices. The rest of this
paper is organized as follows. Section 2 compares our study with related work
in the academia and the industry. Section 3 explains our theoretical framework,
describing our architecture and our chosen learning technique. Section 4 then
details the implementation of our framework. Section 4.3 presents our results
and finally, Section 5 concludes our paper.

2 Related Work

IoT devices have a specific purpose, and thus have a small number of predictable
traffic flows [31]. This has been harnessed in a positive way by the IETF’s Man-
ufacturer Usage Description (MUD) framework. In the MUD framework, the
manufacturer of an IoT device specifies the device’s intended purpose and com-
munication patterns in a MUD file, which is an instance of a YANG model,
serialized in JSON format. This MUD file is stored on the manufacturer’s web-
site and can be fetched using a MUD Uniform Resource Locator (URL). The
IoT device transmits this MUD URL to the Gateway when the device joins
the network. An entity in the network management system, termed the MUD
Controller, uses this MUD URL to fetch the MUD file. The MUD Controller
then ensures that the IoT device’s behaviour and communication is constrained
accordingly, for example, by applying access control lists (ACLs) at the Gateway.

The promise of the MUD framework for securing networks and the chal-
lenge of integrating it has begun to attract the research community’s attention.
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YANG can be used to describe the normal models and NETCONF deliver them
to devices [11,15,18]. Tools like MUDGEE have been developed for generating
MUD files from device traffic traces (PCAPs). MUDdy tool uses the concept of
metagraphs to check the validity of the MUD file [23]. MUD policies have been
integrated with SDN for IoT intrusion-detection by developing and implement-
ing a system that translates MUD policies to flow rules that can proactively be
configured on network switches [22].

Due to the predictability in device behaviour, signature-based machine learn-
ing techniques have been employed on network traffic to classify and identify
the devices [27]. Machine learning is becoming popular in network and secu-
rity. Machine learning has been used to successfully identify the source Net-
work Interface Card (NIC) over wireless medium by employing Support Vec-
tor Machine (SVM) and k-nearest neighbours (kNN) methods [21]. Various
intrusion-detection tools, e.g. OSSEC, Snort, Suricata and Bro, can be used
to detect and prevent attacks using rule-based approach. Supervised learning
systems can be used for detecting malware by analyzing network traffic using
tools like WEKA, which can outperform these intrusion-detection tools [19].

While the MUD framework is an important step in constraining the behaviour
of IoT devices and keeping them on a leash, it is still in the draft stage and has
its limitations. The YANG model in the latest draft only supports specifying
inbound and outbound ACLs, which may not be enough to keep the device on
a tight leash. For example, an attacker may hijack devices and overwhelm a
gateway by increasing the data rate, while using the prescribed port numbers
and still remaining within the defined normal “box”. To keep the devices on a
tighter leash, the normal behaviour description should consist of multiple smaller
“boxes” rather than one big “box”, i.e., more features have to be specified, with
narrower ranges. In the above case, the data rate calculated over a specified
interval of time could be included in the normal behaviour specification. Further,
it could be a challenge for the manufacturer to create a MUD file for their
device if the intended behaviour depends on operational settings. Consider a
temperature sensor that may be configured by an administrator to transmit
readings at different intervals, depending on the operational environment. In
such cases, the normal behaviour cannot be tightly defined by the manufacturer a
priori, as it is set by the operator. Hence, the MUD file may be at best incomplete,
or worse, unavailable.

In our work, we overcome these limitations by developing a learning-based
system that observes the wireless communications of devices over a period of
time and learns a model for the normal behaviour of each device. The system
validates the communications of all devices against the corresponding normal
models in real time. Deviations from the normal model are used to isolate and
block misbehaving devices, before they can they do damage. Hence, because
our system learns the normal model, it can augment an incomplete behaviour
specification in the MUD file, or substitute a missing one. We provide flexibility
in both choosing the features to be included in the normal behaviour specifica-
tion, and the combination in which the features are used to specify the normal
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behaviour. This helps our system to specify multiple smaller normal “boxes”,
giving less leeway to attackers. Further, as our system captures the wireless
transmissions of the devices directly off the air, we get access to extra features
for defining the normal behaviour, like signal to noise ratio, modulation type
and other physical layer information. Therefore, our proposed system can make
the normal behaviour specification clearer than that possible using MUD alone,
i.e. clearer than MUD.

