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Abstract. Two contrasting feeds in terms of copper recovery from a Cu
(Mo) porphyry deposit but with similar overall mineralogy have been charac-
terized by X-ray diffraction for their <1 pum fraction illite crystallinity, Scherrer
width and by atomic force microscopy for surface roughness. The unfavorable
feed displayed slightly higher crystallinity, larger Scherrer width and surface
roughness factors, than the feed with good Cu recovery. As Scherrer width is an
easy and cheaply to determine parameter it is suggested as complementary
information to particle size distribution analyses when dealing with feeds where
illite may affect pulp viscosity or gangue adhesion to bubbles during flotation.
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1 Introduction

For over half a century, illite crystallinity has been used as an indicator of mineral
maturity in metasediments between the transition of diagenesis to very low temperature
metamorphism and the incipient low-grade metamorphism or epizone (Frey 1999).
Illite crystallinity (later Kiibler Index) measured at full width half medium height
(FWHM) of the basal XRD-reflection is also an indirect indicator for the size of the
jointly diffracting illite sheets, also known as Scherrer width, which has been directly
visualized with the widespread availability of Transmission Electron Microscopy (Frey
1999). Superimposition of metamorphic and hydrothermal alteration processes, paired
with time consuming analytical routines, has limited the application to alteration halos
of ore deposits; an exception is the study by Beaufort et al. (2005) on the East Alligator
River Uranium deposit in the Northern Territory, Australia, due to its abundance of
chlorite and illite gangue. Sericitic alteration (muscovite/illite) also represents wide-
spread gangue for Andean Cu (Mo) porphyry ore deposits, but systematic studies of
phyllosilicate crystallinity or Scherrer width within ore deposit areas are not available.
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Cheng and Peng (2018) suggest negative effects for low crystallinity kaolinite rich
ore, much of the work being based on artificial ore-gangue mixtures. However Jorjani
et al. (2011) single out illite and vermiculate as key gangue affecting flotation for the
Iranian Sarcheshmeh porphyry copper deposit. The present exploratory study has been
sparked by the effort to develop a formula for blending ore based on mineralogical-
chemical parameters of a giant porphyry copper deposit in Chile. Ore with similar
sericitic alteration and chalcopyrite dominated ore phases, were identified by the
concentrator operation as favorable (F) and unfavorable (UF) floating feed, the latter
entering the concentrator only as blend. Given this overall mineralogical similarity, it
was decided to characterize the contrasting feeds based on their illite crystallinity —
Scherrer width and concomitant surface roughness.

2 Methods and Approaches

Triplicate samples of favorable (F) and unfavorable (UF) floating ore were prepared for
X-ray diffraction (XRD) analysis of the clay size fraction (>0.45 <1 um) based on the
recommendations of Moore and Reynolds (1997). XRD measurements were carried out
on a Bruker D4 diffractometer operated with Ni-filtered Cu-radiation. Illite crystallinity
and Scherrer width were determined on the 001 basal reflection following Lorentzian
adjustment using the Origin 8.5 program. Atomic Force Microscope (AFM) measure-
ments of topography were carried out with an AIST-NT equipment in contact mode on
a 5 x5 pum surface. WSxM5.0 software was used for calculating Ra (arithmetic
average) and Rrms (root mean square) roughness factors (Horcas et al. 2007; Erinosho
et al. 2018).

3 Results and Discussion

Illite crystallinity values of both samples (F: 0.15 A° 20, UF: 0.12 A° 20) correspond
to epizone values, and for the unfavorable feed are at the sensitivity limit of this method
(Frey 1999). Though values for the favorable feed are marginally lower, nevertheless
this difference is expressed in an increased Scherrer width or crystallite size (F:
48.8 nm, UF: 62.6 nm) for the unfavorable feed.

