)

Check for
updates

A Method to Secure IoT Devices Against
Botnet Attacks

Trusit Shah®™® and Subbarayan Venkatesan™®

The University of Texas at Dallas, Richardson, TX 75080, USA
{trusit. shah, venky}@utdallas. edu

Abstract. An unsecured or weak authentication system between an IoT device
and a user provides opportunities to attackers to manipulate and use the IoT
device as botnet. The proliferation of IoT devices with an unsecured/weak
authentication mechanism has increased the threat of using a huge number of
IoT devices as botnets for large-scale DDoS attacks. Default credential pairs
(like ‘root-root’ or ‘admin-admin’) for the Telnet or SSH connections are still
part of a large group of IoT products, and many malwares have exploited this
vulnerability to capture a large number of IoT devices and use them as botnets.
In the recent past, Mirai malware had infected roughly a million IoT devices at
its peak by brute-forcing just 62 pairs of default credentials. In this paper, we
present a concept called ‘login puzzle’ to prevent capture of IoT devices in a
large scale. Login puzzle is a variant of client puzzle, which presents a puzzle to
the remote device during the login process to prevent unrestricted log-in
attempts. Login puzzle is a set of multiple mini puzzles with a variable com-
plexity, which the remote device is required to solve before logging into any IoT
device. Every unsuccessful log-in attempt increases the complexity of solving
the login puzzle for the next attempt. In this paper, we have introduced a novel
mechanism to change the complexity of puzzle after every unsuccessful login
attempt. If each IoT device had used login puzzle, Mirai attack would have
required almost two months to acquire devices, while it acquired them in 20 h.

Keywords: IoT security - DDoS attacks * Client puzzles *+ Botnet

1 Introduction

In the last decade, the rapid growth of IoT products in the market have connected
billions of small-scale devices to the internet. To survive in such a fast-growing market,
developers often neglects security aspects and release vulnerable products in the
market. The attackers use such vulnerabilities to perform large-scale DDoS attacks and
steal personal information of the user. Mirai is a well-known DDoS attack, which
represents the first type of attack using vulnerable IoT devices [21]. A casino at Las
Vegas, which lost some of its critical information due to a cyber-attack enabled by a
vulnerable internet enabled fish tank!, is an example of another attack.

! https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-
lobby-fish-tank-2018-4.

© Springer Nature Switzerland AG 2019
V. Issarny et al. (Eds.): ICIOT 2019, LNCS 11519, pp. 28-42, 2019.
https://doi.org/10.1007/978-3-030-23357-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23357-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23357-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23357-0_3&domain=pdf
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
https://doi.org/10.1007/978-3-030-23357-0_3

A Method to Secure IoT Devices Against Botnet Attacks 29

IoT devices with either default or easy to guess credentials allow the attackers to
access these devices remotely with root permissions. Attacker use a pre-defined set of
credentials to log in open Telnet or SSH ports. Most of the time, around 100 credentials
are sufficient to capture a massive number of IoT devices and only a few seconds are
needed to brute-force these credentials. Thus, a self-replicating attacker script can
brute-force a few hundred thousand devices in less than a week. The ability to brute
force devices without any restriction enables attackers to capture a large number of IoT
botnets.

A potential solution for this problem is to restrict a single IP from trying a large
number of login attempts. This solution is vulnerable to IP address hopping [22]: an
attacker can change the IP address after every unsuccessful login. Another solution is to
implement a blocking mechanism, which allows a small number of login attempts
before it blocks further login attempts. This method certainly reduces the number of
devices being captured, but the attacker script can get an instantaneous access till it
reaches the blocking number. A selective approach with different login credentials for
different kind of devices can capture a large number of devices. A timeout-based
method is also useful in preventing multiple abusive login attempts. The device enters
into a timeout mode after every unsuccessful attempt and every unsuccessful attempt
increases the timeout period. The downside of the timeout method is, the attacker script
can capture other devices in parallel.

In this paper, we present a method called ‘login puzzle’ to prevent the unrestricted
login attempts performed by a malicious script. Login puzzle is a collection of mini
puzzles, which requires a fixed amount of time and computation power to solve. When
a malicious script tries to brute-force an IoT device, it needs to allocate a fixed amount
of time and resource to solve the login puzzle, and every unsuccessful attempt increases
the complexity of the login puzzle, hence increasing the time and computation power
required to solve the next login puzzle. At a certain point, the login puzzle is hard
enough that it is not practical for the script to solve. This method not only limits the
number of attempts but also slows down the rate of attempts. It is a combination of both
blocking and timeout method and provides better performance than these individual
methods.