3 Overview of the Framework Architecture

3.1 System Architecture and Components

Our goal is to design a proactive system that creates normal profiles of IoT
devices by observing their wireless transmissions, detects abnormal behaviour,
identifies the abnormal device and takes actions against that abnormal device.

Fig. 1. High level functional blocks of the system’s architecture, with arrows indicating
directional or bidirectional flow of traffic

Figure 1 shows the functional blocks in our system’s architecture. In our
framework, IoT Devices, which may be sensors or actuators, transmit their mea-
surements wirelessly to the IoT Gateway or receive actuation signals from the
IoT Gateway. These communications are shown by 1©. In order to create a normal
profile of the devices, their communications have to be captured, decoded and
then characterized. We use a Sniffer to eavesdrop on and decode the device’s
communications as shown by 2©. The IoT Gateway demodulates the wireless
transmissions of the device and is responsible for forwarding the traffic to the
Internet Gateway as shown by 3©. The Internet Gateway receives the traffic gen-
erated by the sensors via the IoT Gateway and, depending on the actions that
are configured on the Internet Gateway, the traffic is then forwarded to the des-
tination, which is the Application Server, 8© via the Internet 7©. All the actions
taken by the Controller to thwart the attacks will be implemented on the Inter-
net Gateway. The Sniffer is responsible for capturing and decoding the packets
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sent or received by the IoT Devices. Packet Captures (pcaps) are generated as
an output of the Sniffer and are sent to the Controller for further processing,
as shown by 4©. The Controller, which is the core of our system and is detailed
in Sect. 3.2, receives PCAPs as input and is responsible for extracting relevant
features, creating a normal model 5© and enforcing the generated model on the
Internet Gateway 6©. The functions of the Controller are detailed in Sect. 3.2.

3.2 Learning Technique

As mentioned above, the Controller is the core of our system’s architecture. A
simplified block diagram of the Controller is shown in Fig. 2. The feature extrac-
tor module receives pcaps from the Sniffer and extracts the desired features.
During the learning phase, the features are stored for a duration of time, termed
the “learning interval”, and then these stored features processed by the learning
module to create the normal models of the devices. These normal models are
stored as MUD files in the database. The Controller learns the normal models
periodically after every learning interval to ensure that the models are updated
in case the normal behaviour of the devices change with time. Once the normal
behaviour models have been learnt, the Enforcer enforces these models during the
enforcing phase. The Enforcer receives the features of the each device’s commu-
nication, in real time, from the feature extractor. The Enforcer compares these
features with the respective normal models read from the database. If any devi-
ation from the normal model is detected, the Enforcer isolates the misbehaving
device and blocks it by applying ACLs at the Internet Gateway.

Fig. 2. A simplified version of the Controller, illustrating its main functions - learning
the normal model, storing the model into a database, and enforcing the model.

Various learning methods can be used to model the normal behaviour of the
device, and these can be categorized into supervised learning and unsupervised
learning. Among these methods, it has been shown that performance of unsu-
pervised learning is not affected by unknown characteristics or information and
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is similar to the performance of the supervised learning [24]. The disadvantage
of using supervised methods for characteristics detection is that the labelling
procedure of training data is expensive in terms of computation and is time con-
suming. The unsupervised anomaly detection approach overcomes this problem
by making use of data-clustering algorithms, which make no assumptions about
the labels or classes of the pattern. Data is grouped such that patterns within
the same groups are more similar to each other than they are to patterns belong-
ing to different groups. Since IoT devices have completely different patterns for
different features, unsupervised learning using clustering is a good fit.

