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Abstract. In Dial-a-Ride Problem (DARP) customers request from an
operator a transportation service from a pick-up to a drop-off place.
Depending on the formulation, the problem can address several con-
straints, being associated with problems such as door-to-door transporta-
tion for elderly/disabled people or occasional private drivers. This paper
addresses the latter case where a private drivers company transports pas-
sengers in a heterogeneous fleet of saloons, estates, people carriers and
minibuses. The problem is formulated as a multiple objective DARP
which tries to minimize the total distances, the number of empty seats,
and the wage differential between the drivers. To solve the problem a
Non-dominated Sorting Genetic Algorithm-II is hybridized with a local
search. Results for daily scheduling are shown.
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1 Introduction

In recent years there has been a significant increase in the number of companies
transporting tourists in the Algarve (Portugal), mainly between Faro’s Airport
and the various accommodation units in the region. Many companies, including
Yellowfish Travel, Ltd. (YFT) provide a private transportation service into the
region and surrounding areas (e.g., Lisbon, Alentejo and southern Spain). The
company has a heterogeneous fleet of almost 100 vehicles, with capacities ranging
from 4 to 8 passengers. The service philosophy of the company is based on a close
relationship with each of the customers and business partners in order to meet
all the requirements and needs in a personalized way, included in provision of
services by private chauffeurs. This type of product distinguishes itself from the
shuttle buses services as each request is carried out separated from the others.
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Customers are currently ordering services through a web platform, by email,
or via telephone, with advance appointments that can go from several days to a
few hours before the service. The requests are stored in a database and the daily
scheduling of these, by vehicles/drivers, are made at the end of the previous day.
In the present, the scheduling is built manually which implies a considerable
human effort and a strict dependence on the capacity and availability of one or
more operators. In addition, it is a process that has to be carried out by special-
ized people due to some required knowledge of key variables, such as the location
of the accommodation or the time of transport/travel between pick-up and drop-
off places, in order to articulate the various services. The set of variables to be
taken into account for the distribution of services is, however, much broader,
including the vehicles’ capacities, vehicles’ availabilities (e.g., more generally
the availability of drivers and vehicles), traffic restrictions, the pick-up/drop-off
time, the number and type of people to be transported, the type and size of the
luggage, the number and age of the children, etc.

The aforementioned scheduling consists in the assignment of a set of transport
services by drivers/vehicles, which must be fitted in such a way as to avoid large
journeys and high waiting times between the end of a service and the beginning
of the other, thus optimizing the resources and costs. The usage of “appropriate”
vehicles is also an asset, avoiding, for instance, the usage of the vehicles with
large capacities to transport a small number of passengers, as smaller vehicles
generally provide more comfort and are cheaper to operate. Other factors, not
directly linked to transport, are also taken into account, such as the balanced
distribution of services by drivers, both for safety reasons (avoiding sharp wear
and tear by providing rest to drivers) and for wage equity issues. The two aspects
are related since driver earning come from service commissions, which depend
on the number of services and drove distances.

Taking into account all of the above, the problem is formulated as a multiple
objective DARP which tries to minimize the total distances, the number of empty
seats, and the wage differential between the drivers.