Another approach is to send a single puzzle to the login entity instead of multiple
mini puzzles, it leads to a problem in changing the complexity of the puzzle. If we
change the complexity every time a wrong attempt happens, an adversary can request
multiple parallel sessions with a same complexity. On the other side, a malicious script
can perform multiple attempts just to increase the complexity to block a benign user.
Use of login puzzle solves these problems.

Login entity must solve all the mini puzzles of the login puzzle to get the login
access to the IoT device. All of these puzzles are sent sequentially; login entity will get
the next mini puzzle, once it solves the previous one. In case of parallel requests, once a
request solves all the puzzle and attempts an unsuccessful login attempt, number of
mini puzzles for the other parallel requests will increase, consequently increasing the
complexity of the subsequent login attempts. If an adversary just requests multiple
sessions without actually solving mini puzzles, the complexity of the puzzle won’t
increase, hence benign user won’t be block by any malicious script.

30 T. Shah and S. Venkatesan

We have calculated the improvement achieved by using login puzzle. We have
measured this scheme with Mirai and computed the amount of additional time and
resource required to capture the IoT devices. The main contribution of our work
includes:

e A practical mechanism to extend the capture time of an IoT device as botnet

e Introduction to the login puzzle and provide calculations for its performance
efficiency

e A novel complexity changing mechanism, which ensures constant resource allo-
cation from the client side and provides minimum penalty to benign users

This paper is organized in the following way. We discuss about previous work in
Sect. 2. Section 3 describes our security mechanism followed by Sect. 4 explaining the
performance analysis and comparison with other authentication mechanisms.

1.1 DDoS Attack Overview

A denial of service is characterized as ‘attempt to prevent the use of a network service
to the legitimate users. In a DDoS, an attacker uses multiple devices to achieve denial
of service. As more IoT devices are being manufactured with limited security con-
siderations, new methods are being introduced to use IoT devices as bots for DDoS
attacks. A study by Dragan Perakovi€ et al. shows that the number of DDoS attacks has
increased with the growth in numbers of IoT devices [20].

A DDoS attack using IoT botnets typically consists of three phases: host scanning,
device acquisition and denial of service attack. In the host scanning phase, the attacker
scans for the IoT devices with open Telnet or SSH ports. After discovering a vulnerable
device, the attacker script tries to log into the device using a set of pre-defined cre-
dentials. If the attacker gets the access to the IoT device using one of the pre-defined
credentials, the attacker executes the second phase. In the device acquisition phase, a
self-replicating script is injected inside the IoT device by the attacker.

The self-replicating script scans through the network to infect more IoT device
using the same host scanning mechanism and injects the same script into the newly
infected device. Meanwhile, this script continuously communicates with the attacking
server and waits for the commands to perform a DDoS attack. After acquiring enough
IoT devices, the attacking server commands all the infected IoT devices to attack a
specific service. A large volume of internet traffic is generated for the victim with the
potential to disrupt the service.

Figure 1 shows an underlying architecture for the DDoS attack using IoT botnets.
The four main components for a DDoS attack using IoT devices are an attacker, a
malware server, a command and control (CnC) server and IoT botnets. The attacker
initiates the host scanning phase and acquires an ample amount of IoT devices. Those
discovered IoT devices download the self-replicating script from the malware server. In
some cases, the malware server is also known as report server. The script registers the
IoT device to the CnC server and waits for the command from the CnC server. Finally,
after acquiring adequate bots, the attacker commands the CnC server to send a request
to botnets to attack the victim service.

