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Abstract. Video is by far the “biggest” Big Data, stretching network and
storage capacity to their limits. To handle the situation, video compression has
been an active field of study for many years, producing output of huge com-
mercial interest, e.g., MPEG-2 and DVD. However, video coding is a compu-
tationally expensive process and for this reason, parallelization was proposed at
various granularity levels. Of particular interest, are block level methods
implemented in HEVC (High Efficiency Video Coding) which was designed to
be the successor of H.264/AVC for the 4K era. Parallelization in HEVC is
supported by the following three modes: slices, tiles and wavefront. While
considerable research was conducted on the parallelization options of HEVC, it
was focused on the case of homogeneous processors. In this paper we consider
video coding parallelization when the processing elements are heterogeneous. In
particular, we focus on wavefront and tile parallelism and measure the perfor-
mance of scheduling schemes for the induced subtasks. Through simulation
experiments with dataset values obtained from common benchmark sequences,
we conclude on the relevant merits of the evaluated scheduling algorithms.

Keywords: Scheduling � Heterogeneous processors � Video coding �
Parallelism � Wavefront � Tiles � HEVC

1 Introduction

As we are rapidly moving towards realizing fully interconnected smart IoT environ-
ments at a large scale, many challenges are being posed. Of particular importance is
data collection and stream processing [1] which consumes both network and
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computational resources. Among all data sources, video feeds from street cameras and
mobile smart devices, undoubtedly pose the “biggest” Big data size wise. As an
example, Cisco indicated in [2] that video related traffic accounted for 55% of the total
mobile traffic in 2015 and was increased by 75% compared to the previous year. Such
trends will likely remain in the foreseeable future due to the wide use of 4K in smart
phone cameras and TV sets. Therefore, in order to efficiently deploy intelligent video
processing applications, e.g., car plate recognition [3] etc., as components of a smart
IoT ecosystem, it is of paramount importance to reduce the size of video streams
without affecting quality (referred to as video compression or video coding).

One of the most successful video coding standards is the popular H.264/AVC [4]
which was designed to tackle the challenges of the FullHD era. Nevertheless, with the
dawn of 4K resolutions H.264/AVC saw its age, resulting in the development of a new
generation of video coding standards. Examples consist of High Efficiency Video
Coding-HEVC [5] (also termed H.265) by the MPEG group in 2012, VP9 [6] by
Google in 2013 and the recently launched AV1 [7] by AOMedia. Simultaneously, the
successor of HEVC, termed VVC (Versatile Video Coding) or H.266 [8] is under
development and scheduled for release in 2020. While the battle for the succession of
H.264/AVC still wages, what is common on the newer standards is the fact that they
offer improved compression ratio (for the same quality) compared to H.264/AVC.
Nevertheless, to achieve such performance improvement, particularly for 4K com-
pression, increased computational cost is involved which can only be alleviated
through parallelism.

In the relevant literature parallelism was applied at various granularity levels of the
video coding process such as: (i) within a block of pels (e.g., at the motion estimation
or filtering steps [9]); (ii) at a block or group of blocks level (e.g., slice parallelism [10])
and (iii) at a frame level (e.g., by assigning different Groups of Pictures (GOPs) to
different processors [11]). With the exception of the coarser granularity level (per GOP)
most of the relevant literature on video coding parallelism assumed a homogeneous set
of processors. Nevertheless, heterogeneous computing scenarios are becoming more
and more important, e.g., with big.LITTLE processors [12]. In this paper we turn our
attention to block level video coding parallelism assuming heterogeneous processors.
Since a number of works, e.g., [13], outlined that among the parallelization granules
implemented in HEVC (slices, tiles and wavefront), the last two offer the best coding
performance we restrict our study to tile and wavefront parallelism.

In normal mode, the encoding of the blocks of a frame (termed Coding Tree Units-
CTUs in HEVC) is done in raster order (row by row). In wavefront, CTU encodings are
again done from left to right but different CTU rows can be processed in parallel, as
long as the following constraint is respected: a CTU can commence encoding once the
upper and upper-right CTUs are encoded. Figure 1 provides an example whereby the
greyed CTUs are the ones that are already encoded. Clearly, by considering each CTU
coding as a separate task, the encoding of a frame can be modeled as a DAG (Directed
Acyclic Graph). Thus, in order to complete the frame’s encoding at the minimum
possible time, suitable scheduling algorithms are important, particularly in the presence
of heterogeneity.