DARP [5,22] consider transportation requests, each associated with an origin
and a destination, resulting in paired pick-up and drop-off points, but with the
constraint that passengers are transported service by service. DARP combines
Scheduling and Vehicle Routing Problems (VRP) [17,26,28] as it tries to find the
best set of routes that a fleet of vehicles must carry out in order to deliver goods
to a certain set of customers from a certain set of depots, using a (possibly)
heterogeneous set of vehicles. Variants of the VRP adapt it to fulfill constraints,
such as: the Capacitated VRP (CVRP) where capacity constraints are added
to the vehicles, the VRP with time windows (VRP-TW) where each delivery
must be performed during a certain time interval, the VRP with Pick-Up and
Delivering (VRP-PD) where it is admitted that not all services are delivery but
also the pick-up of goods is considered, the VRP with Multi-Depot (VRP-MD)
in which routes do not start in the same depot, the VRP with Last In First Out
(VRP-LIFO) in which the last commodity to be loaded is the first one to be
delivered, etc.
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Several adaptations and techniques were proposed over the last decades to
solve the variants of DARP problem. For example, a branch-and-price-and-cut
algorithm for heterogeneous DARP with configurable vehicle capacity is pro-
posed in [23] to solve a route planning problem arising at a senior activity
center. In [4] is introduced a mixed-integer programming formulation of the
problem and a branch-and-cut algorithm capable of solving small to medium-
size instances of the formulated problem. The pickup and delivery problem with
time windows (PDPTW) and a DARP along with some families of inequali-
ties used within branch-and-cut algorithms were formulated in [25], being those
inequalities tested on several instance sets of the PDPTW and the DARP. At
the level of metaheuristics there is also a wide set of solutions that solve several
variants of the problem in question, e.g., Genetic Algorithms (GA), Ant Colony
Algorithms (ACO), or Tabu Search (TS) [9]. For example, in [29] an ACO is
used to minimize the fleet size required to solve a DARP. In [6] is presented
a study to develop and test different GAs in the aim of finding an appropri-
ate encoding and configuration, specifically for the DARP problem with time
windows. Parallel implementations of the TS are described and compared in [1]
when applied to a static DARP. Other algorithmic solutions include the use
of hybrid method such as in [15], where it is implemented a two-stage hybrid
meta-heuristic method (uses ACO and TS) for vehicle routing problems with
constraints of simultaneous pickups and deliveries and time windows (VRP-
SPDTW). In [27] is proposed a parallel approach for solving the VRP-SPD. The
parallel algorithm is embedded with a multi-start heuristic which consists of a
variable neighborhood descent procedure, with a random neighborhood ordering,
integrated in an iterated local search framework. The hybrid algorithm for the
dynamic dial-a-ride problem in [2] combines an exact constraint programming
algorithm and a TS heuristic. In [3] the authors address the problem of lack of
transport service in sparsely inhabited areas as a Demand responsive transport
problem (DRTP), comparing the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the
Indicator Based Evolutionary Algorithm (IBEA). Furthermore, improvements
using an iterative local search (ILS), added in the mutation operator, are used
to select the best approach in a solution capable of producing answers in a short
period of time. Another application of NSGA-II to a multiple objective variation
of the DARP problem considering disruptive scenarios (e.g., accidents with the
transporting vehicles, vehicle breakdown and traffic jams) is presented in [14].
NSGA-II is also used to solve another bi-objective formulation of DARP [10]
consisting in the determination of routes to be performed by a fleet of vehicles
available to serve a set of geographically dispersed customers (corresponding to
patients). Please refer to [5,12] for two surveys on modeling and algorithms for
the DARP.

From a modeling point of view, in addition to other constraints, the problem
proposed in this paper ends up combining some of the above mentioned variants,
since the vehicles have limited capacities (CVRP), involve the collection and
delivery of customers (VRP-PD) with a LIFO of size 1 (VRP-LIFO), vehicles



58 P. M. M. Guerreiro et al.

do not leave and have a final stop in the same place (VRP-MD), and there are
temporary windows for pick-up and drop-off (VRPTW). The problem will be
formulated in Sect. 2 as a Multiple Objective DARP (MO-DARP), adapting
the work presented in [19]. The difficulty of obtaining efficient methods, capable
of giving the optimal or near-optimal scheduling in a timely manner, will be
increased due to the dealing with problems with multiple objectives [8,20]. As
stated, the objective function to be minimized in all its components, includes (a)
the total distance run by the vehicles during a day work, (b) the total number of
empty seats during a day work, and (c) the difference between the commissions
earned by each driver and a reference value (promoting drivers working and
earnings equity).

This paper shows an approach to solve the real problem proposed by the
company. Solutions are computed based on a NSGA-II [8] hybridized with a
local search (see Sect. 3). Furthermore, the implementation takes into account
the restrictions imposed by the company, optimizing not only the operations
cost but also the welfare of its workers. The prototype implemented in Python
allows to obtain solution for a day’s work in bearable times, provided the service
request in proper advance. Solutions will be presented showing that distinct
concerns from decision maker (relative to the objectives) are allowed.

The paper is structured as follows. The next section formulates the MO-
DARP problem in study. Section 3 outlines the NSGA-II algorithm and how
it was applied to solve the addressed MO-DARP problem, including the local
search operator description and the system’s architecture. Results are reported
in Sect. 4 and a conclusion and future work is presented in the last section.