A Method to Secure IoT Devices Against Botnet Attacks 31

Attacker 8

(B Send command

Commana FReport
Infrastructure | & Control | | s,ve, l— @ Dispatch Loader
@ Relay @
Devices | | \ é
Bots

(D Attack

DDoS Target 8

Fig. 1. Mirai architecture

2 Previous Work

Researchers have proposed few methods to use digital problems to avoid DDoS
attacks. Most of these works secure server or web services from a DDoS attack. The
very first work was introduced by Aura et al. as client puzzle [1]. In this paper, the
authors introduced the concept of resource commitment at the client side. The client
solves a puzzle given by the server with the authentication, before the server allocates
any heavy resource for the client. While this method is very effective in stopping the
DDoS attack at server side, it doesn’t provide significant improvement at the host
scanning phase because it uses problems of same complexity every time. If the com-
plexity is too high, the benign user suffers from getting access of the IoT device and if
the complexity is too low, the attacker can solve it easily and can brute force credentials
to get the access of the IoT device. A varying complexity method helps benign user to
access IoT device with low computation and restricts an attacker from brute forcing the
credentials on the IoT devices. Michalas et al. presented a similar concept in client
puzzle to prevent DoS attack in an ad-hoc network [3]. Another client puzzle was
introduced by Abliz et al. which protects a server from DDoS attack based on traffic
created by the clients [14]. Suriadi and et al. have presented a similar approach to
prevent a DoS attack for web services [2].

Many approaches for creating client puzzle have been proposed by researchers. Chen
et al. have proposed a generic way to represent a client puzzle [4]. In the paper authors
have defined client puzzle as a tuple algorithm, which provides a formal setup to generate
puzzle, solve puzzle and formal verification of the puzzle. Groza et al. have presented a
formal verification for the puzzle hardness and bounds [5]. Jing et al. have used repeated
squaring and hash reversal client-puzzle with the leaky bucket algorithm [6].

Other than client puzzle, various security strategies at different stages of DDoS
attack have been proposed by researchers to prevent the DDoS attacks [12, 13]. At the
discovery stage, a DDoS attack can be prevented by closing the unused ports. At the
network level, construction of a firewall restricts the spread of malware. IoT devices are
made for performing specific tasks and require communication with specific domains
only. Continuous monitoring of running processes and network traffic of an IoT device

32 T. Shah and S. Venkatesan

provides enhanced security. This method constrains device activities and network
traffic and causes false alarms when benign but unknown activities are happening.

Various methods have been introduced by different researchers to prevent the
DDoS attack on the victim side. There are methods called intrusion detection to detect a
potential DDoS attack. There are other signature-based methods to detect the intrusion
[16, 19]. Recently, machine learning based detection methods have been proposed to
check the spread of the DDoS attack [17, 18].

3 Our Methodology

We present a mechanism to provide security against the DDoS attack at the device scan
phase. The malware could acquire a large number of IoT devices because there is no
restriction on trying multiple guessed credentials using a brute force attack. Our method
called ‘Login puzzle’, prevents an attacker from brute-forcing credentials. Login puzzle
provides an extra layer of a challenge-response mechanism by generating NP-hard
puzzles and asks the login entity to solve it before being logged in. The difficulty of
question gets harder with the number of false attempts, hence stopping the intruder
from using the brute-force method to capture an IoT device.

The login attempts to an IoT device can be divided into three main categories: log
in using user interface having username-password as security credentials, log in using
script having username-password as security credentials and log in using script using
the digital certificate as security credentials. The third category is not vulnerable to
brute force attack as it is computationally impossible to create a brute-force attack on a
digital certificate, hence no additional security required for this category. For the first
and second categories, an additional mechanism is required to prevent the unrestricted
brute-force login attempt. In our methodology, we use regular captcha and login puzzle
for the first and second category, respectively.

Both first and second category use: username-password as security credential: To
differentiate them, a flag bit indicating the type is sent along with the login request. In
this paper, we assume that a computer program is not capable of solving the regular
captcha used for login. Hence, if a script tries to fake itself as a human to avoid the
login puzzle, it won’t be able to login to the system.

3.1 Login Puzzle

A login puzzle is a collection of mini puzzles with a varying complexity, which require
a fixed amount of time and resource to solve depending on the complexity. A login
puzzle is defined as P (n), where n defines the complexity of the puzzle. Complexity of
a login puzzle is addition of all of its mini puzzles. Mini puzzle is expressed as M
(x, n), where x is the set of puzzle parameters, n is the complexity of the mini puzzle.
A login puzzle can have mini puzzles with different complexities. The time required to
solve the login puzzle P and mini puzzle M at complexity n is t, (n) and ty,
(n) respectively.