Similarly, efficient scheduling can prove useful in the case of tile parallelism where
a frame is split into a grid of rectangular areas (tiles) comprised of multiple CTUs (see

Evaluation of Heterogeneous Scheduling Algorithms 17



Fig. 2). Since the encoding of each tile is independent from others, independent task
(tile) scheduling techniques are applicable. Even if a plethora of results exist on task
scheduling (e.g., see [14] for a comparative study), the particular case of scheduling
algorithms for video coding parallelism was typically overlooked.

Our primary contribution rests on evaluating scheduling algorithms for wavefront
and tile parallelism under heterogeneous assumptions concerning processors’ compu-
tational power. The evaluation is based on simulation experiments using a realistic
dataset for CTU coding times, obtained by encoding common test video sequences [15]
using the HM 16.15 reference encoder [16] of HEVC. Results indicate that compared
to random scheduling decisions (as is the current practice by many encoders) reduction
in makespan of even 50% is achievable. To the best of our knowledge this is the first
paper tackling heterogeneous scheduling in video coding at a finer granule than the
GOP level.

Fig. 1. Example of wavefront parallelism with 8 threads (Kimono sequence).

Fig. 2. Example of partitioning a frame into 12 tiles (Kimono sequence).

18 N. Panagou et al.



The rest of the paper is organized as follows. Section 2 discusses related work.
Problem details together with the DAG formulation and the tested scheduling schemes
are presented in Sect. 3. Performance evaluation results are illustrated in Sect. 4
together with a summary of our findings. Finally, Sect. 5 includes our concluding
remarks.

2 Related Work

HEVC offers three main parallelization approaches within a frame: wavefront, slices
and tiles. Significant research exists for all three approaches. A comparative study
examining the strengths of each one is provided in [13]. As it is demonstrated, in terms
of quality and bitrate, wavefront is the winner. However, the achievable speedup from
parallelization is rather restricted due to task precedence constraints. Furthermore, both
slices and tiles provide other complementary strengths. Slices are essentially encoded
as sub-frames, therefore they provide flexibility in the network transmission layer at the
expense of higher header overhead, thus increased bitrate. Tiles on the other hand,
allow for fine tuning the encoding parameters, e.g., the selected QP (quantization
parameter), so as to increase video quality at ROIs (Regions of Interest).

In terms of slice and tile level parallelism most existing works assume homoge-
neous processors. In [17] the achievable speedup from slice parallelism was evaluated
for HEVC assuming uniform static slice partitions. Adaptive slice resizing was dis-
cussed in [10] and [18]. The core idea was to estimate the time complexity for encoding
each Macroblock/CTU of the next frame and based on these estimations resize slices to
evenly distribute workload. In [10] CTU time estimation was done using weighted past
average of the actual encoding times experienced in previous frames, while [18] pro-
vided a more sophisticated estimator tuned for Low Delay (LD) encodings that take
advantage of GOP hierarchy.

A similar estimator to the one of [18] was used in [19] with the aim of feeding a tile
resizing algorithm. The algorithm itself was based on iteratively applying the optimal
one dimensional array partitioning algorithm [20] across the two frame dimensions. In
[21] the authors considered tile and slice resizing based on a CTU cost estimation that
used a weighting function that takes into account CTU encoding mode and depth. The
tile resizing scheme was based on first defining a master tile size, apply it in one of the
four frame corners and build the remaining grid using this first tile definition as basis.

The aforementioned research assumed a one on one slice/tile to homogeneous
processor assignment in which case evenly splitting expected slice/tile workload is the
crucial factor, while scheduling decisions are trivial. In [22] the authors proposed to
increase the number of tiles a frame is split into so as to exceed the number of available
processors. In this way the task granule is effectively reduced allowing for better load
balancing. Tile partitioning was done in a static manner and processor assignment was
performed by a greedy bin packing heuristic. Although the achievable speedup was
increased compared to the one on one tile-processor assignment, using too many tiles
results in lowering video quality as indicated in [23] where the authors provide
experimental results on the “optimal” number of tiles that should be used given the
number of available processors. Finally, in [24] the authors propose a fast heuristic to
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adapt tile size in case more tiles exist than processors. The heuristic is based on
iteratively reducing the load of the most loaded processor by shrinking the area of one
of its assigned tiles.

Overall, the case where fewer processors than tiles exist, gives rise to scheduling
issues. Nevertheless, all the aforementioned works studied the case of homogeneous
processors, whereas the focus of this paper is on heterogeneous processors both for tile
and for wavefront parallelism.