2 Problem Formulation

Adapted from [19], the problem is formulated in a directed graph G = (V,A),
where V is the set of vertices/nodes, A ⊂ V × V is the set of edges/arcs, and an
arc (g, h) has associated a distance δg,h and a transversing time tg,h.

Each request i ∈ R = {1, 2, . . . , n} is characterized by a pick-up node p+i ∈
P+ = {1, 2, . . . , n}, a drop-off node p−

i ∈ P− = {n + 1, . . . , 2n}, a load qi =∑
l∈J qi,l where J is the type of passengers set (e.g., baby, child, adult) and qi,l

is the number of passenger of type l in request i, and either a pick-up time ei or a
drop-off time di. The pick-up vs drop-off time specified in the request is related
with its type, which is given by the binary parameter Ti (Ti = 0 if request i
refers to a pick-up and 1 if it is a drop-off).

Moreover, the set of nodes is defined by V = P+ ∪P− ∪D, where D = {2n+
1, . . . , 2n+m} is the set of depot points. In the proposed model there are as many
depots as drivers (a total of m), since it is considered that a vehicle starts and
ends at the driver’s home, being d+k , d−

k ∈ D the start and end nodes of vehicle
k, respectively. Each vehicle k ∈ K of capacity Ck is allocated to one driver,
information given by the binary parameter ωj,k, where j ∈ M = {1, 2, . . . ,m}.
Drivers’ working time window [αj , βj ] and maximum workload Maxj are also
parameters of the model. Two binary variables
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xk
g,h =

{
1 if arc (g, h) is performed by the vehicle k ∈ K
0 otherwise

and

yk
i,j =

{
1 if request i immediately precedes request j in vehicle k ∈ K
0 otherwise ,

associate the vehicles to going through an arc and the vehicle’s services order,
respectively.

Regarding scheduling issues, υk
g indicates what time vehicle k starts serving

node g ∈ V . In addiction, the model defines Δk
i = Ck − qi as the number of

unused seats on vehicle k while serving request i (Δk
i is equal to 0 when i is not

served by k), Sj the cumulative salary of the driver j, and μS the drivers average
salary. In order to calculate Sj the set of services for the vehicle k is needed, Ak.

The goal of the problem is expressed by a multi-objective function which
comprises (a) the minimization of total distance made by the vehicles

f1 ≡
∑

k∈K

∑

g∈V

∑

h∈V

δg,hxk
g,h (1)

(b) the minimization of the drivers’ wages difference

f2 ≡
∑

j∈M

(Sj − μS)2, (2)

and (c) the minimization of the total number of empty seats while satisfying all
requests

f3 ≡
∑

i∈R

∑

k∈K

Δk
i . (3)

It can be observed that f1 and f3 are linear functions, but f2 is non-linear.
The problem constraints can be defined as follows. The first constrains ensure

that requests are satisfied by a single vehicle
∑

k∈K

xk
p+
i ,p−

i

= 1, i ∈ R

and that the vehicle which picks-up the customer is the same that drops him off

xk
p−
i ,p+

j

= yk
i,j , k ∈ K, i, j ∈ R.

The next equations ensure that a vehicle starts and ends its daily service at its
depot ⎧

⎪⎪⎨

⎪⎪⎩

∑

h∈P+

xk
d+
k ,h

= 1, k ∈ K, d+k ∈ D

∑

g∈P−
xk

g,d−
k

= 1, k ∈ K, d−
k ∈ D.
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The vehicles’ capacity restrictions for each service are verified by satisfying

xk
p+
i ,p−

i

(
∑

l∈J

qi,j + Δk
i

)

= xk
p+
i ,p−

i

Ck, k ∈ K, i ∈ R

Time specifications ensure that none of the requests of a vehicle overlap in time

yk
i,j(υ

k
p+
i

+ tp+
i ,p−

i
+ tp−

i ,p+
j
) ≤ υk

p+
j

, k ∈ K, i, j ∈ R.

The next restrictions address if a customer either defines a pick-up time or drop-
off time from a certain place:

{
υk

p+
i

+ tp+
i ,p−

i
≤ diTi, k ∈ K, i ∈ R

υk
p+
i

≥ ei(1 − Ti), k ∈ K, i ∈ R.