A Method to Secure IoT Devices Against Botnet Attacks 33

A login puzzle P has following properties:

e Based on the complexity n, it requires a fixed amount of time and computation
power to solve.
For a puzzle function P, if n; > n, then t, (n;) > t, (ny).
For every device with a finite computational capacity C, 3n at which computational
capacity C requires unreasonably more time and resource to solve the login puzzle.
This value of complexity is called critical complexity for the computational capacity
C. The time require to solve it called critical time t. (n).

Complexity Increment of the Login Puzzle

After every unsuccessful attempt, the complexity of the login puzzle is increased. There
are two ways the complexity can be increased: linear increment and exponential
increment. In the linear increment, the complexity of login puzzle is increased expo-
nentially. This can be achieved by either increasing the number of mini puzzles,
without changing the complexity of mini puzzles or increasing the complexity of only
one mini puzzle. In exponential increment, the complexity of each mini puzzle is
incremented exponentially, consequently increasing the overall complexity exponen-
tially. In general, after every unsuccessful attempt complexity of the puzzle is incre-
mented exponentially and in case client stops attempting the puzzle, the complexity is
increased linearly.

Login Puzzle in Login Mechanism

At each login attempt by a remote device, a login puzzle is sent to the device. The
initial complexity of the login puzzle is 1, and each unsuccessful login attempt to the
IoT device exponentially increases the complexity. As per the third property of the
login puzzle, at some point, the login attempt requires immense resources, which
cannot be handled by the remote login-device. The complexity increment mechanism is
as follow:

e Normal attempt: When a remote login entity solves all the puzzles, it is considered
as a normal attempt. Once the remote device provides solutions for all the puzzles, it
has access to the login and if it performs an unsuccessful login attempt, the com-
plexity of login puzzle is increased exponentially. On the other side, for successful
login attempt the complexity will reset to 1. The first part of Fig. 2 provides
illustration to this case.

e Midway give up attempt: When a login entity stops solving mini puzzles in the
middle and doesn’t arrive at login attempt, the login puzzle complexity is increased
linearly. This can be performed by either increasing number of mini puzzles or
increasing complexity of single mini puzzle. The second part of Fig. 2 represents
this case.

e Parallel login attempts: This situation arises when a login entity requests for the
login access during an existing login entity solving login puzzle. At the initial stage
the new login entity will have same complexity as the previous one. In case the
previous one does the unsuccessful login attempt, the complexity of login puzzle is
doubled. Figure 3 shows the message exchange representation of this case.

34 T. Shah and S. Venkatesan

The proposed method increases the complexity of the login puzzle irrespective of
the IP address of the requestor. If an attacker script changes its IP address at each login
attempt, it still needs to solve login puzzle with a higher complexity after every
unsuccessful attempt. Thus, login puzzle is not vulnerable to IP hopping attack.

loT Device Remote Device loT Device Remote Device
Puzzle Login Request Puzzle Login Request
Creation Creation
Puzzle Puzzle Puzzle, Puzzle
Solve Solve
Puzzle Solution Puzzle Solution;
Verify Verify
Request Credentials Puzzle,
Puzzle Solution
Credentials Verify ution;
Puzzle;

Fig. 2. The first image represents the normal login request, where the puzzle is provided to the
remote device and after providing the solution remote device is able to login. The second image
represents the case when remote device stops solving the puzzle after certain login attempts.

Remote Device 1 loT Device Remote Device 2

Login Request Login Request

Puzzle

Puzzle

Solution

Request Credentials

Credentials

Fig. 3. This figure shows the parallel request case, in this particular case, if the remote device 2
provides wrong credentials, the complexity of remote device 1 will increase exponentially.

3.2 Resource and Timing Analysis

The resources and time required to solve a login puzzle is addition of time and resource
required to solve all mini puzzles, hence we consider complexity of login puzzle for the
resource and timing analysis. Every device needs to allocate a fixed computational
capacity to solve a login puzzle. The required computational capacity varies based on
the type and complexity of the login puzzle and, as per the 3™ property of the login
puzzle, after m tries, the login puzzle reaches a certain complexity that it is not feasible

A Method to Secure IoT Devices Against Botnet Attacks 35

for the device to solve it. Thus, a device with computational capacity C is limited to
only m tries. All these m tries are not instantaneous; for every try, the device needs to
solve a login puzzle, which requires a fixed amount of time to solve. In this section, we
will measure the effectiveness of login puzzle on a botnet capture script, which uses x
number of credentials to capture an IoT device.