3 Scheduling Heuristics

3.1 Formulation

Since video coding tasks are CPU bound we decided to adopt a simple model for
heterogeneity that is based solely on processor speed. Let Ti denote the running time of
the ith encoding task (assuming a total order of them) over a baseline processor. Let
processor speedup (SPj) denote how faster the jth processor is in running video coding
tasks compared to the baseline processor. Calculating the running time of the ith task on
the jth processor is done as follows:

Timeij ¼ Ti=SPj ð1Þ

In the experiments we assume a one on one task processor mapping. In case
multiple tasks should be allocated for execution on a particular processing core, we
assume a FCFS policy and calculate task completion times accordingly.

Under tile level parallelism each tile is considered a separate encoding task. Notice,
that these tasks are independent. In wavefront parallelism, each task corresponds to the
encoding of a single CTU. In order for a CTU compression to commence, the upper
and upper right CTUs as well as the left CTU (that resides in the same row) must have
finished compression. These dependencies can be captured by means of a DAG.
Figure 3 illustrates the DAG structure for an example 4 � 5 CTU grid.

Fig. 3. Example of a wavefront DAG.
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3.2 Heuristics

We evaluated two scheduling heuristics for tile parallelism namely, MaxMin and
MinMin. Given a set of available tasks, i.e., tasks that can commence immediately,
MaxMin selects the heaviest task and assigns it to the processor where it will expe-
rience the earliest completion time. MinMin also performs a similar processor
assignment, i.e., based on earliest completion time, but starts by assigning the most
lightweight task first. Notice, that in tile parallelism all tasks are available for execution
at the beginning of the process.

MaxMin and MinMin heuristics were also evaluated for wavefront parallelism,
with tasks becoming available depending on DAG constraints. Furthermore, we also
evaluated two other heuristics that are inspired by the DAG structure namely, MaxMin-
Row and MinMin-Row. These heuristics work in a similar manner to MaxMin and
MinMin with the exception being that instead of ordering tasks depending on estimated
load, they order tasks according to the CTU row they reside. MaxMin-Row selects
tasks in a lowest row first fashion and MinMin-Row does the opposite.

4 Experiments

4.1 Simulation Setup

We used class A and class B common test sequences [15] with characteristics described
in Table 1. We encoded the sequences using the HM 16.15 reference software [16].
Low Delay setting was selected with an initial I frame followed by P frames. The
remaining parameters were as follows: GOP size = 4, CTU size = 64 � 64, bit
depth = 4, max CTU partitioning depth = 4, QP = 32 and search method was TZ
search. These parameters are commonly used in the related literature, e.g., [17, 18] and
[19]. Video compression tasks were performed on a Linux machine with Intel Xeon
E5-2650 processor running at 2.2 GHz.

We recorded the time it took to compress each CTU in all the frames of a particular
sequence. We should mention that the aggregation of these times differed from the total
encoding time spent by at most 5%. In the experiments, the values obtained from the
actual coding of the video sequences constituted the performance of the baseline
processor. In practice, CTU compression times can be estimated before the encoding of

Table 1. Video sequences.

Name Resolution Total frames CTUs per frame

PeopleOnStreet 2560 � 1600 150 1000
Traffic 2560 � 1600 150 1000
BasketballDrive 1920 � 1080 500 510
BQTerrace 1920 � 1080 600 510
Cactus 1920 � 1080 500 510
Kimono 1920 � 1080 240 510
ParkScene 1920 � 1080 240 510
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Fig. 4. Wavefront speedup (PeopleOnStreet
sequence).

Fig. 5. Wavefront speedup (Traffic
sequence).

Fig. 6. Wavefront speedup (BasketballDrive
sequence).

Fig. 7. Wavefront speedup (BQTerrace
sequence).

Fig. 8. Wavefront speedup (Cactus sequence). Fig. 9. Wavefront speedup (Kimono
sequence).

Fig. 10. Wavefront speedup (ParkScene
sequence).

Fig. 11. Improvement over random
(average of all sequences).
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a frame commences by one of the estimators proposed in the literature. In the paper the
estimator used in [19] for LowDelay coding is adopted. Under the scheme, statistics
from the first GOP (4 frames) are obtained, before being able to estimate the rest. For
this reason, we only record the performance of scheduling schemes from the 5th frame
onwards.