The last constraints ensure that a driver only works within a previously defined
time window

⎧
⎪⎨

⎪⎩

ωj,k(υk
d−
k

− υk
d+
k

) ≤ Maxj , j ∈ M,k ∈ K, d−
k , d+k ∈ D

ωj,k min(υk
g ) ≥ αj , k ∈ K, g ∈ V, j ∈ M

ωj,k max(υk
g ) ≤ βj , k ∈ K, g ∈ V, j ∈ M

and revi the drivers’ revenue associated to each request

ωj,kSj =
∑

i∈Ak

revi, k ∈ K, j ∈ M.

3 Computational Solution

3.1 General NSGA-II
Section 2 formulated MO-DARP, a nonlinear multi-objective optimization prob-
lem, derived from the single customer DARP. Non trivial multi-objective prob-
lems are characterized by having a conflicting set of objective functions, which
implies that no single solution is capable of optimizing all objectives at once. In
this sense, the solution of a MO problem is a set of trade-off solutions, called
Pareto set [7,18], being its representation called Pareto Front (PF). In the Pareto
(or efficiency) order relation, a solution R is said to dominate solution S, R ≺ S,
when R is not worse than S for all objectives and there is at least one on
which it is strictly better, i.e., given an objective function with n objectives,
(f1, f2, . . . , fn), where all objectives are to be minimized, then

R ≺ S ⇔
{∀i∈{1,2,...,n} : fi(R) ≤ fi(S)

∃i∈{1,2,...,n} : fi(R) < fi(S). (4)

Using the dominance definition, the Pareto set is defined as P = {S ∈ Ω|�R∈Ω :
R ≺ S}, where Ω is the problem’s admissible solutions set. Without preferential
information, all solution in the Pareto set are considered equally good, as they
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cannot be ordered completely, leaving the decision of which solution to use to a
decision maker. Furthermore, as the Pareto set can be a continuous or discrete set
(with possibly infinite cardinal), many times the goal is to find a representative
set of optimal solutions. This can be even further relaxed as, under complex
problems, it might be acceptable a representative set of quasi-optimal solutions.
These representative sets are called approximation sets.

To measure the approximation sets quality, several metrics where analyzed
in the past [24]. This paper will use the Hypervolume (HV) [30] which uses a
reference point to measure the size of the objective space covered by the approx-
imation set. HV considers accuracy, diversity and cardinality, being the only
unary metric with this capability.

The method elected to solve the proposed MO-DARP was NSGA-II [8]. As
the name suggests, NSGA-II is a multiple objective Genetic Algorithm [13]. GAs
evolve a population of candidate solutions throughout a number of generations,
until a stopping criteria is reached (e.g, number of generations, number of eval-
uations of the objective, computational time, etc). In each generation, the can-
didate solutions are subjected to two genetic operators, namely: crossover and
mutation. The crossover operator creates the offspring by combining randomly
selected (according to some given crossover probability, pc) candidate solutions,
and the mutation operator applies a mutation to each offspring, again according
to a given mutation probability, pm. While the first operator retains the parents
characteristics to the offspring, the second preserve and maintain the diversity
of the population, preventing it from becoming trapped in some local minima.
After applying the crossover and mutation operators, parents and offspring are
joined and every solution is evaluated to determine their respective fitness. That
fitness is used to select the best solutions to maintain for the next generation,
discarding the others.

A few differences distinguish the NSGA-II procedure from the generic GA,
such as the selection of the candidate solutions which are preserved for the next
generation. Since in a non-dominated set of solutions of a MO optimization prob-
lem there is no “best” solution, but a set of trade-off solutions (approximation
set), NSGA-II algorithm ranks each solution according to their respective layer
in the approximation set, and uses the crowding distance to maintain the diver-
sity, so that when needed, the solutions discarded are those with lower rank or in
a more “crowded” space (refer to [8] for a detailed explanation of the process).
Here, given an approximation set AS, the referred solution’s layer corresponds
to a construction where the first layer is given by

L0 = {S ∈ AS|�R∈AS : R ≺ S} (5)

and the next layers are recursively given by

Li+1 = {S ∈ ASi|�R∈ASi
: R ≺ S}, (6)

where ASi = AS − ∪i
k=0Lk for i = 0, 1, . . ..
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3.2 Applying NSGA-II to MO-DARP

Returning to the MO-DARP, the solutions of the problem can be seen as assign-
ments of drivers/vehicles to services. In this sense, to implement the NSGA-II
method, vectors of integers were used to represent solutions, where each column
represents a service, and the value is the vehicle assigned to it, as the two parents
sketched in Fig. 1 – top-left. For instance, Parent 1 represents a solution where
service 1 is assigned to vehicle 3, service 2 is assigned to vehicle 2, etc.