The time required to try one credential without login puzzle be ty. This time
includes propagation and transmission delay caused by the network and processing
delay due to login procedure; it is few milliseconds in duration. If we consider a
uniform distribution of the credentials, it requires on an average x/2 attempts for an
attacker script to capture an IoT device as a botnet if the device’s credential is from one
of the x credentials. The device needs to perform x failed attempts if the device’s
credential is not from the list. Assuming that the ratio of number of devices whose
credentials are from x credentials to the total number of devices scanned is p, the
average time required to capture one device is:

td*g xp+itg % x % (1—p)
This can be further simplified as:
X * td(l fg) (1)

Here,

number of devices whose credentials are from x credentials

total number of devices scanned

If we consider an exponentially increasing login puzzle, where the complexity of t,(n)
increases ‘a’ times with the increment of complexity of login puzzle by 1. Considering,
the time required to solve the login puzzle at complexity 1 is t.. As per the 3™ property
of login puzzle, after m attempts the problem becomes incomputable for the device.
The total time required to solve login puzzle for first m attempts is,

m—1

by = ZzC x d
i=0

If the device’s credential is from one of the pre-defined credentials, it takes x/2 attempts
to capture the device, otherwise the attacker script tries x credentials. Considering the
ratio of number of devices whose credentials are from x credentials to the total number
of devices scanned is p and there are k mini puzzles in one login puzzle, average time
required by a device to capture one device after using login puzzle is,

xx k xty

5 Y+ (1 —p) * (t+x * k * tg)

p* (IX/Z +

36 T. Shah and S. Venkatesan

Where,

_ x/2—1 i B x—1 f
Ly = Zi:o t. * a and t, = Zi:o t. * a

For the value of x/2 <m < x, the #, term in above equation becomes z,,, because after m
attempts the login puzzle is incomputable.

X x 1y
2

p*(+ Y4+ (1 =p) * (tn+x * tg)

For simplicity, if we consider the time complexity of login puzzle increases with a
factor of 2. The above values can be simplified as below:

tw =1 % 2" —1)
fp = 1o % (2X/2 _ 1)

If we assume the factor of t. to t4 is f.
The average required time to capture a device using login puzzle is,

e (221 Y e (o™ sy @
c 7v7) Pt 7 P

If m <x/2, x/2 in the first term of the above equation becomes f,, and the average time
required to capture a device using login puzzle is,

K K
rc*<2’"—1+m;) >|<p—|—tc>f<<2m—l+m;)*(l—p)

The above equation can be simplified to,

(o m*k> 3
I (1+ 7 (3)

Also, the probability of the device getting captured for all above cases is,

pxm

X

4 Evaluation and Performance Measure

We evaluated our approach on the different environments with different login puzzle
conditions for Mirai DDoS attack. We have used three different environments with
completely different capabilities to measure the effectiveness of our approach. The first
environment is a small scale IoT device and we have used Raspberry Pi 3. The second

A Method to Secure IoT Devices Against Botnet Attacks 37

environment is a MacBook Pro laptop with quad-core Intel i7 processor and 16 GB of
RAM. The final environment is a cloud server hosted on AWS cloud service. The AWS
instance contains 36 cores with 60 GB RAM. The first environment represents the
normal spread of botnets, where infected IoT devices scan other IoT devices and solve
the login puzzles themselves. The second and third environments provide the insight
for the case, when IoT devices don’t solve the login puzzles but send it over to the
server to solve them. The primary difference between the second and third environment
is the processing power of the server. The login puzzle we are using for the evaluation
is as follow:

D (x, n): find a number m, for which SHA512(x || m) has all last n bits are O.

Table 1 shows the typical time required for all three environments to solve the login
puzzle for complexity n.

4.1 Mirai Evaluation

Mirai was a well-known malware, which acquired more than 600k devices during its
lifespan. Mirai infected 11k hosts in first 10 min of bootstrap phase and 64,500 devices
in 20 h [8]. The bootstrap phase lasted for around two hours and initial 834 devices
started scanning. MIRAI had comparatively a smaller number of credentials compare to
other massive DDoS attacks Blaster [9] and Code Red [10]. This contributed to a slow
doubling rate 75 min compare to Code Red (37 min) and Blaster (9 min) [8].