Among different clustering techniques, hierarchical clustering is preferable
when the number of clusters is not known a priori, as it is both more flexible and
has fewer assumptions about the distribution of the underlying data. Clustering
algorithms like k-means need a criterion to define a correct or acceptable number
of clusters, but such information may not be available in some systems [20].
Though hierarchical clustering can be computationally more expensive, it is
robust with respect to choice of number of clusters, and can detect outliers
(suspicious data points). Hierarchical clustering is also easy to implement, and
it is easy to interpret its the results [30]. Hence, a hierarchical clustering learning
algorithm is preferable for classifying the behaviour of IoT devices in WSNs, as
the number of normal clusters are not known a priori.

Hierarchical clustering starts by treating each data point as a separate clus-
ter. At each step, a distance metric is used to identify the two closest clusters,
and these clusters are merged to a single cluster. This continues until all the
clusters are merged together. The distance between the two clusters, merged
at a given step of the hierarchical clustering algorithm, is termed the “inter-
cluster distance”. The output of the hierarchical clustering is a dendrogram,
which is a tree structure showing the hierarchical relationship between clusters,
with cluster numbers on the X-axis and inter-cluster distance on the Y-axis. To
obtain a group of clusters, the dendrogram can be “cut” by a horizontal line,
corresponding to a specific inter-cluster distance, and a specific cluster merging
step.

After performing hierarchical clustering, the next step is to find the best
location of this horizontal line, to cut the dendrogram thus obtained, such
that the resultant cluster partition is the optimum. The increase in inter-
cluster distance between successive cluster merging steps, which we denote
by δinterClusterDistance, can be used to guide this search. A large value of
δinterClusterDistance at a merging step indicates that the merged clusters are
dissimilar and probably belong to different groups. Hence, the candidate loca-
tions to cut the dendrogram are those where the next cluster merging step leads
to a large value of δinterClusterDistance. To choose the best location among all
these candidates, a metric is needed to measure the “quality” of the correspond-
ing clustering results. We use the silhouette analysis technique as the metric.
This technique computes a metric for each data point, termed the “silhouette
score”, which is a measure of how well that data point lies within its cluster.
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The silhouette score for a data point x is calculated as follows:

s(x) =
d̄c′(x) − d̄c(x)

max{d̄c′(x), d̄c(x)} ,

where d̄c(x)is the average distance between x and all other datapoints within the
same cluster, and d̄c′(x)is the smallest average distance between x to all points
in any other cluster that does not have x as a member.

The silhouette score ranges from −1 to +1, and can be averaged over all
the data points to obtain a mean silhouette score. Higher values of the mean
silhouette score indicate that the cluster partition is appropriate, while lower
values indicate that the partition may have too many, or too few clusters. Among
all the candidate clustering results described previously, the optimum is chosen
such that it yields the highest mean silhouette score. This learning algorithm
is detailed in Sect. 4.2. In this way, based on these optimum clusters obtained
with hierarchical clustering and silhouette analysis, normal models are learned
for classifying the behaviour of IoT devices.

4 Testbed Implementation, Experiments and Results

To put theory to practice, a testbed was implemented, comprising all the com-
ponents of the theoretical framework discussed above: a wireless sensor net-
work, a Sniffer that eavesdrops on and decodes all wireless transmissions, and
a Controller that supervises the devices. To enable the research and academic
community to build on this work, this testbed has been open-sourced [13,14].
In this section, we describe this testbed and present the results of experiments
conducted using it.