The algorithm can be summarized as follows. (i) The initial population
is generated by randomly attributing vehicles to services. (ii) Then the fit-
ness of each individual in the population is computed, using Eqs. (1)–(3) and
the number of violated restrictions, implementing a restriction-violation non-
dominated sorting. In other words, solution which do not violate any restriction
are ranked/sorted as in Eqs. (5) and (6). The ranking process is then repeated
with the solutions which violate one restriction, then with two restrictions, etc.
This means that the process is allowed to work with solutions which are not
valid (e.g., a vehicle has two services which overlap in time). (iii) In the next
step, pair of parents are selected proportionally to their rank (called fitness
proportionate selection or roulette wheel selection) and the crossover operator
is applied with probability, pc. Figure 1 – top represents a crossover operation
where Parent 1 and 2 are combined to generate Offspring 1 and 2. The repre-
sented combination is done by randomly selecting three cutting points followed
by swap between the parents of the blocks defined by those cutting points. The
number of cutting point, κ, is a parameter of the algorithm. (iv) Mutation is
then randomly applied to each offspring vehicle/service assignment with proba-
bility pm. In our case, the operator was implemented by randomly changing the
vehicle assigned to the service, as the example sketched in Fig. 1 – bottom, where
Offspring 1 is mutated by changing the vehicles assigned to services S3 and S7,
obtaining Offspring 1∗, which replaces Offspring 1. (v) The use of local search
operators to improve the offspring is optional, but generally it allows to improve
the algorithm performance in terms of solutions fitness for a given time/number
of iterations/number of objective function evaluations (see Sect. 3.3 for the con-
sidered local search). Finally, (vi) the offspring are evaluated and from the set
of parents and offspring, taking into consideration their fitness and the solutions
crowding distance, a new population is selected, with the original size, returning
to step (iii) if the stopping criteria is not met. When the stopping criteria is
met, the feasible non-dominated solutions in the last population are returned as
the proposed solution for the MO-DARP. An empty set is returned if no feasible
solution was found.

3.3 Local Search
In order to improve overall performance, a local search (LS) operator was imple-
mented and applied to the offspring resulting from the NSGA-II’s crossover and
mutation operators as follows. Let us consider an offspring, such as the ones
presented in Fig. 1. This offspring represents a solution by assigning services to
vehicles. For each service, the local search operator starts by checking if there
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are vehicles satisfying the service’s constraints (e.g., number of seats, luggage
restrictions, etc.) – to speed up this step, a pre-computation associates admissi-
ble vehicles to the services. Secondly, if the set of admissible vehicles (except the
assigned one) is not empty, for each of them, it is verified if assigning the service
to the vehicles violates any of the time restrictions, namely if overlapping of
services occurs, if the vehicles’ working hours are satisfied, if it is possible to go
from the previous drop-off to the service’s pick-up point in time and if after the
service is still possible to reach the next pick-up location in time. If the previous
conditions are all satisfied then it is computed the variation in the total distance
that the change of the service from one vehicle to the other would induce. If the
total distance would be improved in any of the admissible changes then the one
with the greatest gain is executed.

S1 S2 S3 S4 S5 S6 S7 S8

Parent 1 3 2 1 1 4 4 3 2
Parent 2 2 1 4 2 3 1 4 3

Crossover⇒
S1 S2 S3 S4 S5 S6 S7 S8

Offspring 1 3 2 4 2 4 4 3 3
Offspring 2 2 1 1 1 3 1 4 2

S1 S2 S3 S4 S5 S6 S7 S8

Offspring 1 3 2 4 2 4 4 3 3
Mutation⇒

S1 S2 S3 S4 S5 S6 S7 S8

Offspring 1∗ 3 2 2 2 4 4 1 3

Fig. 1. Solution representation using vectors of integers. Example of the crossover (top)
and mutation (bottom) operators.