We use the following method to simplify the performance evaluation of login
puzzle. First, we calculate the average time required to capture a single device with and
without using login puzzle. Using these values, we measure the performance
enhancement achieved by login puzzle. Finally, we multiply the performance
enhancement ratio and the actual time taken by Mirai to spread over the network and
compute the time required to spread Mirai when all the IoT devices are using login
puzzle. We also made another assumption that the number of mini puzzles, k = 16.

Table 1. Time required to solve login puzzle for different type of devices

Environment |n | t(n)

Raspberry Pi | 16| ~10 s

241200 s

32 | Incomputable
Macbook Pro | 16 | Less than a second
24120 s

32| ~85 min

40 | Incomputable
AWS Server | 16 | Milliseconds

24 | Less than a second

32| ~1 min
40 | ~250 min
48 | Incomputable

38 T. Shah and S. Venkatesan

Number of credentials used in Mirai was 62 (x is 62 in the Eq. 1). Thus, the average
time to capture one device is:

62 * td<1 —g) =62 * (1 —g) in seconds (4)

We have tested the values of ¢, and z; for raspberry pi, and the values are 10 ps and
100 ms respectively. The factor f = ;—‘] =10"%

To calculate value of m, we assume that the attacker script stops solving login
puzzle, once the time taken for solving captcha reaches 100 s. value of m = logz(%)
=23.26 ~24.

As value of the x/2 is greater than m, the average time required to capture one IoT
device is calculated using Eq. 3,

k
I % (2’”— 1+%> = 107% % (22— 1424 % 16 % 10%) ~2005s

Also due to limitation of only m tries can be performed, not all devices with the default
credentials can be captured.

The probability of device being captured is: % = é—‘z‘ = 0.39.

Thus, with the login puzzle the number of devices captured by Mirai malware is:
64,500 * 0.39 = 24967.

Time required to capture one device using login puzzle with probability of device
being captured is 1:

time required to capture one device using login puzzle
=512.82s

L1y =
P=1) probability of device being captured

In conclusion, use of login puzzle increases the time required to capture a device by a
factor of,

fo=) = 82.72
time required to capture single device without login puzzle '

Here, the time required to capture single device without digital captcha is calculated
from Eq. 4 by setting p = 0, which represents the maximum value for the equation.
This implies that the total time required to cover the spread of 64,500 devices with
login puzzle will be = 20 h * 82.72 ~ 69 days.

Similar calculation can be performed on 2" and 3™ type of environment and we
can find time required to capture 64,500 devices if all the devices were using login
puzzle and the login puzzles are solved on cloud with capabilities mentioned in
Table 1. Table 2 mentions these times.

A Method to Secure IoT Devices Against Botnet Attacks 39

Table 2. Time required to capture 64,500 devices with login puzzle using different environment

Environment Time required
Raspberry pi 59 days
Macbook pro 42 days

AWS Server (96 GB RAM, 64 cores) | 26 days

4.2 Comparison with Blocking Method

In the blocking method, after a certain amount of attempts the IoT device blocks further
login attempts until the user approves those attempts. At first, it looks like a blocking
method with a small number of login attempts performs better than the login puzzle. In
fact, based on our calculations, our method performs 70 times better than the blocking
mechanism.

Let’s assume that the IoT device blocks login attempts after b attempts. The average
time required to capture one device is,

td*é*(b*p>+td*b* (1—b*p)
2 X X

The first term in the equation represents that one of the randomly guessed cre-
dentials in first b tries is the credential of the device. On an average it requires b/2 tries
to achieve it with the probability b/x. This probability is finally multiplied with
probability p, which represents the number of devices with the credentials used by the
malware. The second term represents the scenario when the malware is not able to
guess the correct credentials in first b login attempts. The above equation can be further
simply to 300-7.25p milli-seconds for the value of b =3 and x = 62. The ratio of
number of devices captured to total number of devices with given credential is
f = % = 0.05.

The value of p varies from 0 to 1 doesn’t have a big impact on time required to
capture the device. Thus, we can assume that the time required to capture one device is
300 ms. So, the average time to capture one device is = 300/0.05 ms = 6 s. The
average time to capture one device using login puzzle is = 170/0.39 s = 436.34 s. This
implies that the login puzzle method is roughly 70 times better than blocking method.