4.1 System Components

LoRa [7] and LoRaWAN [1], which are predicted to be the dominant physi-
cal and medium access control protocols for private LPWANs [8], were chosen
to demonstrate the capabilities of our framework and its potential to be used
in real life IoT networks. Other IoT communication technologies like SigFox,
Narrowband IoT (NB-IoT), and LTE CAT 1, can also be supported over our
testbed, with compatible devices, a compatible gateway, and by updating the
Sniffer to demodulate and decode the respective communication protocols. As
depicted in Fig. 3, Multitech mDot [10] devices were chosen as the programmable
IoT Devices, a Multitech Conduit LoRa Gateway [9] as the LoRaWAN Gate-
way, and an Ettus USRP B210 [3], controlled by the GNU Radio toolkit, as
the Sniffer. Linux containers [6], managed using LXD, were used to emulate the
IoT Gateway, Application Server and the Controller. An alternative to decoding
transmissions “off the air”, is to capture packets “on the wire”, at the inter-
face of the Gateway towards the IoT Devices, and forward these packets to the
Controller.
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Fig. 3. Implementation diagram depicting the mapping of the theoretical framework
components to actual devices, Linux containers and processes.

The mDots use LoRaWAN’s Over the Air Authentication (OTAA) scheme
to the join the LoRaWAN Gateway. This scheme requires the mDots to be
setup with certain keys. This configuration was performed using MBed’s online
compiler. To emulate normal and abnormal behaviour, the mDot was also pro-
grammed to transmit payloads of desired length, and at desired intervals of time.
The mDots were configured to use the US 902–928 MHz industrial, scientific and
medical (ISM) band, and to operate in hybrid mode in sub-band 1. Therefore,
the mDots hopped in frequency between one of eight channels spaced at inter-
vals of 200 kHz from 902.3 MHz to 903.9 MHz when transmitting with 125 MHz
bandwidth, and will transmit at 903 MHz when using 500 MHz bandwidth.

The transmissions of the mDot are decoded by the Multitech LoRaWAN
Gateway and encapsulated in TCP datagrams with the destination IP being the
interface of the Application Server container connected to the Internet Gateway
container. These datagrams are then forwarded to the Internet Gateway, whose
forwarding table is configured to forward these packets out on the correct inter-
face. These packets are received and logged by a TCP server at the Application
Server container.

The wireless transmissions of the mDot devices are captured off the air and
sampled by the USRP, connected to a laptop via a USB 3.0 cable, and controlled
by a GNU-Radio flow graph running on that laptop. The USRP is configured
to receive at a center frequency of 914.9 MHz and sample at 30 MHz, allowing
it to capture all transmissions from approximately 900 MHz to 930 MHz. The
IQ samples generated by the USRP are transmitted over the USB cable to the
laptop, where they are processed by the flow graph in real time. This flow graph



52 S. Singh et al.

uses a channelizer to split the samples into eight streams, corresponding to the
eight channels of sub-band 1, as described previously. Each of these eight streams
is then processed by blocks from an open-source library [4], that demodulates
and decodes the IQ samples into LoRaWAN packets at a specific spreading factor
and bandwidth. The decoded LoRaWAN packets are presented in pcap [5] format
to a TCP client, which forwards them to the Controller.

The Controller receives and processes the packets from the Sniffer, and com-
prises multiple sub-components as illustrated in Fig. 3. The TCP Server receives,
from the Sniffer, the packets sent by the devices or the gateway, in .pcap format,
and feeds them to a T-Shark process. The T-Shark process translates these pack-
ets from .pcap into .json format, where each packet is represented as a JSON
object. A JSON object is a set of key value pairs, and, in this case, the key
value pairs of a packet’s JSON object directly correspond to that packet’s pcap
fields and their respective values. The feature extractor consumes these JSON
objects, extracting and storing relevant features in a database. The features to
be extracted are specified in a configuration file, allowing the framework to be
flexible and adapt to different protocols. These features may be any header of
any layer in the network protocol stack, for example the spreading factor in the
LoRa PHY header, or may be statistics calculated from the flow, for example the
inter-arrival time. In this way, each packet, transmitted or received by an IoT
device, is eventually represented by a set of features, termed as “packet-features”.
Furthermore, the feature extractor can identify and distinguish between different
devices based on certain field(s) in the packet. This enables the feature extrac-
tor to store features of each device separately, enabling the framework to learn
a normal behaviour model for each individual device. For the LoRaWAN proto-
col, the “device address” field in the MAC header is used to uniquely identify a
device within a LoRaWAN network. This database of features, gathered over a
period of time, is used as a training dataset by the Clusterer to create a model
for the normal behaviour of each IoT device. Once the normal behaviour models
have been learnt, the Controller can start classifying packets in real time, i.e.,
the feature extractor forwards a packet’s features and the device identity to the
Enforcer, which validates the features against that device’s normal model, as
learnt by Clusterer and saved in the database. The learning and classification
functions, performed by the Clusterer and the Enforcer respectively, are detailed
in the following subsection.