3.4 System’s Architecture

The proposed architecture comprises 4 main components: database, routes
server, the MO-DARP optimizer, and visualization. The (relational) database
stores the data associated with the problem, such as: services (pick-up/drop-
off places, pick-up/drop-off times, etc.), vehicles (availability, number of places,
etc.), drivers, etc. To compute the routes between the places, an instance of
the Open Source Routing Machine (OSRM) [16] was deployed in a local server.
OSRM runs on OpenStreetMap data [21] and, among other things, furnishing an
Web application programming interface (HTTP API) which replies to requests
for nearest street matches (snaps coordinates to the street network and returns
the nearest matches), route computation (finds the fastest route between coor-
dinates), duration or distances tables (computes the duration or distances of
the fastest route between all pairs of supplied coordinates), etc. The MO-DARP
optimizer was prototyped over the Platypus (Multiobjective Optimization in
Python) evolutionary computing framework [11]. Platypus provides optimiza-
tion algorithms and analysis tools, allow to define constrained and unconstrained
problems, and currently supports around ten MO algorithms.

4 Computational Results

This section presents some results of the usage of the proposed algorithms. Two
operation days were chosen: Day 1 with 54 services and 22 cars available, and
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Day 2 with 197 services and 38 vehicles. In both days it is considered that vehicles
can do pick-ups between 00:00 and 24:00. It should be noticed that there might
be more than one driver associated to a vehicle, i.e., it is not usual that the
same driver does pick-ups early and late in the day – for the chosen days that
data was not yet systematized in the database. The algorithm was run 10 times
for each set of parameters and the results are summarized in Table 1, which
presents for each set of parameters the Hypervolume values of the normalized
(to the interval [0, 1]) objective function values and cardinality of the Pareto
Front. Regarding the Hypervolume, in the results for Day 2 it can be observed
that the most influential parameter is the mutation probability, and the lower
its value the better are the results obtained. What this means is that as the
algorithm is reaching good solutions, the mutation in reality is “destroying” those
good solutions by randomly moving services to other vehicles – but remember
that the purpose of the mutation is to prevent solutions from being trapped in
some local minima, and its probability should not be null. As for the rest of
the operators, not surprisingly, the local search allows for better results when
compared with the same set of parameters – but cannot overwrite the effects
of a badly chosen mutation – and an higher crossover probability also gives
systematically better results than a lower one. The only parameter that is not
“coherent” is κ, the number of points for the crossover. If for a lower mutation
probability (pm = 0.01), a 4-points crossover always gives better results, when
this probability is higher (pm = 0.05), using the classic 2-points crossover yields
better results, when compared with using an higher crossover probability, as
can be seen in the lower half of the table. The results for Day 1 are a little
different, but it can be observed that all the values are very similar, indicating
that this problem is “simple” to solve, and the values of the parameters do not
influence much the results obtained. Similar results can be observed with respect
to the cardinality of the PF, seeable from the fact that the maximum number of
solution in the PF (equal to the defined population size) is always reached when
pm = 0.01, establishing again mutation as the most influential parameter.

Fig. 2. Pareto fronts for κ = 4, pc = 0.9 and pm = 0.01, with (left column) and without
(right column) local search operator.
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Table 1. Average of Hypervolume indicator and cardinality of the Pareto Front, for
10 executions of each set of parameters, ordered by the values of Day 2’s Hypervolume.