4.3 Comparison with Existing Client Puzzles

In this section, we will compare our approach with existing client puzzles and show-
case its suitability to prevent the IoT device capture on a large scale. We compare our
scheme with simple client puzzle and adaptive client puzzle. A simple client puzzle is
the most basic form of client puzzle and adaptive puzzle is a type of puzzle which
changes its complexity based on the situation. We used three parameters to compare
these client puzzles: login delay, resource assurance, benign penalty.

Table 3 shows a comparison between these three client puzzles. As normal client
puzzle doesn’t change its complexity over the time, it is not providing any significant

40 T. Shah and S. Venkatesan

delay in login process. At the same time, it is not creating any high waiting time for the
benign user, so benign penalty is minimum in this case. For the case of adaptive puzzle,
the login delay can go really high, as the complexity go higher. As discussed in the
previous sections, a malicious user can increase the complexity for the benign user by
sending multiple fake requests. Just like adaptive puzzle, login puzzle has high login
delay and increases with every wrong login attempt. In login puzzle, as discussed in the
previous sections, puzzle ensures the resource assurance and has different policies to
increase complexity for benign and malicious request, hence benign penalty is minimal
in this case.

Table 3. Client puzzles comparisons

Client puzzle | Adaptive puzzle | Login puzzle
Login delay Very low High High
Resource assurance | No No Yes
Benign penalty low Very high Minimal

5 Discussion and Future Work

Unlike normal adaptive puzzle, login puzzle doesn’t have problem of benign penalty.
Login puzzle provides minimal penalties to benign users. These penalties can be further
reduced, if someway a benign request is differentiated from malicious request. As a
future work to reduce the benign penalties, a method to provide the login puzzle only to
the suspicious scripts can be implemented. There are researches explain multiple ways
to differentiate a bot attack from a regular user login [7, 11, 15].

This paper assumes the distribution of the passwords is uniform, but in a real-world
scenario, it is not the case. A more detailed study with a non-uniform password dis-
tribution provides a more accurate performance analysis of the login puzzle.

6 Conclusion

A large number of IoT devices with default credentials pairs or easy to guess passwords
has increased the threat of Acquisition of IoT devices as botnets. In the recent past,
Mirai malware has exploited this vulnerability and infected around 600 k IoT devices.

In this paper, we demonstrated how adding an extra layer of login puzzle during an
authentication phase can reduce the number of IoT devices being captured as botnets.
A login puzzle is an NP-hard problem, whose complexity increases at every unsuc-
cessful login attempt. In this paper, we used ‘searching a bitstream of zeros at the end
of the inverse of a one-way hash function’ as the login puzzle problem.

However, this method does not prevent capturing of every IoT device, it reduces
the number of devices being captured and increases the time and resource required to
capture those devices. Based on the calculations in Sect. 4, the additional time required
to capture IoT devices is enough to detect the spread of the malware through the
network traffic and prevent it from acquiring more devices.

A Method to Secure IoT Devices Against Botnet Attacks 41

Acknowledgements. This research was conducted at Distributed Systems Lab of The Univer-
sity of Texas at Dallas. We would like to thank all the anonymous reviewers for their valuable
feedback to improve this paper.

References

10.

11.

12.

13.

14.

Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puzzles. In:
Christianson, B., Malcolm, J.A., Crispo, B., Roe, M. (eds.) Security Protocols 2000. LNCS,
vol. 2133, pp. 170-177. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44810-
1.22

Suriadi, S., Stebila, D., Clark, A., Liu, H.: Defending web services against denial of service
attacks using client puzzles. In: 2011 IEEE 9th International Conference on Web Services
2011, pp. 25-32. IEEE Computer Society (2011)

Michalas, A., Komninos, N., Prasad, N.R., Oleshchuk, V.A.: New client puzzle approach for
dos resistance in ad hoc networks. In: 2010 IEEE International Conference on Information
Theory and Information Security (ICITIS), pp. 568-573. IEEE, December 2010

Chen, L., Morrissey, P., Smart, N.P., Warinschi, B.: Security notions and generic
constructions for client puzzles. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 505-523. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7_30