4.2 Learning

The proposed framework enables the administrator to tightly characterize the
IoT devices by allowing her to influence the number and the dimensions of the
normal “boxes”. This influence is exerted by specifying multiple different com-
binations of features in a configuration file, which is read by the Clusterer. The
Clusterer generates normal clusters for each specified feature combination, by
processing the features stored in the database. After the features from the cap-
tured packets are stored in the database for the learning interval, the Clusterer
learns normal behaviour models from these stored features. To better understand
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the algorithm, we step through it using an example. Assume that the admin-
istrator has specified two feature combinations in the configuration file, for a
LoRaWAN-compliant GPS sensor: “packet length, inter-arrival time” and “fre-
quency”. Assume that, normally, the GPS sensor sends packets of length 45 bytes,
at intervals of 60 s, and is configured to operate in US sub-band 1. Assume that,
during the learning interval, the GPS sensor loses GPS lock a few times and as
a result, for some packets, the inter-arrival time is much higher than 60 s. The
Clusterer fetches all “packet-features”, for this GPS sensor, from the features
database. For the first feature combination, “packet length, inter-arrival time”,
after extracting the “packet length” and “inter-arrival” fields from each “packet-
feature”, the Clusterer standardizes these two features. As our cluster analysis
algorithm uses Euclidean distance to measure the separation between observa-
tions and clusters, standardization is needed to prevent features that are on a
larger scale than others, from exerting a stronger influence on the distance mea-
surements and clustering results. For example, measuring the inter-arrival time
in milliseconds instead of seconds may change the clustering results. Further,
when detecting abnormalities, a deviation in packet length of 10 bytes is more
significant than a deviation in inter-arrival time of 10 ms. Hence, the features are
standardized, and the recommended approach of using absolute deviation around
the mean to detect outliers, rather than using standard deviation, is followed [25].
These standardized feature values, arranged in a matrix, are the input to the
hierarchical clustering algorithm. As described in Sect. 3, the optimum clusters
are obtained by evaluating different clustering results of the hierarchical clus-
tering algorithm using silhouette analysis. In this case, the optimal clustering
would comprise two clusters - one corresponding to the specified behaviour of
the sensor, and another corresponding to the observations immediately follow-
ing the GPS loss. The centroids of these normal clusters represent the normal
values for this feature combination, and are added to the normal behaviour spec-
ification. In this case, depending on how accurately the GPS sensor follows its
specifications, the centroid of the first normal cluster is a point with inter-arrival
time approximately 60 s, and packet length approximately 45 bytes, and that of
the second normal cluster is a point with packet length approximately 45 bytes,
and inter-arrival time greater than 60 s, depending on the delay in obtaining a
GPS lock. For the next feature combination, “frequency”, the Clusterer identifies
eight normal clusters, corresponding to the eight channels in US sub-band 1. The
centroids of these clusters, corresponding to the center frequencies of these eight
channels, are added to the normal behaviour specification. Hence, in effect, the
normal behaviour specification specifies that, for the observed behaviour to be
considered normal, it should lie in at least one of the above 11 normal clusters.