Hypervolume # PF

κ pc pm LS Day 1 Day 2 Day 1 Day 2

4 0.9 0.01 � 0.80 0.81 100 100

2 0.9 0.01 � 0.80 0.80 100 100

4 0.7 0.01 � 0.77 0.76 100 100

2 0.7 0.01 � 0.77 0.73 100 100

4 0.9 0.01 – 0.81 0.66 100 100

2 0.9 0.01 – 0.80 0.65 100 100

4 0.7 0.01 – 0.80 0.65 100 100

2 0.7 0.01 – 0.80 0.64 100 100

2 0.9 0.05 � 0.80 0.37 99.8 70.5

2 0.7 0.05 � 0.80 0.36 100 76.9

4 0.9 0.05 � 0.80 0.36 100 63.5

4 0.7 0.05 � 0.79 0.35 100 59.5

2 0.9 0.05 – 0.76 0.30 99.9 71.7

2 0.7 0.05 – 0.75 0.29 100 81.2

4 0.9 0.05 – 0.75 0.29 99.6 64.4

4 0.7 0.05 – 0.75 0.27 100 79.2

In Fig. 2 are depicted the Pareto fronts for the best parameters for Day 2
(κ = 4, pc = 0.9 and pm = 0.01), with the local search (left) and without the
local search (right). It is observable that, without the local search (right), the
values for f1 (distance) are centered around 14000 km, but using the local search
(left), all solutions found are well below that value. Regarding f2 (the number of
empty seats) and f3 (the difference of the commissions) the difference between
using or not the local search is negligible. This is not a surprise, as the local
search is about finding better solutions considering only the first objective (f1).

Figure 3 plots two Gantt charts for the schedulings of Day 2, obtained from
a single run of the proposed algorithm using as parameter κ = 4, pc = 0.9,
pm = 0.01, and applying the local search. Each line of the plot is associated to a
vehicle and the blue bars depicts connection times, i.e., the time to go from the
drop-off place of one service to the pick-up place of the next, from the vehicles’
starting place to the first pick-up place, or from the last vehicles’ drop-off to its
ending place. On the other hand, the red bars depict services times, i.e., the time
each service takes from the pick-up to the drop-off place. The absence of blue bar
between services (red bars) means that the drop-off place of the previous service
coincides with the pick-up place of the next one. The scheduling represented in
the top of the figure was chosen from the approximation set for being the one
which minimizes the number of empty seats: the objective function values are
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f1 = 13782.37 (kms), f2 = 190 (empty seats) and f3 = 2762, 41 (wage equity).
On the other hand, the figure in the bottom corresponds to scheduling which
minimizes the total distance: the objective function values are f1 = 12516.58,
f2 = 267, and f3 = 2212.65. Comparing plots it is observable that the second
one has a smaller density of blue bars and, although possibly not so discernible,
is less “dense”. These observation follow the expected behavior since to diminish
total distance vehicles should be allowed to have longer waiting times avoiding
the movement between drop-off and pick-up points.
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Fig. 3. Two examples of scheduling proposed from a single run of the algorithm using
parameter κ = 4, pc = 0.9, pm = 0.01, and local search. On top the scheduling which
minimizes the number of empty seats (objective function values f1 = 13782.37, f2 =
190 and f3 = 2762, 41 and on the bottom the scheduling which minimizes the total
distance (objective function values: f1 = 12516.58, f2 = 267, and f3 = 2212.65). (Color
figure online)
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5 Conclusion and Future Work

The number of companies transporting tourists in the Algarve and in many
touristic regions has recently increased dramatically. Between those companies
are the ones which provide private transportation services in a heterogeneous
fleet of vehicles. These companies have to schedule the daily services taking
into consideration constraints (e.g., vehicles and divers availability, vehicles vs.
services characteristics, etc.) and objectives. Among these objectives are the
operational costs, the appropriate usage of the vehicles fleet, and welfare of the
drivers. The problem can be formulated as a multiple objective DARP.

This paper presents the usage of a NSGA-II with a local search to solve the
MO-DARP problem originated by those transportations. The proposed system
uses data collected by a company (e.g., services, vehicles, drivers, etc.) and a geo-
graphical information system (namely, OSRM) to compute the routes between
the pick-up and drop-off points. The returned approximation set gives the com-
pany a set of scheduling from which a decision maker can choose one, and do
the arrangements for the next day.