4.2 Wavefront Experiments

In a first experiment we evaluated the performance of the scheduling heuristics together
with random scheduling, whereby each available task is assigned to one of the pro-
cessors with probability following a uniform distribution. Figures 4, 5, 6, 7, 8, 9 and 10
plot the speedup from wavefront parallelization achieved for different number of
processors assuming that half of them had processor speedup = 1 (baseline processor)
and the other half processor speedup = 2 (i.e., twice fast to the baseline). As it can be
observed, with the notable exception of PeopleOnStreet sequence, random scheduling
has clearly worst performance compared to the other 4 options. It should be noted that
in PeopleOnStreet sequence there exists avid movement throughout the frame thus,
most CTU codings are equally complex and for this reason random choices perform in
par with the remaining heuristics. It should also be noted that the achievable speedup in
many cases exceeds the available processors. This is due to the way speedup is cal-
culated: Speedup = SequentialTime/ParallelTime, whereby sequential time corre-
sponds to the performance with processor speedup = 1 (in the experiments half of the
processors are twice fast).

In order to better illustrate the overall performance of the heuristics we plot the
improvement over random calculated as: (TimeRandom-TimeHeuristic)/TimeRandom.
Figure 11 shows the average performance improvement (time reduction percentage)
exhibited in all sequences. As it can be observed the MinMin heuristic is a clear winner
followed by the heuristic that selects CTUs giving priority to the lowest CTU row.

Fig. 12. Wavefront speedup (average for all
sequences, processor speedups: 1, 2, 4).

Fig. 13. Improvement over random (aver-
age for all sequences, processor speedups:
1, 2, 4).
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To further confirm our findings, we run an experiment whereby 1/3rd of the pro-
cessors had speedup of 1, 1/3rd speedup of 2 and another 1/3rd a speedup of 4. This
scenario accounts for more heterogeneity. Thus, it is not surprising that the perfor-
mance gap between random scheduling and the rest widens as shown in Fig. 12 which
shows the achievable parallelization speedups and Fig. 13 which shows the perfor-
mance improvement over random. Again notice that MinMin achieves the best per-
formance reaching more than 45% of improvement, i.e., encodings are finished in
almost half the time compared to random.

4.3 Tile Experiments

Next we evaluated the performance of MaxMin and MinMin on tile parallelism. We
conducted experiments with tile partitioning of 3 � 4 and 3 � 3. Figures 14, 15, 16
and 17 plot the relevant performance results for the two cases. For comparison reasons
we considered a modified random scheduling (u_Random) which assigns the same
number of tiles on each processor but does so in a random uniform manner.

Results show that MaxMin and MinMin outperform for the largest part u_Random.
Contrary to wavefront parallelism, MaxMin is the winner in tile parallelism. The
performance difference between MaxMin, MinMin and u_Random is shown to initially
rise as the number of processors increases, exhibits a peak and then drops as the
number of processors tends to equal the number of tiles. Among MaxMin and MinMin,

Fig. 14. Tile speedup (3 � 4 tiles, average
for all sequences, processor speedups: 1, 2,
static tile sizing).

Fig. 15. Improvement over u_random
(3 � 4 tiles, average for all sequences, pro-
cessor speedups: 1, 2, static tile sizing).

Fig. 16. Tile speedup (3 � 3 tiles, aver-
age for all sequences, processor speedups:
1, 2, static tile sizing).

Fig. 17. Improvement over u_random
(3 � 3 tiles, average for all sequences, pro-
cessor speedups: 1, 2, static tile sizing).
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MinMin exhibits the sharpest drop. This can be explained by considering that in the
extreme case where the number of processors equal the number of tiles, it will assign to
the fastest processors the least heavy task, possibly leaving the heaviest ones to be
assigned to low capacity processors.

In a final experiment we wanted to test the performance of tile scheduling schemes
when adaptive tile resizing is performed. For this reason, we considered a scheme that
aims at balancing tile sizes in a manner similar to the one proposed in [19]. Figures 18
and 19 plot the results for 3 � 4 tile partitioning. Again MaxMin is the winner,
followed by MinMin in all but the case where the number of tiles and processors are
equal (notice the negative improvement over u-Random for 12 processors in Fig. 19).

5 Conclusions

In this paper we evaluated scheduling heuristics for the case of video coding using
wavefront and tile level parallelism, under heterogeneous assumptions concerning the
available processor computational power. This issue, although crucial to performance
was typically overlooked. Results demonstrate a different winner depending on the
parallelization mode, with MinMin offering the best results for the wavefront case and
MaxMin be the winner for tile parallelism. Concerning wavefront parallelism, placing
preference depending on the row a CTU resides, bears no additional benefits to the
basic MinMin scheme. At the same time, random scheduling decisions led to signifi-
cantly inferior performance overall, even doubling in certain scenarios task completion
time compared to other alternatives.
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