Groza, B., Warinschi, B.: Revisiting difficulty notions for client puzzles and DoS resilience.
In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp. 39-54. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33383-5_3

Jing, Y.K., Ming, J.T.C., Niyato, D.: Rate limiting client puzzle schemes for denial-of-
service mitigation. In: 2013 IEEE Wireless Communications and Networking Conference
(WCNC), pp. 1848-1853 (2013)

Walid, A., Mostafa, A., Salama, M.: MalNoD: malicous node discovery in internet-of-things
through fingerprints. In: 2017 European Conference on Electrical Engineering and Computer
Science (EECS). IEEE (2017)

Antonakakis, M., et al.: Understanding the Mirai botnet. In: USENIX Security Symposium
(2017)

Bailey, M., Cooke, E., Jahanian, F., Watson, D.: The blaster worm: then and now. IEEE
Secur. Priv. 3, 26-31 (2005)

Moore, D., Shannon, C., Claffy, K.: Code-red: a case study on the spread and victims of an
internet worm. In: 2nd ACM Internet Measurement Workshop (2002)

Binkley, J.R., Singh, S.: An algorithm for anomaly-based botnet detection. SRUTI 6, 7
(2006)

Mirkovic, J., Dietrich, S., et al.: Internet denial of service: attack and defense mechanisms.
University of Pittsburgh (2005)

Jiang, L., et al.: Analysis and comparison of the network security protocol with DoS/DDoS
attack resistance performance. In: 2015 IEEE 17th International Conference on High
Performance Computing and Communications (HPCC), 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International
Conference on Embedded Software and Systems (ICESS). IEEE (2015)

Abliz, M., Znati, T.F.: Defeating DDoS using productive puzzles. In: 2015 International
Conference on Information Systems Security and Privacy (ICISSP), pp. 114-123. IEEE,
February 2015

http://dx.doi.org/10.1007/3-540-44810-1_22
http://dx.doi.org/10.1007/3-540-44810-1_22
http://dx.doi.org/10.1007/978-3-642-10366-7_30
http://dx.doi.org/10.1007/978-3-642-10366-7_30
http://dx.doi.org/10.1007/978-3-642-33383-5_3

42

15.

16.

17.

18.

19.

20.

21.

22.

T. Shah and S. Venkatesan

Gu, G., et al.: Botminer: clustering analysis of network traffic for protocol-and structure-
independent botnet detection, p. 139 (2008)

Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: detecting malware
infection through ids-driven dialog correlation. In: Proceedings of the 16th USENIX
Security Symposium (Security 2007) (2007)

Saad, S., et al.: Detecting P2P botnets through network behavior analysis and machine
learning. In: 2011 Ninth Annual International Conference on Privacy, Security and Trust
(PST). IEEE (2011)

Ranjan, S., Robinson, J., Chen, F.: Machine learning based botnet detection using real-time
connectivity graph based traffic features. U.S. Patent No. 8,762,298, 24 June 2014

Masud, M.M., Al-khateeb, T., Khan, L., Thuraisingham, B., Hamlen, K.W.: Flow-based
identification of Botnet traffic by mining multiple. In: Proceedings of International
Conference on Distributed Framework & Application (2008)

Perakovi¢, D., et al.: Analysis of the IoT impact on volume of DDoS attacks. In: XXXIII
Simpozijum o novim tehnologijama u postanskom i telekomunikacionom saobracaju —
PosTel 2015, Beograd, 1. i 2. December 2015

Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and other
botnets. Computer 50(7), 80-84 (2017)

Sifalakis, M., Schmid, S., Hutchison, D.: Network address hopping: a mechanism to enhance
data protection for packet communications. In: IEEE International Conference on
Communications, ICC 2005, pp. 1518-1523 (2005)

	A Method to Secure IoT Devices Against Botnet Attacks
	Abstract
	1 Introduction
	1.1 DDoS Attack Overview

	2 Previous Work
	3 Our Methodology
	3.1 Login Puzzle
	3.2 Resource and Timing Analysis

	4 Evaluation and Performance Measure
	4.1 Mirai Evaluation
	4.2 Comparison with Blocking Method
	4.3 Comparison with Existing Client Puzzles

	5 Discussion and Future Work
	6 Conclusion
	Acknowledgements
	References