In the future, the authors intend to improve the algorithm by including other
pre and post operators. The comparison with other heuristics is also an objec-
tive, looking for opportunities to further hybridize and consequently improve
the computational process. Another major asset will be the adaptation of the
algorithmic solution to allow a dynamic environment where new services, delays,
vehicles/drivers unavailabilities, traffic, etc. are taken into consideration.
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tion of stochastic dynamic dial a ride problem with NSGA-II. In: 13th International
Conference on Hybrid Intelligent Systems (HIS 2013), pp. 54–59 (2013)

15. Lai, M., Tong, X.: A metaheuristic method for vehicle routing problem based on
improved ant colony optimization and tabu search. J. Ind. Manage. Optim. 8(2),
469–484 (2012). https://doi.org/10.3934/jimo.2012.8.469

16. Luxen, D., Vetter, C.: Real-time routing with openstreetmap data. In: Proceedings
of the 19th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, GIS 2011, pp. 513–516. ACM, New York (2011).
https://doi.org/10.1145/2093973.2094062

17. Männel, D., Bortfeldt, A.: A hybrid algorithm for the vehicle routing problem with
pickup and delivery and three-dimensional loading constraints. Eur. J. Oper. Res.
254(3), 840–858 (2016)

18. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston (1999)

19. Morais, A.C., Torres, L., Dias, T.G., Cardoso, P.J.S., Fernandes, H.: A combined
data mining and tabu search approach for single customer dial-a-ride problem. In:
7th International Conference on Metaheuristics and Nature Inspired Computing,
Marrakech, Morocco, pp. 121–123, October 2018

20. Murata, T., Itai, R.: Multi-objective vehicle routing problems using two-fold EMO
algorithms to enhance solution similarity on non-dominated solutions. In: Coello
Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol.
3410, pp. 885–896. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31880-4 61

21. OpenStreetMap contributors: Planet dump (2017). https://planet.osm.org.
https://www.openstreetmap.org

22. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery prob-
lems. Journal für Betriebswirtschaft 58(1), 21–51 (2008)

23. Qu, Y., Bard, J.F.: A branch-and-price-and-cut algorithm for heterogeneous pickup
and delivery problems with configurable vehicle capacity. Transp. Sci. 49(2), 254–
270 (2014)

24. Riquelme, N., Lücken, C.V., Baran, B.: Performance metrics in multi-objective
optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11,
October 2015. https://doi.org/10.1109/CLEI.2015.7360024

https://doi.org/10.1007/978-1-4419-1665-5
https://platypus.readthedocs.io
https://platypus.readthedocs.io
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.3934/jimo.2012.8.469
https://doi.org/10.1145/2093973.2094062
https://doi.org/10.1007/978-3-540-31880-4_61
https://doi.org/10.1007/978-3-540-31880-4_61
https://planet.osm.org
https://www.openstreetmap.org
https://doi.org/10.1109/CLEI.2015.7360024


Applying NSGA-II to a Multiple Objective Dial a Ride Problem 69

25. Ropke, S., Cordeau, J.F., Laporte, G.: Models and branch-and-cut algorithms for
pickup and delivery problems with time windows. Networks Int. J. 49(4), 258–272
(2007)

26. Salhi, S., Imran, A., Wassan, N.A.: The multi-depot vehicle routing problem with
heterogeneous vehicle fleet: formulation and a variable neighborhood search imple-
mentation. Comput. Oper. Res. 52, 315–325 (2014)

27. Subramanian, A., Drummond, L., Bentes, C., Ochi, L., Farias, R.: A parallel heuris-
tic for the vehicle routing problem with simultaneous pickup and delivery. Comput.
Oper. Res. 37(11), 1899–1911 (2010). https://doi.org/10.1016/j.cor.2009.10.011

28. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. SIAM
(2014)

29. Tripathy, T., Nagavarapu, S.C., Azizian, K., Ramasamy Pandi, R., Dauwels, J.:
Solving dial-a-ride problems using multiple ant colony system with fleet size min-
imisation. In: Chao, F., Schockaert, S., Zhang, Q. (eds.) UKCI 2017. AISC, vol. 650,
pp. 325–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66939-
7 28

30. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

https://doi.org/10.1016/j.cor.2009.10.011
https://doi.org/10.1007/978-3-319-66939-7_28
https://doi.org/10.1007/978-3-319-66939-7_28

	Applying NSGA-II to a Multiple Objective Dial a Ride Problem
	1 Introduction
	2 Problem Formulation
	3 Computational Solution
	3.1 General NSGA-II
	3.2 Applying NSGA-II to MO-DARP
	3.3 Local Search
	3.4 System's Architecture

	4 Computational Results
	5 Conclusion and Future Work
	References