Topographic images of sample surfaces show different roughness, being the
favorable feed (F) the smoother. Roughness factors were calculated for different sur-
faces scanned by AFM. As a mean, 10 sample surfaces were measured and statistically
compared, giving values of Ra = 57 + 20 and Rrms = 66 =+ 23 for the favorable feed
and Ra = 68 £ 18 and Rrms = 86 £ 19 for the unfavourable feed sample. Undoubt-
edly, different scales of images analysed imply changes in the surface parameters. To
avoid this, images with the same size have been compared. As it can be observed in the
Fig. 1, roughness parameters confirm the XRD results.

Despite the difficulties of differentiating between illite generations in rocks with
sericitic overprint in porphyry (and other) ore deposits, this simple XRD measurement
permits concomitant calculation of coherently diffracting particle sizes or Scherrer
width for a given geometallurgical unit. The correspondence observed for this
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Fig. 1. Topographic aspects of F-1 sample (left) and UF-1 sample (right)

exploratory study between increased Scherrer width and higher AFM measured surface
roughness, recommends the XRD based value as an easily available tool to assess
difference in flotation for samples where traditional methods like optical microscopy,
automated mineralogy, and semi-quantitative whole rock mineralogy do not reveal
obvious mineralogical differences between feeds with contrasting flotation behavior.
Farrokhpay and Ndlovu (2013) discussed the effect of clay particle size on pulp rhe-
ology; here the X-ray coherent Scherrer width is suggested as a complementary indi-
cator to the particle size distribution measurements by laser diffraction in the clay size
range. The scale of surface roughness as a factor impacting on particle adhesion to
bubbles has been studied by Nikolaev (2016). However, direct AFM measurements are
still no routine procedures to define geometallurgical units within an ore deposit,
whereas XRD information can be generated faster and in a more standardized fashion.

4 Conclusions

[llite crystallinity, Scherrer width and AFM-determined surface roughness have been
determined for two flotation-feed of a Cu (Mo) porphyry copper deposit with con-
trasting Cu-recovery. Samples did not display any mineralogical difference allowing a
straightforward explanation of this difference. For this exploratory study case, Scherrer
width is considered an easy to obtain parameter that points to differences in surface
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roughness of illite particles in the <1 pm fraction and thus may influence pulp viscosity
and/or particle adhesion to bubbles during flotation.

Acknowledgements. Dr Manuel Melendrez, Departamento de Ingenieria de Materiales,
Universidad de Concepcion is thanked for access to the AFM equipment.

References

Beaufort D, Patrier P, Laverret E (2005) Clay alteration associated with proterozoic
unconformity-type uranium deposit in the East Alligator Rivers uranium fields, Northern
Territory, Australia. Econ Geol 100:515-536

Chen X, Peng Y (2018) Managing clay minerals in froth flotation. A critical review. Miner
Process Extr Metall Rev 39(5):289-307

Erinosho MF, Akinlabi ET, Johnson OT (2018) Characterization of surface roughness of laser
deposited titanium alloy and copper using AFM. Appl Surf Sci 435:393-397

Farrokhpay S, Ndlovu B (2013) Effect of phyllosilicate minerals on the rheology, colloidal and
flotation behaviour of chalcopyrite mineral. In: Australasian conference on chemical
engineering, Chemeca 2013, Challenging Tomorrow, p 733

Frey M (1999) Very low-grade metamorphism of clastic sedimentary rocks: in Low Temperature
Metamorphism. Blackie and Sons, Glasgow, pp 9-58

Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero JWSX, Gomez-Herrero JWSXM,
Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for
nanotechnology. Rev Sci Instrum 78:013705

Jorjani E, Barkhordari HR, Khorami MT, Fazeli A (2011) Effects of aluminosilicate minerals on
copper—molybdenum flotation from Sarcheshmeh porphyry ores. Miner Eng 24(8):754-759

Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay
minerals. Oxford University Press, Oxford

Nikolaev A (2016) Flotation kinetic model with respect to particle heterogeneity and roughness.
Int J Miner Process 155:74-82

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	Scherrer Width and Topography of Illite as Potential Indicators for Contrasting Cu-Recovery by Flotation of a Chilean Porphyry Cu (Mo) Ore
	Abstract
	1 Introduction
	2 Methods and Approaches
	3 Results and Discussion
	4 Conclusions
	Acknowledgements
	References