Once this normal behaviour model has been learnt, it is enforced by the
Enforcer, which validated the captured packets against all the normal clusters
of all the specified feature combinations. For a given feature combination, a
packet that falls outside any of the corresponding normal clusters is marked as
abnormal. For instance, if an attacker hijacks the GPS sensor and starts sending
packets frequently, at intervals of 10 s, then the second packet transmitted by
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the hijacked sensor will have an abnormal inter-arrival time. This packet will fall
outside the two normal clusters defined for the combination of packet length and
inter-arrival time. Hence, the GPS sensor’s behaviour will be classified as abnor-
mal, and that sensor will be blocked by the Enforcer by applying appropriate
ACLs at the Gateway.

Table 1. Parameters of the experimental setup

Parameter Value

Hardware Ettus USRP B210 connected to a laptop via a USB
3.0 cable as the Sniffer, MultiConnect mDots as the
IoT Devices and Multitech Conduit as the
LoRaWAN Gateway

Software GNU Radio and gr-lora in the Sniffer for decoding
packets, LXD to manage linux containers, TShark
for converting pcaps to json format, sklearn python
library for clustering, and pyang python library for
parsing and writing yang files

“Normal” pairs of
(inter-arrival time,
framelength)

(10–11 s, 90 or 91 bytes), (21–23 s, 99 bytes)

“Abnormal” pairs of
(inter-arrival time,
framelength)

(21–23 s, 99 bytes), (11 s, 98 bytes), (15 s, 94 bytes),
(16 s, 97 bytes), (20 s, 92 bytes)

mDot operation mode Hybrid mode in US sub-band 1 (902–928 MHz)

LoRaWAN uplink spreading
factor

8

LoRaWAN uplink bandwidth 500 kHz

LoRaWAN downlink
bandwidth

500 kHz

USRP center frequency 914.9 MHz

USRP sampling rate 30 MHz

4.3 Experiments and Results

The testbed described above was used to learn normal behaviour models for
two mDots. The mDots were configured to use a spreading factor of 8 and a
bandwidth of 500 kHz for their uplink transmissions. In their normal mode, the
mDots were programmed to alternatively transmit smaller frames with shorter
inter-arrival times, and larger frames with larger inter-arrival times, as specified
in Table 1. A training database was created by capturing and decoding frames
from the mDots for a duration of eight hours. Then, the Clusterer learnt the
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Fig. 4. An illustration of how the normal model is learnt and enforced. The normal
model is learnt by clustering the training data, which results in two normal clusters.
Real time observations are then classified as normal or abnormal, based on their dis-
tance from the centroids of the two normal clusters.

normal model by clustering using the feature combination of “inter-arrival time
and frame length”, the results of which are shown in Fig. 4.

Abnormal behaviour was emulated by commanding an mDot, via a down-
link message, to change the framelength and interval-arrival time to any of the
abnormal values listed in Table 1. The resulting observations are depicted by
“crosses” in Fig. 4. As these points lie outside the normal clusters, the Enforcer
classified the observations as abnormal, and installed ACLs at the IoT Gateway
to drop all traffic from the corresponding mDot. The IETF’s MUD framework
does not currently support specifying the normal behaviour in terms of com-
binations of inter-arrival time and framelength, with multiple “normal” pairs.
Hence, it would not be able to detect this abnormal behaviour. In this way, our
framework extends the MUD specification.

5 Conclusion

A framework for enhancing security in IoT WSNs, by learning and enforc-
ing normal behaviour models for IoT devices, was designed, implemented, and
demonstrated on a testbed based on LoRaWAN technology. An experiment was
conducted to demonstrate the ability of our framework to learn the normal
behaviour model, detect abnormal behaviour and thwart potential attacks. This
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framework extends the MUD specification, allowing an administrator to define
the normal behaviour model flexibly and tightly, and thereby enforce the desired
level of security in her IoT solutions. The framework needs a Sniffer to be devel-
oped for the wireless communication protocol being used, and its application is
limited to scenarios where the IoT devices exhibit strong “normal” communica-
tion patterns.
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